Investigating the temperature field distribution over transport structures' metal corrugated construction surface under temperature influences
DOI:
https://doi.org/10.14513/actatechjaur.00657Keywords:
metal corrugated structure, ambient temperature, temperature field, finite difference methodAbstract
The experimental studies results of temperature distribution over metal corrugated sheet structure surface at positive and negative ambient temperatures are presented. It is established that the temperature is distributed unevenly over the sheet surface along its plane. An analytical method for calculating the temperature field from a fragment of a structure metal sheet in the case of setting the temperature at the sheet area boundaries is presented. The calculation of the temperature field distribution on the metal sheet of the structure with the setting of the temperature along the contour of the sheet is performed. As a result, it is established that at the metal sheet boundaries there is a temperature difference, which can cause the occurrence of temperature stresses and deformations.
Downloads
References
V. Kovalchuk, J. Luchko, I. Bondarenko, R. Markul, B. Parneta. Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies. – Kharkov – 6/7 (84) (2016) pp. 4–10. http://dx.doi.org/10.15587/1729-4061.2016.84236
V. Kovalchuk, R. Markul, O. Bal, A. Мilyanych, A. Pentsak, B. Parneta, O. Gajda. The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies. – Kharkov. – 2/7 (86) (2017) pp. 18–25. http://dx.doi.org/10.15587/1729-4061.2017.96549
V. Kovalchuk, R. Markul, A. Pentsak, B. Parneta, O. Gajda, S. Braichenko. Study of the stressstrain state in defective railway reinforcedconcrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies. – Kharkov, 5/1 (89) (2017) pp. 37–44. http://dx.doi.org/10.15587/1729-4061.2017.109611
B. Gera, V. Kovalchuk. A study of the effects of climatic temperature changes on the corrugated structure of a culvert of a transportation facility. Eastern-European Journal of Enterprise Technologies. – Kharkov, 3/7 (99) (2019) pp. 26–35. http://dx.doi.org/10.15587/1729-4061.2019.16826
Mangerig I. Klimatische Temperatur-beanspruchung von Stahl- und Stahlverbundbrucken. Inst. für Konstruktiven Ingenieurbau, Ruhr-Univ., 1986, p. 143.
Y. Y. Luchko, V. V. Kovalchuk. Vymiriuvannia napruzheno-deformovanoho stanu konstruktsii mostiv pry zminnykh temperaturakh i navantazhenniakh: monohrafiia. – Lviv: Kameniar, 2012, p. 235.
J. Luchko, Y. Hnativ, V. Kovalchuk. Method of calculation of temperature field and deflected mode of Bridge structures in software environment NX Nastran. Theoretical Fuundations of Civil Engineering. 21 (2013) pp. 107–114.
Dilger W. H., Ghali A., Chan M., Cheung M. S., Maes M. A. Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering 109 (6) (1983) pp. 1460–1478. https://doi.org/10.1061/(asce)0733-9445(1983)109:6(1460)
M. J. N. Priestley, I. G. Buckle. Ambient Thermal Response of Concrete Bridges. Bridge Seminar 2 (1978).
DBN V.2.3-14: 2006. Sporudy transportu. Mosty ta truby. Pravyla proektuvannia. K., 2006, p. 359.
AASHTO Guide specifications: Thermal effects in concrete bridge superstructures. Washington, DC: American Association of State Highway and Transportation Officials, 1989.
Luchko J. J. Modeling of thermal conductivity of thin slabs with multilayer coating. Diagnosis, durability and reconstruction of bridges and building structures. – Lviv: Kamenyar 6 (2004) рр. 65–70.
Kovalchyk Ya. I. Rekomendatsii z proektuvannia ta tekhnolohii zvedennia monolitnykh poperedno napruzhenykh zalizobetonnykh prohonovykh budov mostiv. SWorld, 2016.
M. F. Dmytrychenko, M. M. Dmytriiev, O. B. Derkachov. Teplova diahnostyka (osnovy teorii ta praktyky zastosuvannia): monohrafiia. – K.: NTU, 2012, 168 p.
T. Feng, S. Feng. A Numerical Model for Predicting Road Surface Temperature in the Highway. Procedia Engineering 37 (2012) pp. 137–142. https://doi.org/10.1016/j.proeng.2012.04.216
Design Criteria Skyway Structures. San Francisco-Oakland Bay Bridge East Span Se ismic Safety Project, 2001, p. 91.
V. Z. Stankevych, I. O. Butrak, V. V. Kovalchuk. Cracks Interaction in the Elastic Composite under Action of the Harmonic Loading Field. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2018. https://doi.org/10.1109/diped.2018.8543323
De Backer H., Outtier A., Van Bogaert Ph. Numerical and experimental assessment of thermal stresses in steel box girders. Civil Engineering Department, Universiteit Gent, Gent, Belgium NSCC, 2009, pp. 65–72.
Burdet O. L. Thermal Effects in the Long-Term Monitoring of Bridges. IABSE Symposium Report 97 (19) (2010) pp. 62–68.
Y. Y. Luchko, Yu. M. Hnativ, V. V. Kovalchuk. Doslidzhennia temperaturnoho polia ta napruzhenoho stanu prohonovoi budovy stalezalizobetonnoho mosta. Visnyk Ternopilskoho natsionalnoho tekhnichnoho universytetu 2 (70) (2013) pp. 29 – 38.
Vitalii Kovalchuk, Yuri Kovalchuk, Mykola Sysyn, Volodymyr Stankevych, Oleksiy Petrenko. Estimation of carrying capacity of metallic corrugated structures of the type multiplate mp 150 During interaction with backfill soil. Eastern-European Journal of Enterprise Technologies. – Kharkov.: 1/1 (91) (2018) pp. 18–26. http://dx.doi.org/10.15587/1729-4061.2018.123002
Vitalii Kovalchuk, Yuriy Hnativ, Joseph Luchko, Mykola Sysyn. Study of the temperature field and the thermos-elastic state of the multilayer soil-steel structure. Roads and Bridges – Drogi i Mosty. – 19 (1) (2020) рр. 65–78. http://dx.doi.org/10.7409/rabdim.020.004
J. Liu, Z. Liu, P. Wang, L. Kou, M. Sysyn. Dynamic characteristics of the railway ballast bed under water-rich and low-temperature environments. Engineering Structures, 2022, 252, 113605.
Mehdi Moslemi, Kourosh Javaherdeh, Hamid Reza Ashorynejad. Temperature Effect on Moving Water Droplets at the Channel of PEMFC by Multi-component Multiphase Lattice Boltzmann Method. Journal of Applied and Computational Mechanics. – J. Appl. Comput. Mech. http://dx.doi.org/10.22055/JACM.2021.39023.3332
Sharma R. P., Mishra S. R. Metal and Metallic Oxide Nanofluid over a Shrinking Surface with Thermal Radiation and Heat Generation/Absorption, J. Appl. Comput. Mech. 8 (2) (2022) pp. 557–565. https://doi.org/10.22055/JACM.2020.32813.2085
Akinshilo A.T., Davodi A., Ilegbusi A., Sobamowo G. Thermal Analysis of Radiating Film Flow of Sodium Alginate using MWCNT Nanoparticles, J. Appl. Comput. Mech. 8 (1) (2022) 219–231. https://doi.org/10.22055/jacm.2020.33386.2218
Bragov A. M., Iuzhina T. N., Lomunov A. K., Igumnov L. A., Belov A. A., Eremeev V. A. Investigation of Wood Properties at Elevated Temperature, J. Appl. Comput. Mech. 8 (1) (2022) pp. 298–305. https://doi.org/10.22055/JACM.2021.38486.3239
Zavdoveev A., Rogante M., Poznyakov V., Heaton M., Acquier P., Kim H. S., Baudin T., & Kostin V. (2020). Development of the PC-GMAW welding technology for TMCP steel accordance with welding thermal cycle, welding technique, structure, and properties of welded joints. Reports in Mechanical Engineering 1 (1) (2020) pp. 26-33. https://doi.org/10.31181/rme200101026z
Szalai S., Eller B., Juhász E., Movahedi M. R., Németh A., Harrach D., Baranyai G., & Fischer S. (2022). Investigation of deformations of ballasted railway track during collapse using the Digital Image Correlation Method (DICM). Reports in Mechanical Engineering 3 (1) (2022) pp. 258-282. https://doi.org/10.31181/rme20016032022s
Eller B., Movahedi M. R. & Fischer S. Laboratory Tests and FE Modeling of the Concrete Canvas, for Infrastructure Applications. Acta Polytechnica Hungarica 19 (3) (2022) pp. 9-20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Acta Technica Jaurinensis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.