Reducing Energy Demand in Concrete Pavements by the Use of Blended Cements

Authors

  • Réka Szpotowicz Department of Highway and Railway Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., K mf 98., 1111 Budapest, Hungary https://orcid.org/0000-0003-1507-6174
  • Csaba Tóth Department of Highway and Railway Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., K mf 98., 1111 Budapest, Hungary https://orcid.org/0000-0001-5065-5177

DOI:

https://doi.org/10.14513/actatechjaur.00749

Keywords:

Sustainability, Blended cements, Concrete structures, Energy, Reduction of energy consumption

Abstract

This research explores strategies to minimise energy consumption and enhance environmental sustainability in road construction. Focusing on concrete pavement structures, the study evaluates the impact of substituting Portland cement with environmentally friendly alternatives such as fly ash and blast furnace slag. A comprehensive model is employed to analyse the energy demands of different pavement types, considering various cement replacements over their lifetime, from the initial extraction of materials to the conclusion of construction. Results indicate an energy saving potential of 8.63% by substituting 10% of Portland cement with fly ash, while an impressive reduction of 58.63% in cement production energy is achieved by replacing Portland cement with 80% blast furnace slag. The study underscores the significant role of cement variations in mitigating energy consumption, emphasizes the potential of blast furnace slag as a sustainable alternative as well as highlights the significance of alternative cement types in reducing energy consumption in concrete pavement construction, aligning with environmental sustainability goals and offering insights for more eco-friendly infrastructure development.

Downloads

Download data is not yet available.

References

H. AzariJafari, F. Guo, J. Gregory and R. Kirchain, "Solutions to achieve carbon-neutral mixtures for the U.S. pavement network," The International Journal of Life Cycle Assessment, no. 28(4) (2021). https://doi.org/10.1007/s11367-022-02121-1

V. Volkov, I. Taran, T. Volkova, O. Pavlenko, and N. Berezhnaya, "Determining the efficient management system for a specialized transport enterprise," Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 4, pp. 185-191, 2020. https://doi.org/10.29202/nvngu/2020-4/8

Hungarian Cement Concrete and Lime Association, Update 62: Durable and safe. Concrete pavements., CeMBeton (2023), in Hungarian

R. Szpotowicz, Energy demand assessment of Hungarian road structures, Útügyi Lapok, pp. 30-50, (2020) in Hungarian https://doi.org/10.36246/UL.2020.2.03

CEMBUREAU The European Cement Association, Activity Report, 2021 CEMBUREAU, Brussels (2022). https://cembureau.eu/library/reports/

N. Madlool, R. Saidur, N. Rahim and M. Kamalisarvestani, An overview of energy savings measures for cement industries, Renewable and Sustainable Energy Reviews, vol. 19, pp. 18-29 (2012). https://doi.org/10.1016/j.rser.2012.10.046

N. Madlool, R. Saidur, M. Hossain and N. Rahim, A critical review on energy use and savings in the cement industries, Renewable and Sustainable Energy Reviews, vol. 15, pp. 2042-2060 (2011). https://doi.org/10.1016/j.rser.2011.01.005

J. B. Soares and M. T. Tolmasquim, Energy efficiency and reduction of CO2 Emissions through 2015: The Brasilian cement industry, Mitigation and Adaptation Strategies for Global Change, vol. 5, pp. 297-318 (2000). https://doi.org/10.1023/A:1009621514625

A. Dodoo, L. Gustavsson and R. Sathre, Carbon implications of end-of-life management of building materials, Resources, Conservation and Recycling, p. 276–286 (2009). https://doi.org/10.1016/j.resconrec.2008.12.007

N. Pardo, J. A. Moya and A. Mercier, Prospective on the energy efficiency and CO2 emissions in the EU cement industry, Energy, vol. 36, pp. 3244-3254 (2011). https://doi.org/10.1016/j.energy.2011.03.016

R. Kumar, E. Althaqafi, S. G. K. Patro, V. Simic, A. Babbar, D. Pamucar, S. K. Singh, and A. Verma, "Machine and deep learning methods for concrete strength prediction: A bibliometric and content analysis review of research trends and future directions," Applied Soft Computing, vol. 164, 111956, 2024. https://doi.org/10.1016/j.asoc.2024.111956

T. García-Segura, V. Yepes and J. Alcalá, Life cycle greenhouse gas emission of blended cement concrete including carbonation and durability, The International Journal of Life Cycle Assessment, vol. 19, pp. 3-12 (2014). https://doi.org/10.1007/s11367-013-0614-0

C. S. Karadumpa and R. K. Pancharathi, Study on energy use and carbon emission from manufacturing of OPC and blended cements in India, Environmental Science and Pollution Research, p. 5364–5383 (2024). https://doi.org/10.1007/s11356-023-31593-3

E.K. Anastasiou, A. Liapis and I. Papayianni, Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials, Resources, Conservation and Recycling 101, pp. 1-8, (2015). https://doi.org/10.1016/j.resconrec.2015.05.009

L. H. Pereira Silva, V. Nehring, F. F. Guedes de Paivaa, J. R. Tamashiro, A. P. Galvín and A. López-Uceda, Use of blast furnace slag in cementitious materials for pavements - Systematic literature review and eco-efficiency, Sustainable Chemistry and Pharmacy, pp. 1-9 (2023). https://doi.org/10.1016/j.scp.2023.101030

D. M. Kurhan, "Entropy Application for Simulation the Ballast State as a Railway Element," Acta Polytechnica Hungarica, vol. 20, no. 1, pp. 63-77, 2023. https://doi.org/10.12700/APH.20.1.2023.20.5

Bundesministerium für Wirtschaft und Energie, Energiewende in der Industrie: Potenziale und Wechselwirkungen mit dem Energiesektor, Branchensteckbrief der Zement- und Kalkindustrie, Navigant Energy Germany GmbH (2020), in German

Verein Deutsche Zementwerke, CEM II- und CEMIII/A- Zemente im Betonbau, Nachhaltige Lösunden für das Bauen mit Beton, Düsseldorf (2008), in German

Útügyi Műszaki Előírás/Hungarian Technical Specifications for Roads, Design and Construction of Concrete and Composite Pavements / Beton- és kompozitburkolatok tervezése és építése, e-UT 06.03.37:2021 (2021) in Hungarian

Hungarian Standards Institution, Concrete. Specification, performance, production and conformity and conditions of application of EN 206 in Hungary (2021).

Hungarian Standards Institution, MSZ EN 197-1:2011, Cement Composition, specifications and conformity criteria for common cements (2011), in Hungarian

Hungarian Cement Concrete and Lime Association, CEMBETON Guidance 2017, Budapest: Magyar Cement-, Beton- és Mészipari Szövetség (2017), in Hungarian

Bundesministerium für Digitales und Verkehr, General Circular for Road Construction / Allgemeines Rundschreiben Straßenbau Nr. 04/2022 (StB 25/7182.8/3-ARS-22/3644896), Bonn (2022), in German

E. Anastasiou, A. Liapis and I. Papayianni, Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials, Resources, Conservation and Recycle, pp. 1-8 (2015). https://doi.org/10.1016/j.resconrec.2015.05.009

R. J. Stammer and F. Stodolsky, Assessment of the Energy Impacts of Improving Highway-Infrastructure Materials, Center for Transportation Research, Argone National Laboratory, Illinois (1995). https://doi.org/10.2172/177967

J. Chehovits and L. Galehouse, Energy Usage and Green House Gas Emission of Pavement Preservation Processes for Asphalt Concrete Pavements, Compendium of Papers from the First International Conference on Pavement Preservation, pp. 27-42, 15 4 (2010) Corpus ID: 106462011.

T. Häkkinen and K. Mäkelä, Environmental adaptation of concrete: Environmental impact of concrete and asphalt pavements, VTT, Technical research centre of Finland (1996). https://publications.vtt.fi/pdf/tiedotteet/1996/T1752.pdf

H. Stripple, Life Cycle Assessment of Road; A Pilot Study for Inventory Analysis, Swedish National Road Administration, Gothenburg, Sweden (2001). https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1550976&dswid=-3669

Athena Institute, A life cycle perspective on concrete and asphalt roadways: Embodied primary energy and global warming potential, Cement Association of Canada, 2006.

F. Gschösser, H. Wallbaum and M. E. Boesch, Life-cycle assessment of the production of Swiss road materials, Journal of materials in civil engineering vol. 24 (2), pp. 168-176 (2012). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000375

M. Chappat and J. Bilal, Environmental Road of the Future: Life cycle Analysis, Energy Consumption and Greenhouse Gas Emissions, Proceedings of the Fiftieth Annual Conference of the Canadian Technical Asphalt Association (CTAA) in Victoria, British Columbia, pp 1-26 (2005). https://trid.trb.org/View/849158

P. Zapata and J. A. Gambatese, Energy consumption of asphalt and reinforced concrete pavement materials and construction, Journal of Infrastructure Systems, vol. 11, pp. 9-20 (2005). https://doi.org/10.1061/(ASCE)1076-0342(2005)11:1

T. D. E. Deborah N. Huntzinger, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, Journal of Cleaner Production, pp. 668–675 (2008). https://doi.org/10.1016/j.jclepro.2008.04.007

Útügyi Műszaki Előírás/Hungarian Technical Specifications for Roads, e-UT 05.02.42 Joint Filling Materials of Road Pavements (2008) in Hungarian

Útügyi Műszaki Előírás/Hungarian Technical Specifications for Roads, e-UT 06.03.32 Concrete Subbases for Road Building Requirements, (1993) in Hungarian

Útügyi Műszaki Előírás/Hungarian Technical Specifications for Roads, e-UT 06.03.33 Concrete Base Courses of Pavement Design Requirement (2008) in Hungarian

I. Saukenova, M. Oliskevych, I. Taran, A. Toktamyssova, D. Aliakbarkyzy, and R. Pelo, "Optimization of schedules for early garbage collection and disposal in the megapolis," Eastern-European Journal of Enterprise Technologies, vol. 1, no. 3(115), pp. 13-23, 2022. https://doi.org/10.15587/1729-4061.2022.251082

A. Benmeddah, V. Jovanović, S. Perić, M. Drakulić, A. Đurić, and D. Marinković, "Modeling and Experimental Validation of an Off-Road Truck's (4 × 4) Lateral Dynamics Using a Multi-Body Simulation," Applied Sciences, vol. 14, p. 6479, 2024. https://doi.org/10.3390/app14156479

M. Barać, N. Vitković, Z. Stanković, M. Rajić, and R. Turudija, "Description and Utilization of an Educational Platform for Clean Production in Mechanical Engineering," Spectrum of Mechanical Engineering and Operational Research, vol. 1, no. 1, pp. 145-158, 2024. https://doi.org/10.31181/smeor11202413

Útügyi Műszaki Előírás/Hungarian Technical Specifications for Roads, e-UT 06.03.53:2018 Requirements of non-bonded and hydraulic bonded concrete base (2018) in Hungarian

Our Word in Data, https://ourworldindata.org, 2019, [cited 2023-07-30].

Our Word in Data, https://ourworldindata.org, 2021, [cited 2023-07-30]. https://ourworldindata.org/grapher/annual-co2-cement?time=earliest..latest&country=~HUN

S. Pranav, S. Aggarwal, E.-H. Yang, A. K. Sarkar, A. P. Singh and M. Lahoti, Alternative materials for wearing course of concrete pavements: A critical review, Construction and Building Materials, vol. 236, (2020). https://doi.org/10.1016/j.conbuildmat.2019.117609

Y. Aoki, R. Sri Ravindrarajah, and H. Khabbaz, Properties of pervious concrete containing fly ash', Road Materials and Pavement Design, vol 13(1), pp. 1–11 (2012) https://doi.org/10.1080/14680629.2011.651834

X. Chen, H. Wang, H. Najm, G. Venkiteela and J. Hencken, Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag, Journal of Cleaner Production, vol. 237 (2019). https://doi.org/10.1016/j.jclepro.2019.117714

M. N.-T. Lam, D.-H. Le and S. Jaritngam, Compressive Strength and Durability Properties of Roller-Compacted Concrete Pavement containing Electric Arc Furnace Slag Aggregate and Fly Ash, Construction and Building Materials, pp. 912-922 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.080

P. Suraneni, V. J. Azad, O. Isgor and W.J. Weiss, Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements, Transportation Research Record, 2629(1), pp. 24-32 (2017) https://doi.org/10.3141/2629-05

A. Aghaeipour and M. Madhkhan, Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability, Construction and Building Materials, vol. 141, pp. 533-541 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.019

L. Nicula, O. C. Corbu and M. Iliescu, Influence of Blast Furnace Slag on the Durability Characteristic of Road Concrete Such as Freeze-Thaw Resistance, Procedia Manufacturing, vol. 46, pp. 194-201 (2020). https://doi.org/10.1016/j.promfg.2020.03.029

G. L. Golewski, Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition, Energies, vol. 13(9), pp. 1-20 (2020) https://doi.org/10.3390/en13092184

J. Skarabis and C. Gehlen, "Durability of pavements concrete made with fly ash, 3rd International fib Congress and Exhibition, Incorporating the PCI Annual Convention and Bridge Conference 2010 (2010).

Downloads

Published

2024-08-28

How to Cite

Szpotowicz, R., & Tóth, C. (2024). Reducing Energy Demand in Concrete Pavements by the Use of Blended Cements. Acta Technica Jaurinensis, 17(3), 118–129. https://doi.org/10.14513/actatechjaur.00749

Issue

Section

Research articles