Analysis of the main cutting force, cutting energy and specific cutting energy in turning of X155CrVMo12–1 steel

Authors

  • Jelena Stanojkovic Department of Production Engineering, University of Priština, Faculty of Technical Sciences Knjaza Miloša 7, 38220, Kosovska Mirovica, Serbia
  • Miloš Madić Department of Production Information Technologies, University of Niš, Faculty of Mechanical Engineering Aleksandra Medvedeva 14, 18106, Niš, Serbia
  • Milan Trifunović Department of Production Information Technologies, University of Niš, Faculty of Mechanical Engineering Aleksandra Medvedeva 14, 18106, Niš, Serbia
  • Predrag Janković Department of Production Information Technologies, University of Niš, Faculty of Mechanical Engineering Aleksandra Medvedeva 14, 18106, Niš, Serbia
  • Dušan Petković Department of Production Information Technologies, University of Niš, Faculty of Mechanical Engineering Aleksandra Medvedeva 14, 18106, Niš, Serbia
  • Dragan Marinković Department of Production Information Technologies, University of Niš, Faculty of Mechanical Engineering Aleksandra Medvedeva 14, 18106, Niš, Serbia // Depertment od Structural Analysis, Tehnical University of Berlin 10623 Berlin, Germany

DOI:

https://doi.org/10.14513/actatechjaur.00808

Keywords:

Turning, Main cutting force, Cutting energy, Specific cutting energy, X155CrVMo12-1 steel

Abstract

This paper presents an experimental study of dry longitudinal single–pass turning of X155CrVMo12–1 steel using two cutting inserts with different rake angles. Initially, the model based on dimensional analysis was developed to estimate the main cutting force, while considering three dimensionless groups with six parameters. After experimental validation, the developed dimensional analysis-based model was further for the analysis of the cutting energy and specific cutting energy. Detailed analysis included the analysis of the effects of feed rate, depth of cut and rake angle on considered process performances. The observed correlations between cutting parameters and process performances were compared with the previously published experimental results. It has been observed that the depth of cut has the greatest influence on the main cutting force and cutting energy, while the feed rate has a slightly more pronounced effect on the specific cutting energy.

Downloads

Download data is not yet available.

References

C. L. He, W. J. Zong, J. J. Zhang, Influencing factors and theoretical modeling methods of surface roughness in turning process: State–of–the–art, International Journal of Machine Tools and Manufacture 129 (2018) pp. 15–26. https://doi.org/10.1016/j.ijmachtools.2018.02.001

Dj. Vukelic, K. Simunovic, V. Ivanov, M. Sokac, V. Kocovic, Z. Santosi, G. Simunovic, Modelling of flank and crater wear during dry turning of AISI 316L stainless steel as a function of tool geometry using the response surface design, Tehnički vjesnik 31 (4) (2024) pp. 1376–1384. https://doi.org/10.17559/TV-20231226001235

G. Zhang, C. Guo, Modeling of cutting force distribution on tool edge in turning process, Procedia Manufacturing 1 (2015) pp. 454–465. https://doi.org/10.1016/j.promfg.2015.09.001

M. Radovanović, Multi–objective optimization of multi–pass turning AISI 1064 steel, The International Journal of Advanced Manufacturing Technology 100 (2019) pp. 87–100. https://doi.org/10.1007/s00170-018-2689-z

M. Barać, N. Vitković, Z. Stanković, M. Rajić, and R. Turudija, Description and utilization of an educational platform for clean production in mechanical engineering, Spectrum of Mechanical Engineering and Operational Research, 1 (1) (2024) pp. 145–158. https://doi.org/10.31181/smeor11202413

Dj. Vukelic, K. Simunovic, Z. Kanovic, T. Saric, B. Tadic, G. Šimunović, Multi–objective optimization of steel AISI 1040 dry turning using genetic algorithm, Neural computing and applications 33 (10) (2021) pp. 1–31. https://doi.org/10.1007/s00521-021-05877-z

I. M. Petre, C. Gavrus, Influence of the cutting force upon machining process efficiency, Materals Today 72 (12) (2023) pp. 586–593. https://doi.org/10.1016/j.matpr.2022.10.063

S. Wang, Z. Tao, D. Wenping, S. Zhanwen, S. To, Analytical modeling and prediction of cutting forces in orthogonal turning: a review, The International Journal of Advanced Manufacturing Technology 119 (3–4) (2022) pp. 1407–1434. https://doi.org/10.1007/s00170-021-08114-y

V. Sousa, F. Silva, J. Fecheira, H. Lopes, R. Martinho, R. Casais, L. Ferreira, Cutting forces assessment in CNC machining processes: a critical review, Sensors 20 (13) (2020) 4536. https://doi:10.3390/s20164536

N. M. Vaxevanidis, N.A. Fountas, A. Koutsomichalis, J. D. Kechagias, Experimental investigation of machinability parameters in turning of CuZn39Pb3 brass alloy, Procedia Structural Integrity 10 (2018) pp. 333–341. https://doi.org/10.1016/j.prostr.2018.09.046

A. Aleksić, M. Sekulić, M. Gostimirović, D. Rodić, B. Savković, A. Antić, Effect of cutting parameters on cutting forces in turning of CPM 10V Steel, Journal of Production Engineering 24 (2) (2021) pp. 5–8.

A. Şahinoğlu, Investigate energy efficiency, cutting force and surface roughness in hard turning of AISI S1 steel for sustainable manufacturing, The Journal of Mechanical Engineering Science 238 (7) (2023) pp. 2772–2781. https://doi.org/10.1177/09544062231171993

H. Chetan, S. Ghosh, P.V. Rao, Specific cutting energy modeling for turning nickel–based Nimonic 90 alloy under MQL condition, International Journal of Mechanical Sciences 146–147 (2018) pp. 25–38. https://doi.org/10.1016/j.ijmecsci.2018.07.033

V. A. Balogun, H. Gu, P. T. Mativenga, Improving the integrity of specific cutting energy coefficients for energy demand modelling, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229 (12) (2014) pp. 2109–2117. https://doi.org/10.1177/0954405414546145

A. Zerti, M. A. Yallese, I. Meddour, S. Belhadi, A. Haddad, T. Mabrouki, Modeling and multi–objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations, The International Journal of Advanced Manufacturing Technology 102 (2019) pp. 135–157. https://doi.org/10.1007/s00170-018-2984-8

S. Paul, P. P. Bandyopadhyay, S. Paul, Minimisation of specific cutting energy and back force in turning of AISI 1060 steel,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232 (11) (2017) pp. 1–11, 2017. https://doi.org/10.1177/0954405416683431

S. Velchev, I. Kolev, K. Ivanov, S. Gechevski, Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning, Journal of Cleaner Production 80 (2014) pp. 139–149. https://doi.org/10.1016/j.jclepro.2014.05.099

O. F. Joseph, S. J. Choi, Influence of cutting parameters on energy consumption and material removal rate in turning process, Applied Mechanics and Materials 799–800 (2015) pp 282–290. https://doi.org/10.4028/www.scientific.net/AMM.799-800.282

M. Trifunović, M. Madić, P. Janković, D. Rodić, M. Gosimirović, Investigation of cutting and specific cutting energy in turning of POMC using a PCD tool: Analysis and some optimization aspects, Journal of Cleaner Production 303 (2021) 127043. https://doi.org/10.1016/j.jclepro.2021.127043

K. Osčka. J. Zouhar, P. Sliwková, J. Chladil, Cutting force when machining hardened steel and the surface roughness achieved, Applied Sciences 12 (22) (2022) 11526. https://doi.org/10.3390/app122211526

M. M. Reddy, W. S. Sng, Temperature and cutting force analysis in turning of steel AISI 4140 using advanced ceramics tools, IOP Conf. Series: Materials Science and Engineering 495 (2019) 012090. https://doi.org/10.1088/1757899X/495/1/012090

M. Gunay, I. Korkut, E. Aslan, U. Şeker, Experimental investigation of the effect of cutting tool rake angle on main cutting force, Journal of Materials Processing Technology 166 (1) (2005) pp.44–49. https://doi.org/10.1016/j.jmatprotec.2004.07.092

C. J. Rao, D. Negeswara Rao, P. Srihari, Influence of cutting parameters on cutting force and surface finish in turning operation, Procedia Engineering 64 (2013) pp. 1405 – 1415. https://doi.org/10.1016/j.proeng.2013.09.222

A. Zerti, M. A. Yallese, I. Meddour, S. Belhadi, A. Haddad, T. Mabrouki, Modeling and multi–objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations, The International Journal of Advanced Manufacturing Technology 102 (2019) pp. 135–157. https://doi.org/10.1007/s00170-018-2984-8

S. A. Bagaber, A. R. Yusoff, Sustainable optimization of dry turning of stainless steel based on energy consumption and machining cost, Procedia CIRP 77 (2) (2018) pp. 397–400. https://doi.org/10.1016/j.procir.2018.08.300

A. Sekar, B. Guruprasad, N. Vaithianathan, Optimization of specific cutting energy in turning of AISI 304 stainless steel using Taguchi method, Recent Advances in Manufacturing, Automation, Design and Energy Technologies (2021) pp. 295–303. https://doi.org/10.1007/978-981-16-4222-7_35

G. Zhao, C. Hou, J. Qia, X. Chen, Energy consumption characteristics evaluation method in turning, Advances in Mechanical Engineering 8 (11) (2016) pp. 1–8. https://doi.org/10.1177/1687814016680737

S. D. Bolboaca, L. Jäntschi, Design of experiments: useful orthogonal arrays for number of experiments from 4 to 16, Entropy 9 (4) (2007) pp. 198–232. https://doi.org/10.3390/e9040198

S. M. Bazaz, J. Ratava, M. Lohtander, J. Varis, An Investigation of Factors Influencing Tool Life in the Metal Cutting Turning Process by Dimensional Analysis, Machines 11 (3) (2023), 393. https://doi.org/10.3390/machines11030393

N. G. Patil, P. K. Brahmankar, Determination of material removal rate in wire electro– discharge machining of metal matrix composites using dimensional analysis, The International Journal of Advanced Manufacturing Technology 51(5) (2010), pp. 599–610. https://doi.org/10.1007/s00170-010-2633-3

J. Stanojković, M. Madić, M. Trifunović, P. Janković, D. Petković, A novel approach to predicting the cutting force in turning using dimensional analysis, Facta Universitatis, Series: Mechanical Engineering (2025). https://doi.org/10.22190/FUME241129010S

T. M. El–Hossainy, A. A. El–Zoghby, M. A. Badr, K. Y. Maalawi, M. F. Nasr, Parameter optimization when machining different materials, Materials and Manufacturing Processes 25 (10) (2010) pp. 1101–1114. https://doi.org/10.1080/10426914.2010.480998

M. Trifunović, M. Madić, M. Radovanović, Pareto optimization of multi–pass turning of grey cast iron with practical constraints using a deterministic approach, The International Journal of Advanced Manufacturing Technology 110 (2020) pp. 1893–1909. https://doi.org/10.1007/s00170-020-05994-4

H. Saglam, F. Unsacar, S. Yaldiz, Investigation of the effect of rake angle and approaching angle on the main cutting force and tool tip temperature, International Journal of Machine Tools and Manufacture 46 (2) (2006) pp. 132–141. https://doi.org/10.1016/j.ijmachtools.2005.05.002

Downloads

Published

2025-09-29

How to Cite

Stanojkovic, J., Madić, M., Trifunović, M., Janković, P., Petković, D., & Marinković, D. (2025). Analysis of the main cutting force, cutting energy and specific cutting energy in turning of X155CrVMo12–1 steel. Acta Technica Jaurinensis. https://doi.org/10.14513/actatechjaur.00808

Issue

Section

Research articles