Tutorial on the fragmentation of the railway ballast particles and calibration methods in discrete element modelling

Authors

  • Erika Juhász Széchenyi István University, Department of Transport Infrastructure and Water Resources Engineering Egyetem tér 1, 9026 Győr, Hungary
  • Szabolcs Fischer Széchenyi István University, Department of Transport Infrastructure and Water Resources Engineering Egyetem tér 1, 9026 Győr, Hungary http://orcid.org/0000-0001-7298-9960

DOI:

https://doi.org/10.14513/actatechjaur.00569

Keywords:

ballast, degradation, DEM modelling

Abstract

This paper presents a short literature review related to the fragmentation of the railway crushed ballast particles. With the help of the processed articles with the main topic of discrete element modelling (DEM) we aim to provide some insight into the international achievements and forward progress of the subject. Rock materials as granular elements can be investigated from several perspectives. The elements can be examined in laboratory conditions purely from the quarry, or even by obtaining already fragmented particles from the real railway tracks. In addition, DEM models can be created by using computer software. This article tackles only a small segment of the literature. Though each DEM topic was unique, they all involved examination of degradation of particles in some way. This review focuses on model building, including particle construction and calibration. The selected publications do not cover the current state of the entire DEM research related to ballast degradation.

Downloads

Download data is not yet available.

References

B. Indraratna, N. T. Ngo, S. Nimbalkar, C. Rujikiatkamjorn, Two Decades of Advancement in Process Simulation Testing of Ballast Strength, Deformation and Degradation. In T. D. Stark, R. H. Swan & R. Szecsy (Eds.), Railroad Ballast Testing and Properties, West Conshohocken, United States: ASTM International (2018) pp. 11–38. [cited 2021-01-30] URL www.astm.org

T. D. Stark, S. T. Wilk et al., Fouled Ballast Definitions and Parameters, American Railway Engineering and Maintenance of Way Association Annual Meeting 2017, Indianapolis, 2017 [cited 2021-01-30] URL https://www.researchgate.net/publication/319981870_Fouled_Ballast_Definitions_and_Parameters

M. A. Wnek, E. Tutumluer et al., Investigation of Aggregate Properties Influencing Railroad Ballast Performance, Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, No. 2374 (2013) pp. 180–189. doi: https://doi.org/10.3141/2374-21

G. P. Raymond, V. A. Diyaljee, Railroad ballast sizing and grading, Journal of the Geotechnical Engineering Division, 105(GT5) (1979) pp. 676–681. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001710

E. T. Selig, J. M. Waters, Track Geotechnology and Substructure Management. Thomas Telford Publications, London, 1994.

N. T. Ngo, B. Indraratna, C. Rujikiatkamjorn, Micromechanics-based investigation of fouled ballast using large-scale triaxial tests and discrete element modeling, Journal of Geotechnical and Geoenvironmental Engineering, 143 (2) (2017) pp. 04016089-1– 04016089-16. doi: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001587

R. J. Marsal R. J., Large scale testing of rockfill materials, Journal of Soil Mechanics and Foundation Engineering, 93(SM2) (1967) pp. 27-43.

B. Indraratna, N. T. Ngo, C. Rujikiatkamjorn, Behavior of geogrid-reinforced ballast under various levels of fouling, Geotextiles and Geomembranes 29 (3) (2011) pp. 313–322. doi: https://doi.org/10.1016/j.geotexmem.2011.01.015

I. Deiros, C. Voivret et al.. Quantifying Degradation of Railway Ballast using Numerical Simulations of Micro-Deval Test and In-situ conditions, Procedia Engineering (143) (2016) pp. 1016–1023. doi: https://doi.org/10.1016/j.proeng.2016.06.096

C. J. Coetzee, Review: Calibration of the discrete element method, Powder Technology, 310 (2017) pp. 104–142. doi: https://doi.org/10.1016/j.powtec.2017.01.015

J.-P. Plassiard, N. Belheine, F.-V. Donze, A spherical discrete element model: calibration procedure and incremental response, Granular Matter 11 (5) (2009) pp. 293–306. doi: https://doi.org/10.1007/s10035-009-0130-x

J. Ai, J. F. Chen et al., Assessment of rolling resistance models in discrete element simulations, Powder Technology 206 (3) (2011) pp. 269-282. doi: https://doi.org/10.1016/j.powtec.2010.09.030

D. Markauskas, A. Ramirez-Gomez et al., Maize grain shape approaches for DEM modelling, Computers and Electronics in Agriculture 118 (2015) pp. 247–258. doi: https://doi.org/10.1016/j.compag.2015.09.004.

B. Saint-Cyr, E. Azema, J.-Y. Delenne, F. Radjai, P. Sornay, Effect of particle shape non-convexity on the rheology of granular media: 3D contact dynamics simulations, II. International Conference on Particle-based Methods – Fundamentals and Applications, Barcelona, 2011, pp. 1–8. [cited 2021-01-30] URL https://www.researchgate.net/publication/267985633_Effect_of_Particle_Shape_non-Convexity_on_the_Rheology_of_ Granular_Media_3D_Contact_Dynamics_Simulations

B. Zhou, R. Huang et al., DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials, Granular Matter 15 (3) (2013) pp. 315–326. doi: https://doi.org/10.1007/s10035-013-0409-9

H. Li, G. R. McDowell, Discrete element modeling of under sleeper pads using a box test, Springer, Nottingham Centre for Geomechanics, Granular Matter 20 (2018) pp. 1–12. doi: https://doi.org/10.1007/s10035-018-0795-0

K. Bagi, Á. Orosz, A new variable for characterising irregular element geometries in experiments and DEM simulations, Communications of the ECMS, Proceedings, 2020.

J. M Rodriguez, T. Edeskär, S. Knutsson, Particle Shape Quantities and Measurement Techniques – A Review, EJGE (18) (2013) pp. 169–198. [cited 2021-01-30] URL https://www.diva-portal.org/smash/get/diva2:976352/FULLTEXT01.pdf

Z. Nie, Z. Liang, X. Wang, A three-dimensional particle roundness evaluation method, Springer, Granular Matter 20 (2018) pp. 1–11. doi: https://doi.org/10.1007/s10035-018-0802-5

ITASCA Consultants GmbH, PFCTM Particle Flow Code software [cited 2021-01-30] URL https://www.itasca.de/software/PFC

DEM Solutions Ltd., EDEM Software software [cited 2021-01-30] URL https://www.edemsimulation.com/software/

YADE-DEM [cited 2021-01-30] URL https://yade-dem.org/doc/

E. Juhasz, R. M. Movahedi, I. Fekete, Sz. Fischer, Discrete Element Modelling of particle degradation of railway ballast material with PFC3D software, Nauka Ta Progres Transportu 84 (6) (2019) pp. 103–116. doi: https://doi.org/10.15802/stp2019/194472

Á. Orosz, J. P. Rádics, K. Tamás, Calibration of railway ballast DEM model, 31st European Conference on Modelling and Simulation, Budapest, 2017, pp. 1–6. doi: https://doi.org/10.7148/2017-0523

Z. Hossain, B. Indraratna et al., DEM analysis of angular ballast breakage under cyclic loading, Geomechanics and Geoengineering: International Journal 2 (3) (2007) pp. 175–182. doi: https://doi.org/10.1080/17486020701474962

X. Wang, B. Hua et al., The Research on the DEM Simulation of the Railway Ballast Tamping Process, Advanced Materials Research 724-725 (2013) pp. 1723–1726. doi: https://doi.org/10.4028/www.scientific.net/AMR.724-725.1723

X. Wang, B. Hua et al., Study on the Cyclic Loading Effects to the Railway Ballast, Advanced Materials Research 724-725 (2013) pp. 1736–1739. doi: https://doi.org/10.4028/www.scientific.net/AMR.724-725.1736

G. R. McDowell, W. L. Lim, A. C. Collop, R. Armitage, N. H. Thom, Comparison of ballast index tests for railway trackbeds, Geotechnical Engineering 157(3) (2008) pp. 151–161. doi: https://doi.org/10.1680/geng.2004.157.3.151

N. T. Ngo, B. Indraratna, C. Rujikiatkamjorn, DEM simulation of the behavior of geogrid stabilised ballast fouled with coal, Computers and Geotechnics 55 (2014) pp. 224–231. doi: https://doi.org/10.1016/j.compgeo.2013.09.008

H. Li, G. McDowell, Discrete element modelling of two-layered ballast in a box test, Granular Matter 22 (2020) pp. 1–14. doi: https://doi.org/10.1007/s10035-020-01046-6

L. Nam-Hyoung, K. Kyoung-Ju et al., DEM Analysis of Track Ballast Track Ballast-Wheel Interaction Simulation, Applied Sciences 10 (8) (2020) pp. 1–19. doi: https://doi.org/10.3390/app10082717

Z. Hongyi, C. Jing, Numerical Study of Railway Ballast Subjected to Direct Shearing Using the Discrete Element Method, Advances in Materials Science and Engineering 20 (2020) pp. 1–13. doi: https://doi.org/10.1155/2020/3404208

M. Sysyn, U. Gerber et al., A laboratory study of pressure distribution and residual settlements in wide grading double layer railway ballast under long-term cyclic loading, Archives of Civil Engineering 66 (4) (2020) pp. 561–578. doi: https://doi.org/10.24425/ace.2020.135237

M. Przybylowicz,, M. Sysyn et al., Experimental and theoretical evaluation of side tamping method for ballasted railway track maintenance, Transport Problems 15 (3) (2020) pp. 93–106. doi: https://doi.org/10.21307/tp-2020-036

M. Sysyn, O. Nabochenko, V. Kovalchuk, Experimental investigation of the dynamic behavior of railwaytrack with sleeper voids, Railway Engineering Science 28 (2) (2020) pp. 290–304. doi: https://doi.org/10.1007/s40534-020-00217-8

D. Kurhan, Y. Leibuk, Research of the Reduced Mass of the Railway Track, Acta Technica Jaurinensis 13 (4) (2020) pp. 324–341. doi: https://doi.org/10.14513/actatechjaur.v13.n4.563

D. Kurhan, Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State, Acta Technica Jaurinensis 9 (1) (2016) pp. 83–96. doi: https://doi.org/10.14513/actatechjaur.v9.n1.400

Downloads

Published

2021-02-24

How to Cite

Juhász, E., & Fischer, S. (2021). Tutorial on the fragmentation of the railway ballast particles and calibration methods in discrete element modelling. Acta Technica Jaurinensis, 14(1), 104–122. https://doi.org/10.14513/actatechjaur.00569

Issue

Section

Mini reviews