The development of a stitch-based strain sensor for woven lashing straps

Authors

  • Norman Lesser Institute for BFSV, Ulmenliet 20, 21033 Hamburg, Germany
  • Bernd Sadlowsky HAW Hamburg University of Applied Sciences, Department of process engineering, Ulmenliet 20, 21033 Hamburg, Germany

DOI:

https://doi.org/10.14513/actatechjaur.00728

Keywords:

smart textiles, strain sensor, lashing strap, load security

Abstract

In this paper the development of a stitch-based strain sensor for lashing straps is discussed. A variety of Three different commercial woven narrow fabric straps were embroidered with conductive yarns in two designed patterns to enable belt tension measurement and monitoring. The applications were tested in a cyclic elongation test and a creep elongation procedure to investigate the strain sensitivity and the influences of the narrow fabric’s properties, the stitch design, and the conductive yarn properties. It was found that the developed applications provided a good strain sensing ability but lack in cyclic recovery abilities.

Downloads

Download data is not yet available.

References

Ladungssicherung auf Straßenfahrzeugen, VDI 2700, (2004), in German

Ladungssicherung auf Straßenfahrzeugen – Berechnung von Sicherungskräften Grundlagen, VDI 2700 Blatt 2 / Part 2, (2014), in German

Ladungssicherung auf Straßenfahrzeugen – Gebrauchsanleitung für Zurrmittel, VDI 2700 Blatt 3.1 / Part 3.1, (2023), in German

Ladungssicherungseinrichtungen auf Straßenfahrzeugen – Sicherheit - Teil 1: Berechnung von Sicherheitskräften, DIN 12195-1, (2021), in German

Ladungssicherungseinrichtungen auf Straßenfahrzeugen – Sicherheit - Teil 2: Zurrgurte aus Chemiefasern, DIN 12195-2, Berlin, (2000), in German

A. Moniruddoza, J. Mersch, P. Schegner, M. Hossain, A. Nocke, C. Chokri, Textilbasierte Sensor-Aktor-Netzwerke für hochpräzise In-Situ-Mechanismen in Faserkunststoffen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, In: Institut für Textilmaschinen und Textile Hochleistungswerkstoffe, Jahresbericht 2021, Dresden, (2021), pp.1 - 2 in German

R. Nolden, K. Zöll, A. Schwarz-Pfeiffer, Smart Glove with an Arduino-Controlled Textile Bending Sensor, Textile Data Conductors and Feedback Using LED-FSDs™ and Embroidery Technology, Proceedings, 68 (1) (2021) 4. https://doi.org/10.3390/proceedings2021068004

M. Hoerr, E-Textiles – Integration von Elektronik in Textilien durch Stickerei, TEXTILplus (03/04) (2021), pp. 18 – 22, in German

V. Mecnika, M. Hoerr, I. Krievins, S. Jockenhoevel, T. Gries, Technical Embroidery for Smart Textiles: Review, Materials Science. Textile and Clothing Technology, 9 (2014), pp. 56 – 63. https://doi.org/10.7250/mstct.2014.009

G. Golovic, Sewing stitches and seams, In: R. Nayak, Rajkishore, R. Padhye, Woodhead Publishing Series in textiles: Number 168 - Garment Manufacturing Technology, Woodhead Publishing Limited, Cambridge, (2015) p. 247.

Stitches and seams. Classification and terminology of stitch types, ISO 4915:1991, (1991)

B. Moradi, R. Fernández-Garcia, I. Gil, E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control, Materials, 11 (6) (2018) 955. https://doi.org/10.3390/ma11060955

J. Eichhoff, A. Hehl, T. Gries, Textile fabrication technologies for embedding electronic functions into fibres, yarns and fabrics, in: T. Kirstein, Woodhead Publishing Series in textiles: Number 139 – Multidisciplinary knowhow for smart-textiles developers Woodhead Publishing Limited, Cambridge, (2013) pp.193 – 223.

K. Jansen, Performance Evaluation of Knitted and Stitched Textile Strain Sensors, Sensors, 20 (24) (2020) 7236. https://doi.org/10.3390/s20247236

P. Regtien, E. Dertien, Sensors for Mechatronics – Second Edition, Elsevier B.V., Amsterdam, (2018) p. 394.

O. Tangsirinaruenart, G. Stylios, A Novel Textile Stitch-Based Strain Sensor for Wearable End Users, Materials, 12 (9) (2019) 1469. https://doi.org/10.3390/ma12091469

S. Keil, Dehnungsmessstreifen - 2. Auflage, Springer Vieweg, Wiesbaden, (2017), p. 485, in German

A. Schwarz, L. Van Langenhove, Types and processing of electro conductive and semiconducting materials for smart textiles, In: T. Kirstein, Woodhead Publishing Series in textiles: Number 139 – Multidisciplinary knowhow for smart-textiles developers Woodhead Publishing Limited, Cambridge, (2013) pp. 28 – 57.

L. Xiuhong, S. Chen, Y. Peng, Z. Zheng, J. Li, F. Zhong, Materials, Preparation Strategies, and Wearable Sensor Applications of conductive Fibers: A Review, Sensors, 22 (8) (2022) 3028. https://doi.org/10.3390/s22083028

J. Xie, M. Miao, Y. Jia, Mechanism of electrical conductivity in metallic fiber-based yarns, AUTEX Research Journal, 20 (1) (2019) p. 6. https://doi.org/10.2478/aut-2019-0008

M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon, 49 (12) (2011), pp. 3755 – 3761.

S. Chawla, M. Narahji, Effects of twist and porosity on the electrical conductivity of carbon nanofiber yarns, Nanotechnology, 24 (25) (2013) 255708. https://doi.org/10.1088/0957-24/25/255708

F. Huang, H. Jiyong, X. Yan, Review of Fiber- on Yarn-Based Wearable Resistive Strain Sensors: Structural Design, Fabrication Technologies and Applications, Textiles, 2 (1) (2022), pp. 81 – 111. https://doi.org/10.3390/textiles2010005

K. Keum, S.S. Cho, J. Jeong-Wan, S.K. Park, K. Yong-Hoon, Mechanically robust textile-based strain and pressure multimodal sensors using metal nanowire/polymer conducting fibers, iScience, 25 (4) (2022) 104032. https://doi.org/10.1016/j.isci2022.104032

S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, J. M. Razal, Textile Strain Sensors: A Review of the Fabrication Technologies, performance Evaluation and Applications, Materials Horizons, 6 (2) (2019) pp. 219 – 249. https://doi.org/10.1039/C8MH01062E

M. Ruppert-Stroescu, M. Balasubramanian, Effects of stitch classes on the electrical properties of conducive threads, Textile Research Journal, 88 (21) (2017), pp. 2454 – 2463. https://doi.org/10.1177/0040517517725116

Vogl, P. Parzer, T. Babic, J. Leong, A. Olwal, M. Haller, StretchEBand: Enabling Fabric-based Interactions through Rapid Fabrication of Textile Stretch Sensors, in: CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, New York, (2017), pp. 2617 – 2627. https://doi.org/10.1145/3025453.3025938

M. Martinez-Estrada, I. Gil, R. Fernández-García, Raúl, An Alternative Method to Develop Embroidery Textile Strain Sensors, Textiles, 1 (3) (2021), pp. 504 – 512. https://doi.org/10.3390/textiles1030026

E. Dupler, L. Dunne, Effects of the Textile-Sensor Interface on Stitched Strain Sensor Performance In: ISWC’19: Proceedings of the 2019 ACM International Symposium on Wearable Computers, New York, (2019), pp. 45 – 53. https://doi.org/10.1145/3341163.3347717

Downloads

Published

2024-02-19

How to Cite

Lesser, N., & Sadlowsky, B. . (2024). The development of a stitch-based strain sensor for woven lashing straps . Acta Technica Jaurinensis, 17(1), 22–35. https://doi.org/10.14513/actatechjaur.00728

Issue

Section

Research articles