Comparative Adsorption of Ibuprofen and Ciprofloxacin from Aqueous Solution Using Natural Bentonite Clay: Experimental and DFT Study
DOI:
https://doi.org/10.14513/actatechjaur.00774Keywords:
thermodynamics, ibuprofen, ciprofloxacin, isotherm, kinetics, bentoniteAbstract
This Study examines the adsorption characteristics of ibuprofen (IBP) and ciprofloxacin (CIP) onto bentonite (BT) in aqueous medium. To investigate surface properties, SEM, FTIR and XRD techniques were used to characterize the bentonite applied as adsorbent. The results confirmed the properties of typical bentonite clay as acceptable. Batch adsorption studies were conducted under different adsorption experimental conditions. The outcome indicated that pH, initial IBP/CIP concentration, adsorbent dosage, contact time and temperature greatly influenced IBP/CIP removal by BT in aqueous medium. Adsorption equilibrium was attained after 240 minutes of contact time for both IBP and CIP. The pseudo first order, pseudo second order, and intraparticle diffusion kinetic models were utilized to describe the kinetic data, while the Langmuir, Freundlich, and Temkin isotherm models were fitted to the equilibrium data. Results obtained from kinetic and isotherm studies showed that both the kinetic and equilibrium data were efficiently described by the pseudo second order kinetic model and Freundlich isotherm model for both pharmaceuticals respectively, as evidenced by correlation coefficients (R²) exceeding 0.98 and lower chi-square (χ²) values observed. Thermodynamic analysis indicated that the removal of IBP/CIP from aqueous solution by BT is spontaneous, endothermic, and characterized by increased disorder. Analysis from Density functional theory (DFT) was incorporated into experimental findings in other to gain clarity on distinctive characteristics of IBP/CIP adsorption. Greater chemical molecular reactivity, lower water solubility, decreased steric hindrance effects, as well as greater hydrophobicity, were factors mostly responsible for the improved ibuprofen and ciprofloxacin adsorption by bentonite.
Downloads
References
L. Jara-Cobos, D. Abad-Delgado, J. Ponce-Montalvo, M. Menendez, M. E. Peñafiel, Removal of ciprofloxacin from an aqueous medium by adsorption on natural and hydrolyzed bentonites, Frontiers in Environmental Science 11 (2023) p. 1239754. https://doi.org/10.3389/fenvs.2023.1239754
R. Gondi, S. Kavitha, R. Y. Kannah, O. P. Karthikeyan, G. Kumar, V. Kumar Tyagi et al., Algal-based system for removal of emerging pollutants from wastewater: A review, Bioresource Technology 344 (2022) p. 126245. https://doi.org/10.1016/j.biortech.2021.126245
Peña-Álvarez, A. Castillo-Alanís, Identificación y cuantificación de contaminant esemergent esenaguas residual espor microextracción enfasesólida-cromatografía de gases- espectrometría de masas (MEFS-CG-EM), TIP RevistaE specializadaen Ciencias Químico-Biológicas 18 (1) (2015) pp. 29–42. https://doi.org/10.1016/j.recqb.2015.05.003
G. González, B. R. Berenice, E. A. Flores-Contreras, R. Parra-Saldívar, M. Hafiz, N. Iqbal, Bio-removal of emerging pollutants by advanced bioremediation techniques, Environmental Research 214 (2022) p. 113936. https://doi.org/10.1016/j.envres.2022.113936
C. Cuerda, E. Manuel, F. M. Alexandre-Franco, C. Fernández-González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water 12 (1) (2019) p. 102. https://doi.org/10.3390/w12010102
J. Martín, M. Orta, S. Medina-Carrasco, J. L. Santos, I. Aparicio, E. Alonso, Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media, Applied Clay Science 171 (2019) pp. 29–37. https://doi.org/10.1016/j.clay.2019.02.002
Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon, Y. F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review, Science of The Total Environment 596 (2017) pp. 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102
L. Jara-Cobos, M. E. Peñafiel, C. Montero, M. Menendez, V. Pinos-Vélez, Ciprofloxacin removal using pillared clays, Water 15 (2023) p. 2056. https://doi.org/10.3390/w15112056
S. Elhadad, Z. Orban, F. Attila, Pandemic COVID-19: challenge strategic decisions on building in Egypt, Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 83-89, 2023. https://doi.org/10.14513/actatechjaur.00696
D. Zheng, M. Wu, E. Zheng, Y. Wang, C. Feng, J. Zou, M. Juan, X. Bai, T. Wang, Y. Shi, Adsorption and oxidation of ciprofloxacin by a novel layered double hydroxides modified sludge biochar, Journal of Colloid and Interface Science 625 (2022) pp. 596–605. https://doi.org/10.1016/j.jcis.2022.06.046
H. R. Busar, T. Poiger, M. D. Müller, Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake, Environmental Science & Technology 32 (22) (1998) pp. 3449–3556. https://doi.org/10.1021/es980036q
G. R. Boyd, H. Reemtsma, D. A. Grim, S. Mitra, Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada, Science of The Total Environment 311 (1-3) (2003) pp. 135–149. https://doi.org/10.1016/S00489697(03)00141-4
S. Joss, A. Zabczynski, B. Göbel, D. Hoffmann, C. S. Löffler, T. A. McArdell, A. Ternes, H. Thomsen, H. Siegrist, Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme, Water Research 40 (8) (2006) pp. 1686–1696. https://doi.org/10.1016/j.watres.2006.02.014
S. Esplugas, D. M. Bila, L. Gustavo, T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceutical and personal care products (PPCPs) in water effluents, Journal of Hazardous Materials 149 (3) (2007) pp. 631–642. https://doi.org/10.1016/j.jhazmat.2007.07.073
R. Ghemit, A. Makhloufi, N. Djebri, F. Abdenacer, Z. Larbi, M. Boutahala, Adsorptive removal of diclofenac and ibuprofen from aqueous solution by organobentonites: Study in single and binary systems, Groundwater for Sustainable Development 8 (2019) pp. 520–529. https://doi.org/10.1016/j.gsd.2019.02.004
H. Szűcs and B. Vehovszky, Possibilities of porous-structure representation – an overview, Acta Technica Jaurinensis, Vol. 14, No. 4, pp. 553-576, 2021. https://doi.org/10.14513/actatechjaur.00591
X. Chen, Y. Tan, T. Copeland, J. Chen, D. Peng, T. Huang, Polymer elution and hydraulic conductivity of polymer-bentonite geosynthetic clay liners to bauxite liquors, Applied Clay Science 242 (2023) p. 107039. https://doi.org/10.1016/j.clay.2023.107039
V. Rizzi, J. Gubitosa, P. Fini, R. Romita, A. Agostiano, S. Nuzzo et al., Commercial bentonite clay as low-cost and recyclable "natural" adsorbent for the carbendazim removal/recovery from water: Overview on the adsorption process and preliminary photodegradation considerations, Colloids and Surfaces A: Physicochemical and Engineering Aspects 602 (2020) p. 125060. https://doi.org/10.1016/j.colsurfa.2020.125060
R. Rad, M. Anbia, Zeolite-based composites for the adsorption of toxic matters from water: A review, Journal of Environmental Chemical Engineering 9 (5) (2021) p. 106088. https://doi.org/10.1016/j.jece.2021.106088
M. D. Farias, M. P. S. Marcela, T. Lopes da Silva, C. D. S. M. Gurgel, A. V. Melissa Gurgel, Natural and synthetic clay-based materials applied for the removal of emerging pollutants from aqueous medium, Advances in Materials and Sustainable Environmental Remediation (2022) pp. 359–392. https://doi.org/10.1016/B978-0-323-90485-8.00012-6
R. Antonelli, G. R. P. Malpass, M. G. Carlos da Silva, M. G. A. Vieira, Fixed-bed adsorption of ciprofloxacin onto bentonite clay: Characterization, mathematical modeling, and DFT-based calculations, Industrial & Engineering Chemistry Research 60 (9) (2021) pp. 4030–4040. https://doi.org/10.1021/acs.iecr.0c05700
N. Dhiman, N. Sharma, Removal of pharmaceutical drugs from binary mixtures by use of ZnO nanoparticles: (Competitive adsorption of drugs), Environmental Technology & Innovation 15 (2019) p. 100392. https://doi.org/10.1016/j.eti.2019.100392
K. E. Onwuka, J. C. Igwe, C. U. Aghalibe, A. I. Obike, Hexadecyltrimethyl ammonium (HDTMA) and trimethylphenyl ammonium (TMPA) cations intercalation of Nigerian bentonite clay for multicomponent adsorption of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solution: Equilibrium and kinetic studies, Journal of Analytical & Technical Research 2 (3) (2020) pp. 70–95. https://doi.org/10.26502/jatri.013
M. D. Amare and Z. Tompai, A Review on Factors Affecting the Resilient Modulus of Subgrade Soils, Acta Technica Jaurinensis, Vol. 15, No. 2, pp. 99-109, 2022. https://doi.org/10.14513/actatechjaur.00636
M. Doxan, M. Alkan, Y. Onganer, Adsorption of methylene blue from aqueous solution onto perlite, Water, Air, & Soil Pollution 120 (3-4) (2000) pp. 229–248. https://doi.org/10.1023/A:1005297724304
PubChem, Ibuprofen sodium, National Library of Medicine, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/3672
PubChem, Ciprofloxacin, National Library of Medicine, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/2764
C. Hansch, A. Leo, D. Hoekman, Exploring QSAR: Hydrophobic, electronic, and steric constants, American Chemical Society, 1995. https://doi.org/10.1021/bk-1995-0606
Albert, E. P. Serjeant, The determination of ionization constants: A laboratory manual (3rd ed.), Chapman and Hall, 1984. https://doi.org/10.1007/978-94-009-5546-4
S. H. Yalkowsky, Y. He, P. Jain, Handbook of aqueous solubility data (2nd ed.), CRC Press, 2010. https://doi.org/10.1201/EBK1439802458
J. Wang and X. Guo, Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview, Critical Reviews in Environmental Science and Technology, Vol. 53, No. 21, pp. 1837–1865, 2023. https://doi.org/10.1080/10643389.2023.2221157
R. Torres-Caban, C. A. Vega-Olivencia, N. Mina-Camilde, Adsorption of Ni2+ and Cd2+ from water by calcium alginate/spent coffee grounds composite beads, Applied Sciences 9 (21) (2019) p. 4531. https://doi.org/10.3390/app9214531
B. A. A. Majeed, R. J. Muhseen, N. J. Jassim, Adsorption of diclofenac sodium and ibuprofen by bentonite polyureaformaldehyde: Thermodynamics and kinetics study, Iraqi Journal of Chemical and Petroleum Engineering 11 (1) (2018) pp. 29–43. https://www.iasj.net/iasj/download/1c1d4a4f4c4c1b3a
T. N. V. de Souza, S. M. L. de Carvalho, M. G. A. Vieira, M. G. C. da Silva, B. D. S. B. Brasil, Adsorption of basic dyes onto activated carbon: Experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors, Applied Surface Science 448 (2018) pp. 662–670. https://doi.org/10.1016/j.apsusc.2018.04.087
J. R. de Andrade, M. F. Oliveira, R. L. Sehn Canevesi, R. Landers, M. G. C. da Silva, M. G. A. Vieira, Comparative adsorption of diclofenac sodium and losartan potassium in organophilic clay-packed fixed-bed: X-ray photoelectron spectroscopy characterization, experimental tests and theoretical study on DFT-based chemical descriptors, Journal of Molecular Liquids 312 (2020) p. 113427. https://doi.org/10.1016/j.molliq.2020.113427
H. Nourmoradi, M. Nikaeen, M. Khiadani, Multi-component adsorption of benzene, toluene, ethylbenzene, and xylene from aqueous solutions by montmorillonite modified with tetradecyltrimethyl ammonium bromide, Journal of Chemistry 2012 (2012) pp. 1–10. https://doi.org/10.1155/2012/589069
Y. Zhang, L. Wang, J. Liu, Functionalization of bentonite for enhanced adsorption of organic pollutants: A review, Applied Clay Science 203 (2021) pp. 106–120. https://doi.org/10.1016/j.clay.2021.106120
M. N. Khan, S. W. Ali, M. I. Khan, Adsorption of pharmaceuticals on bentonite: A review, Environmental Science and Pollution Research 29 (1) (2022) pp. 123–145. https://doi.org/10.1007/s11356-021-13789-2
M. S. Mansour, M. A. El-Sayed, A. El-Shafey, The role of bentonite in the removal of organic pollutants from water: A comprehensive review, Journal of Environmental Management 317 (2023) pp. 115–130. https://doi.org/10.1016/j.jenvman.2022.115130
B. BhadraNath, S. Kim, H. SungJhung, Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon, Chemical Engineering Journal 314 (2017) pp. 50–58. https://doi.org/10.1016/j.cej.2016.12.127
Y. Hu, Y. Zhu, Y. Zhang, L. Tang, G. Zeng, S. Zhang et al., An efficient adsorbent: Simultaneous activated and magnetic ZnO doped biochar derived from camphor leaves for ciprofloxacin adsorption, Bioresource Technology 288 (2019) p. 121511. https://doi.org/10.1016/j.biortech.2019.121511
H. Hicham, J. Hussein, H. Siba, Kinetic, isotherm and thermodynamic studies on the ciprofloxacin adsorption from aqueous solution using Aleppo bentonite, Baghdad Science Journal 19 (3) (2022) pp. 680–692. http://dx.doi.org/10.21123/bsj.2022.19.3.0680
H. Khazri, I. Ghorbel-Abid, R. Kalfat, M. Trabelsi-Ayadi, Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study, Applied Water Science 7 (2017) pp. 3031–3040. https://doi.org/10.1007/s13201-016-0414-3
X. Peng, F. Hu, J. Huang, Y. Wang, H. Dai, Z. Liu, Preparation of a graphitic ordered mesoporous carbon and its application in sorption of ciprofloxacin: Kinetics, isotherm, adsorption mechanisms studies, Microporous and Mesoporous Materials 228 (2016) pp. 196–206. https://doi.org/10.1016/j.micromeso.2016.03.035
Baraka, Adsorptive removal of tartrazine and methylene blue from wastewater using melamine-formaldehyde-tartaric acid resin (and a discussion about pseudo second order model), Desalination and Water Treatment 44 (1-3) (2012) pp. 128–141. https://doi.org/10.1080/19443994.2012.691783
N. Wazzan, Adsorption of non-steroidal anti-inflammatory drugs (NSAIDs) on nanographene surface: Density functional theory study, Arabian Journal of Chemistry 14 (4) (2021) p. 103002. https://doi.org/10.1016/j.arabjc.2021.103002
H. Zhang, Y. Liu, H. Sun, Molecular size and shape effects in adsorption kinetics: A theoretical and experimental study, Journal of Hazardous Materials 424 (2022) p. 127521. https://doi.org/10.1016/j.jhazmat.2021.127521
V. Dordio, S. Miranda, J. P. Prates Ramalho, A. J. P. Carvalho, Mechanisms of removal of three widespread pharmaceuticals by two clay materials, Journal of Hazardous Materials 323 (2017) pp. 575–583. https://doi.org/10.1016/j.jhazmat.2016.05.091
L. Chen, X. Wang, Steric and electronic effects in adsorption processes: A DFT perspective, Environmental Science and Pollution Research 28 (15) (2021) pp. 18945–18958. https://doi.org/10.1007/s11356-021-13048-9
Y. Li, R. Zhang, J. Zhao, Advances in computational modeling of pollutant adsorption mechanisms, Chemical Engineering Journal 456 (2023) p. 141073. https://doi.org/10.1016/j.cej.2022.141073
M. S. Alqahtani, H. A. Alzahrani, R. M. El-Shishtawy, Computational insights into the molecular reactivity of pharmaceuticals using DFT, Journal of Molecular Liquids 345 (2022) p. 118234. https://doi.org/10.1016/j.molliq.2021.118234
P. Zhou, J. Wu, Y. Tang, HOMO-LUMO gap as a reactivity descriptor in environmental chemistry, Computational and Theoretical Chemistry 1221 (2023) p. 114037. https://doi.org/10.1016/j.comptc.2022.114037
C. Verma, L. Olasunkanmi, I. Bahadur, H. Lgaz, M. A. Quraishi, J. Haque, E. S. M. Sherif, E. E. Ebenso, Experimental, density functional theory and molecular dynamics supported adsorption behavior of environmental benign imidazolium based ionic liquids on mild steel surface in acidic medium, Journal of Molecular Liquids 273 (2019) pp. 1–15. https://doi.org/10.1016/j.molliq.2018.09.097
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Acta Technica Jaurinensis

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.