Comparative Analysis of Surface Topography in Plunge and Face Milling: A Parametric Study into Skewness and Kurtosis

Authors

  • Afraa KHATTAB Institute of Manufacturing Science, University of Miskolc H-3515 Miskolc, Hungary
  • István Sztankovics Institute of Manufacturing Science, University of Miskolc H-3515 Miskolc, Hungary
  • Csaba Felhő Institute of Manufacturing Science, University of Miskolc H-3515 Miskolc, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.00801

Keywords:

Skewness, Kurtosis, Surface Topography, Plunge Milling, Face Milling

Abstract

Optimizing milling procedures to enhance surface quality is crucial in modern manufacturing, where selecting appropriate strategies is paramount for achieving desired surface characteristics in precision-engineered components. This investigation provides a comparative experimental analysis of plunge milling (axial feed) versus face milling (radial feed), specifically evaluating their influence on achievable surface roughness when machining flat surfaces. Key machining parameters—cutting speed, feed per tooth, and depth of cut—were systematically varied for both techniques to quantify how their choice distinctly affects the final surface finish. Experimental results, supported by detailed statistical and graphical interpretation, demonstrated notable differences in surface quality between the two methods across various parameter settings. Consistently, face milling yielded superior surface quality compared to plunge milling under the investigated conditions and across the tested parameter range. The research clarifies the complex interplay and specific relationships between machining parameters and the resultant surface topography for both plunge and face milling. These findings offer practical guidance and valuable insights for optimizing parameter selection and choosing between milling strategies. This enables manufacturers to achieve specific surface roughness targets where surface integrity and finishing are critical quality criteria.

Downloads

Download data is not yet available.

References

D. C. Chen and T. W. Chen, 'Surface roughness analysis of high speed milling in grooving', J. Phys.: Conf. Ser. 2020 (1) (2021) p. 012034. https://doi.org/10.1088/1742-6596/2020/1/012034

G. Gómez et al., 'Comparison between milling roughing operations in full slotting manufacturing: trochoidal, plunge and conventional milling', IOP Conf. Ser.: Mater. Sci. Eng. 1193 (1) (2021) p. 012003. https://doi.org/10.1088/1757-899X/1193/1/012003

H. Xin, Y. Shi, and T. Zhao, 'Compound efficient and powerful milling machine tool of blisk', Int J Adv Manuf Technol 98 (5–8) (2018) pp. 1745–1753. https://doi.org/10.1007/s00170-018-2225-1

C. Chen, C. Wu, T. Zhang, and S. Y. Liang, '3D curved surface milling modeling for the topography simulation and surface roughness prediction', Journal of Manufacturing Processes 137 (2025) pp. 150–165. https://doi.org/10.1016/j.jmapro.2025.02.003

Z. Zhang, X. Lv, B. Qi, Y. Qi, M. Zhang, and Z. Tao, 'Surface roughness prediction and roughness reliability evaluation of CNC milling based on surface topography simulation', Eksploatacja i Niezawodność – Maintenance and Reliability 26 (2) (2024). https://doi.org/ 10.17531/ein/183558

I. Danis, F. Monies, P. Lagarrigue, and N. Wojtowicz, 'Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys', Int J Adv Manuf Technol 84 (9–12) (2016) pp. 1801–1820. https://doi.org/10.1007/s00170-015-7826-3

L. Dong and M. Chen, 'A comparative experimental study on the rough machining methods of centrifugal three-dimensional impellers', Advances in Mechanical Engineering 16 (4) (2024). https://doi.org/10.1177/16878132241244923.

Z. Cui, H. Liu, L. Wu, Z. Cao, and W. Zong, 'Cutting force and surface quality in ultra-precision milling of oxygen-free copper under different cutting strategies', Journal of Manufacturing Processes 131 (2024) pp. 2420–2442. https://doi.org/10.1016/j.jmapro.2024.10.056

M. Płodzień, Ł. Żyłka, P. Sułkowicz, K. Żak, and S. Wojciechowski, ‘High-Performance Face Milling of 42CrMo4 Steel: Influence of Entering Angle on the Measured Surface Roughness, Cutting Force and Vibration Amplitude’, Materials 14 (9) (2021) p. 2196. https://doi.org/10.3390/ma14092196

S. Wakaoka, Y. Yamane, K. Sekiya, and N. Narutaki, 'High-speed and high-accuracy plunge cutting for vertical walls', Journal of Materials Processing Technology 127 (2) (2002) pp. 246–250. https://doi.org/10.1016/s0924-0136(02)00151-6

M. Fnides, S. Amroune, M. Slamani, A. Elhadi, M. Arslane, and M. Jawaid, 'Optimization of Manufacturing Parameters for Minimizing Vibrations and Surface Roughness in Milling Using Box–Behnken Design', J. Vib. Eng. Technol. 13 (1) (2025) p. 22. https://doi.org/10.1007/s42417-024-01602-x

Z. Zhang, Y. Liu, Q. Han, S. Zhong, Y. Wang, and H. Liu, 'The design and cutting performance of variable pitch solid ceramic end milling tools', International Journal of Refractory Metals and Hard Materials 120 (2024) p. 106579. https://doi.org/ 10.1016/j.ijrmhm.2024.106579

T. Cui, 'Precision Machining of Hard-to-Cut Materials: Current Status and Future Directions', Int. J. Adv. Comput. Sci. Appl. 15 (10) (2024) pp. 861–871 [Online]. Available: https://www.webofscience.com/wos/woscc/full-record/WOS:001348288600001

F. J. G. Silva et al., 'A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration', JMMP 8 (3) (2024) p. 115. https://doi.org/10.3390/jmmp8030115

T. Dodok, N. Čuboňová, M. Císar, V. Ivanov, and D. Wiecek, 'Influence of CNC milling strategies on complex surface machining', IOP Conf. Ser.: Mater. Sci. Eng. 776 (1) (2020) p. 012002. https://doi.org/10.1088/1757-899X/776/1/012002

T. M. Duc, N. M. Tuan, and T. T. Long, 'Optimization of Al2 O3 nanoparticle concentration and cutting parameters in hard milling under nanofluid MQL environment', Advances in Mechanical Engineering 16 (6) (2024) p. 16878132241257114. https://doi.org/ 10.1177/16878132241257114

M. S. Kamer, 'The effect of cutting parameters in CNC milling on mechanical properties of 3D-printed polylactic acid tensile test samples: axis speed, cutting direction and number of cutting tool teeth', Iran Polym J, Feb. 2025. https://doi.org/10.1007/s13726-025-01463-5

Y. Li and J. Gao, 'An Investigation of the Process Parameters Choice Criterion for Cutting Force Coefficient Identifications in Slot Milling', IEEE Access 12 (2024) pp. 129302–129307. https://doi.org/10.1109/ACCESS.2024.3428534

M. G. Petrescu, T. Dumitru, E. Laudacescu, and M. Tănase, 'Experimental Investigation and Numerical Analysis Regarding the Influence of Cutting Parameters on the Asphalt Milling Process', Materials 17 (14) (2024) Art. no. 14. https://doi.org/10.3390/ma17143475

K. P. Waszczuk, 'Influence of Technological Parameters on the Cutting Temperature during Trochoidal Milling', Manufacturing Technology 24, (1) (2024) pp. 148–153. https://doi.org/ 10.21062/mft.2024.001

F. Cai and R. Xia, 'Comprehensive Analysis of Milling Performance and Multi-Objective Parameter Optimization for YG6C Milling Tool', Applied Sciences 15 (1) (2025) p. 420. https://doi.org/10.3390/app15010420

L. N. Liu, Z. Y. Shi, and Z. Q. Liu, 'Finite Element Modal Analysis for Face-Milling Cutter', KEM 589–590 (2013) pp. 19–22. https://doi.org/10.4028/www.scientific.net/KEM.589-590.19

M. Reznicek and C. Horava, 'The Influence of the Choice of Machining Strategy on Production Technology', Manufacturing Technology 24 (1) (2024) pp. 117–130. https://doi.org/10.21062/mft.2024.014

M. Al-Ahmad, A. d'Acunto, and P. Martin, 'Identification of Plunge Milling Parameters to Compare with Conventional Milling', in Advances in Integrated Design and Manufacturing in Mechanical Engineering II, S. Tichkiewitch, M. Tollenaere, and P. Ray, Eds., Dordrecht: Springer Netherlands 2007 pp. 461–474. https://doi.org/10.1007/978-1-4020-6761-7_31

J. Varga, E. Spišák, I. Gajdoš, and P. Mulidrán, 'Comparison of Milling Strategies in the Production of Shaped Surfaces', Adv. Sci. Technol. Res. J. 16 (6) (2022) pp. 267–274. https://doi.org/10.12913/22998624/156817

Q. Cheng et al., 'Study on tool wear for efficient grooving blisk with disc milling cutter', J Mech Sci Technol 37 (10) (2023) pp. 5335–5348. https://doi.org/10.1007/s12206-023-0935-2

X. H. Niu, L. Q. Cui, B. C. Hao, S. Y. Liu, Z. T. Zhang, and X. L. Meng, 'Analysis of Plunge Milling Force and Tool Deformation on Cr12', AMR 652–654 (2013) pp. 2173–2177. https://doi.org/10.4028/www.scientific.net/AMR.652-654.2173

H. Chen, Z. Chen, and L. Li, 'Wear and Life of K40 Carbide Tool for Plunge Milling GH4169', J. Phys.: Conf. Ser. 2566 (1) (2023) p. 012058. https://doi.org/10.1088/1742-6596/2566/1/012058

M. Arizmendi and A. Jiménez, 'Modelling and analysis of surface topography generated in face milling operations', International Journal of Mechanical Sciences 163 (2019) p. 105061. https://doi.org/10.1016/j.ijmecsci.2019.105061

A. Q. Lin, M. L. Zheng, C. G. Fan, and L. Yang, 'Surface Morphology Simulation of High Speed Milled of Face Milling Cutters', AMR 305 (2011) pp. 225–229. https://doi.org/10.4028/www.scientific.net/AMR.305.225

J. Wang, X. Qi, W. Ma, and S. Zhang, 'A high efficiency 3D surface topography model for face milling processes', Journal of Manufacturing Processes 107 (2023) pp. 74–87. https://doi.org/10.1016/j.jmapro.2023.10.026

M. V. Roshan, C. S. Sumesh, S. S. Balaji, M. V. E. Manchi, M. U. Reddy, and A. Baghad, 'Sustainable Machining: A Case Study on Face Milling of AISI 1045 Steel Using a Multi-Objective Optimization Approach', Int J Interact Des Manuf 2024. https://doi.org/10.1007/s12008-024-02148-8

I. Tibakh, M. A. Yallese, S. Belhadi, and M. Kaddeche, 'Multi-response optimisation during face milling of polyoxymethylene copolymer using grey relational analysis and data envelopment analysis based ranking coupled with the Taguchi approach', Advances in Materials and Processing Technologies (2024) pp. 1–26. https://doi.org/10.1080/2374068X.2024.2314838

Z. Wang, 'The milling parameters of mechanical parts are optimized by NC machining technology', Front. Mech. Eng. 10 (2024) p. 1367009. https://doi.org/10.3389/fmech.2024.1367009

M. Bey and Z. Tchantchane, 'Optimum Combination of Cutting Tools for Roughing Complex Parts Using Plunge Milling Machining Strategy', JM'EMP09 EMP, Bordj El Bahri, 15-16 April, 2014.

S. Cafieri, F. Monies, M. Mongeau, and C. Bes, 'Plunge milling time optimization via mixed-integer nonlinear programming', Computers and Industrial Engineering 98 (2016) pp. 434–445. https://doi.org/10.1016/j.cie.2016.06.015

Y. Cheng, J. Yang, D. Zuo, X. Song, and X. Feng, 'Tool design and cutting parameters optimisation for plunge milling blisk', IJMR 15 (3) (2020) p. 266. https://doi.org/ 10.1504/ijmr.2020.108192

ISO 21920-2:2021(en), Geometrical product specifications (GPS) — Surface texture: Profile — Part 2: Terms, definitions and surface texture parameters. Accessed: Apr. 26, 2025. https://www.iso.org/obp/ui/en/#iso:std:iso:21920:-2:ed-1:v2:en

Downloads

Published

2025-10-01

How to Cite

KHATTAB, A., Sztankovics, I., & Felhő, C. (2025). Comparative Analysis of Surface Topography in Plunge and Face Milling: A Parametric Study into Skewness and Kurtosis. Acta Technica Jaurinensis. https://doi.org/10.14513/actatechjaur.00801

Issue

Section

Research articles