Review on Coordination of Time Overcurrent Relays in Electrical Distribution Network

Authors

  • Godfrey Mhagama Department of Computer Science and Engineering, College of Information and Communication Technologies University of Dar es Salaam, P.O. Box 33335, Dar es Salaam, Tanzania https://orcid.org/0000-0002-0941-9006
  • Ndyetabura Y. Hamisi Department of Computer Science and Engineering, College of Information and Communication Technologies University of Dar es Salaam, P.O. Box 33335, Dar es Salaam, Tanzania
  • Shililiandumi Naiman Department of Electronics and Telecommunication Engineering, College of Information and Communication Technologies, University of Dar es Salaam, P.O. Box 33335, Dar es Salaam,Tanzania

DOI:

https://doi.org/10.14513/actatechjaur.00727

Keywords:

protection, relay, coordination, operating time, distribution network, algorithm

Abstract

Integration of distributed generators in micro grid causes bidirectional current flow as a result of the need for readjustment of the setting of the overcurrent protective relays in the electrical network. Adaptive coordination is one of the solutions that adjust the setting of protective relays according to the dynamics of the distribution network. Various algorithms had been reported on the adaptive coordination of time overcurrent relays. This paper reports a survey about the coordination of time overcurrent relays in micro grid electrical distribution network. The review found that there is limited research on distributed control rules of the multi agent coordination of protection relays. Furthermore, it was found that the trend of coordination algorithms focused on the nature inspired algorithms.

Downloads

Download data is not yet available.

References

B. Lundqvist, “100 years of relay protection, the Swedish ABB relay history,” Västerås, 2001. [Online]. Available: http://library.abb.com/global/scot/scot296.nsf/veritydisplay/c1256d32004634bac1256e19006fd705/$File/PAPER_2001_08_en_100_Years_of_Relay_Protection__the_Swedish_ABB_Relay_History.pdf.

A. J. Urdaneta, R. Nadira, and L. G. Pérez Jiménez, “Optimal Coordination of Directional Overcurrent Relays in Interconnected Power Systems,” IEEE Trans. Power Deliv. 3 (3) (1988) pp. 903–911. https://doi.org/10.1109/61.193867

T. Amraee, “Coordination of directional overcurrent relays using seeker algorithm,” IEEE Trans. Power Deliv. 27 (3) (2012) pp. 1415–1422. https://doi.org/10.1109/TPWRD.2012.2190107

Z. N. Stojanovic and M. B. Djuric, “Table Based Algorithm for Inverse-Time Overcurrent Relay,” J. Electr. Eng. 65 (4) (2014) pp. 213–220. https://doi.org/10.2478/jee-2014-0033

A. Srivastava, J. M. Tripathi, S. R. Mohanty, and B. Panda, “Optimal over-current relay coordination with distributed generation using hybrid particle swarm optimization-gravitational search algorithm,” Electr. Power Components Syst. 44 (5) (2016) pp. 506–517. https://doi.org/10.1080/15325008.2015.1117539

M. H. Costa, R. R. Saldanha, M. G. Ravetti, and E. G. Carrano, “Robust coordination of directional overcurrent relays using a matheuristic algorithm,” IET Gener. Transm. Distrib. 11 (2) (2017) pp. 464–474. https://doi.org/10.1049/iet-gtd.2016.1010

S. Roy, S. B. Perli, and N. V. P. Babu, “Intelligent coordination of overcurrent and distance relays using meta heuristic algorithms,” Int. J. Electr. Eng. Informatics 10 (4) (2018) pp. 675–703. https://doi.org/10.15676/ijeei.2018.10.4.5

A. Korashy, S. Kamel, F. Jurado, and A. R. Youssef, “Hybrid Whale Optimization Algorithm and Grey Wolf Optimizer Algorithm for Optimal Coordination of Direction Overcurrent Relays,” Electr. Power Components Syst. 47 (6–7) (2019) pp. 644–658. https://doi.org/10.1080/15325008.2019.1602687

M. Y. Shih, A. Conde, and C. Ángeles-Camacho, “Enhanced self-adaptive differential evolution multi-Objective algorithm for coordination of directional overcurrent relays contemplating maximum and minimum fault points,” IET Gener. Transm. Distrib., 13 (21) (2019) pp. 4842–4852. https://doi.org/10.1049/iet-gtd.2018.6995

B. Dumala, “Optimal Coordination of Over Current Relays Using Teaching Learning Based Optimization Algorithm” 4 (3) (2020) pp. 10–20.

T. A. W. Mykel J.Kochenderfer, Algorithms for Optimization, Cambridge: MIT Press, 2019.

R. V Rao, V. J. Savsani, and D. P. Vakharia, “Computer-Aided Design Teaching – learning-based optimization : A novel method for constrained mechanical design optimization problems,” Comput. Des. 43 (3) (2011) pp. 303–315. https://doi.org/10.1016/j.cad.2010.12.015

S. Beheshtaein, R. Cuzner, M. Savaghebi, and J. M. Guerrero, “Review on microgrids protection,” IET Gener. Transm. Distrib. 13 (6) (2019) pp. 743–759. https://doi.org/10.1049/iet-gtd.2018.5212

A. Alvarez de Sotomayor, D. Della Giustina, G. Massa, A. Dedè, F. Ramos, and A. Barbato, “IEC 61850-based adaptive protection system for the MV distribution smart grid,” Sustain. Energy, Grids Networks 15 (October) (2018) pp. 26–33. https://doi.org/10.1016/j.segan.2017.09.003

A. E. C. Momesso, W. M. Wellington, and E. N. Asada, “Adaptive directional overcurrent protection considering stability constraint,” Electr. Power Syst. Res. 181 (December) (2019) p. 106190. https://doi.org/10.1016/j.epsr.2019.106190

B. J. Brearley, R. Raja Prabu, K. Regin Bose, and V. Sankaranarayanan, “Adaptive relay co-ordination scheme for radial microgrid,” Int. J. Ambient Energy 43 (1) (2020) pp. 2180-2193. https://doi.org/10.1080/01430750.2020.1722226

S. T. P. Srinivas and K. Shanti Swarup, “A New Mixed Integer Linear Programming Formulation for Protection Relay Coordination Using Disjunctive Inequalities,” IEEE Power Energy Technol. Syst. J. 6 (2) (2019) pp. 104–112. https://doi.org/10.1109/jpets.2019.2907320

M. Dolatabadi and Y. Damchi, “Graph Theory Based Heuristic Approach for Minimum Break Point Set Determination in Large Scale Power Systems,” IEEE Trans. Power Deliv. 34 (3) (2019) pp. 963–970. https://doi.org/10.1109/TPWRD.2019.2901028

B. M. Buchholz and Z. Styczynski, Smart grids - Fundamentals and technologies in electricity networks, vol. 9783642451. Springer Berlin Heidelberg, 2014.

M. G. Maleki, H. Javadi, M. Khederzadeh, and S. Farajzadeh, “An Adaptive and Decentralized Protection Scheme for Microgrid Protection,” Power Syst. Prot. Control Conf. (PSPC), Tehran, Iran, no. July, 2016. https://doi.org/10.20944/preprints201907.0251.v1

M. J. Daryani, A. E. Karkevandi, and O. Usta, “Multi-Agent Approach to Wide-Area Integrated Adaptive Protection System of Microgrid for Pre-and Post-Contingency Conditions,” Proc. - 2018 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2018, pp. 1–6. https://doi.org/10.1109/ISGTEurope.2018.8571785

M. S. Rahman, T. F. Orchi, S. Saha, and M. E. Haque, “Multi-Agent Approach for Overcurrent Protection Coordination in Low Voltage Microgrids,” IEEE Power Energy Soc. Gen. Meet., vol. 2019-Augus, 2019. https://doi.org/10.1109/PESGM40551.2019.8974053

X. Tong et al., “The study of a regional decentralized peer-to-peer negotiation-based wide-area backup protection multi-agent system,” IEEE Trans. Smart Grid 4 (2) (2013) pp. 1197–1206. https://doi.org/10.1109/TSG.2012.2223723

Z. Liu, C. Su, H. K. Hoidalen, and Z. Chen, “A Multiagent System-Based Protection and Control Scheme for Distribution System with Distributed-Generation Integration,” IEEE Trans. Power Deliv. 32 (1) (2017) pp. 536–545. https://doi.org/10.1109/TPWRD.2016.2585579

Z. Liu, Z. Chen, H. Sun, and Y. Hu, “Multi agent system based process control in wide area protection against cascading events,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, pp. 445–450. https://doi.org/10.1109/PTC.2013.6652293

M. Singh, B. K. Panigrahi, and A. R. Abhyankar, “A hybrid protection scheme to mitigate the effect of distributed generation on relay coordination in distribution system,” IEEE Power Energy Soc. Gen. Meet., pp. 13–17, 2013. https://doi.org/10.1109/PESMG.2013.6672159

K. I. Tharakan, P. Sasikumar, and C. Vaithilingam, “Wireless protective relaying for smart grid,” ARPN J. Eng. Appl. Sci. 11 (21) (2016) pp. 12756–12759.

A. Yadav and A. Swetapadma, “Improved first zone reach setting of artificial neural network-based directional relay for protection of double circuit transmission lines,” IET Gener. Transm. Distrib. 8 (3) (2014) pp. 373–388. https://doi.org/10.1049/iet-gtd.2013.0239

O. Nunez, F. Valencia, P. Mendoza-Araya, R. Palma-Behnke, G. Jimenez, and J. Cotos, “Microgrids protection schemes,” CHILECON 2015 - 2015 IEEE Chil. Conf. Electr. Electron. Eng. Inf. Commun. Technol. Proc. IEEE Chilecon 2015, no. November, pp. 597–602, 2016. https://doi.org/10.1109/Chilecon.2015.7400439

H. Karimi, G. Shahgholian, B. Fani, I. Sadeghkhani, and M. Moazzami, “A protection strategy for inverter-interfaced islanded microgrids with looped configuration,” Electr. Eng. 101 (3) (2019) pp. 1059–1073. https://doi.org/10.1007/s00202-019-00841-6

P. R. Zuzelo, “Evidence-based practice methodology: Use the correct approach,” Holist. Nurs. Pract. 32 (6) (2018) pp. 340–342. https://doi.org/10.1097/HNP.0000000000000297

S. Panneer, J. R. Meenakshi, and S. Bharti, “Practice — A Methodology for Sustainable Models in the Helping Professions,” Soc. Work Educ. Res. Pract. Univ. Tamil Nadu, pp. 161–172, 2020. https://doi.org/10.1007/978-981-15-9797-8_12

D. Kusumaningsih, “Mendeley As A Reference Management and Citation Generator for Academic Articles,” Adv. Eng. Res. 175 (ICASE-18) (2018) pp. 81–83. https://doi.org/10.2991/icase-18.2018.22

T. Khurshaid, A. Wadood, S. Gholami Farkoush, J. Yu, C. H. Kim, and S. B. Rhee, “An Improved Optimal Solution for the Directional Overcurrent Relays Coordination Using Hybridized Whale Optimization Algorithm in Complex Power Systems,” IEEE Access 7 (2019) pp. 90418–90435. https://doi.org/10.1109/ACCESS.2019.2925822

K. Sarwagya, P. K. Nayak, and S. Ranjan, “Optimal coordination of directional overcurrent relays in complex distribution networks using sine cosine algorithm,” Electr. Power Syst. Res. 187 (2020) p. 106435. https://doi.org/10.1016/j.epsr.2020.106435

S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano, “Optimal coordination of over-current relays in microgrids considering multiple characteristic curves,” Alexandria Eng. J. 60 (2) (2021) pp. 2093–2113. https://doi.org/10.1016/j.aej.2020.12.012

S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, and N. Muñoz-Galeano, “An Approach for Optimal Coordination of Over-Current Relays in Microgrids with Distributed Generation,” Electronics 9 (10) (2020) p. 1740. https://doi.org/10.3390/electronics9101740

G. Wang, C. Wang, X. Cai, and Y. Ji, “Distributed Leaderless and Leader-Following Consensus Control of Multiple Euler-Lagrange Systems with Unknown Control Directions,” J. Intell. Robot. Syst. Theory Appl. 89 (3–4) (2018) pp. 439–463. https://doi.org/10.1007/s10846-017-0554-1

M. Rehan, M. Tufail, and S. Ahmed, “Leaderless consensus control of nonlinear multi-agent systems under directed topologies subject to input saturation using adaptive event-triggered mechanism,” J. Franklin Inst. 358 (12) (2021) pp. 6217–6239. https://doi.org/10.1016/j.jfranklin.2021.06.014

M. M. Eissa, “New protection philosophy for protecting complex smart grid with renewable resources penetration,” 2012 IEEE Int. Conf. Smart Grid Eng. SGE 2012, 2012. https://doi.org/10.1109/SGE.2012.6463966

Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent systems using complex laplacian,” IEEE Trans. Automat. Contr., 59 (7) (2014) pp. 1765–1777. https://doi.org/10.1109/TAC.2014.2309031

Z. Yang, X. Pan, Q. Zhang, and Z. Chen, “Formation control of first-order multi-agents with region constraint,” Automatika 61 (4) (2020) pp. 651–656. https://doi.org/10.1080/00051144.2020.1814979

Q. Wang, Y. Wang, and H. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sin. 5 (1) (2018) pp. 148–154. https://doi.org/10.1109/JAS.2016.7510022

S. L. Bowman, C. Nowzari, and G. J. Pappas, “Coordination of multi-agent systems via asynchronous cloud communication,” 2016 IEEE 55th Conf. Decis. Control. CDC 2016, pp. 2215–2220. https://doi.org/10.1109/CDC.2016.7798592

Q. Wang, H. Gao, F. Alsaadi, and T. Hayat, “An overview of consensus problems in constrained multi-agent coordination,” Syst. Sci. Control Eng. 2 (1) (2014) pp. 275–284. https://doi.org/10.1080/21642583.2014.897658

Downloads

Published

2024-06-19

How to Cite

Mhagama, G., Y. Hamisi, N., & Naiman, S. (2024). Review on Coordination of Time Overcurrent Relays in Electrical Distribution Network. Acta Technica Jaurinensis, 17(3), 143–151. https://doi.org/10.14513/actatechjaur.00727

Issue

Section

Mini reviews