Use of Zero-crossings Segmentation for Track Quality Assessment

Authors

DOI:

https://doi.org/10.14513/actatechjaur.00726

Keywords:

Track Quality Indices, Track geometry, Signal processing, Zero-crossing, Empirical Mode Decomposition, FRA Geometry TQI, Netherlands TQI, Chinese TQI

Abstract

This study concerns track quality assessment of standard-gauge railways in the context of the Hungarian railway system. Data gathered by multipurpose track recording vehicles matched the EN 13,848 requirements. Track Quality Index (TQI) measurement systems (The Federal Railroad Administration (FRA), the Netherlands’, and the Chinese TQI) are considered where three types of predetermined segment techniques: separate, moving, and Zero-crossings segmentation are employed. The importance of track segmentation in quality assessment, which affects maintenance planning, is shown by key findings. For heterogeneous data, the TQIs might be deceptive, highlighting the need for alternatives. The robustness of the Zero-crossings method makes it possible to analyze deterioration factors in great detail and in some efficient way. Longer analytical segments and smoothing of the data improved precision. Based on empirical data, we advise considering a Zero-crossings strategy for precise and efficient track-quality evaluations.  With the help of this study, track quality can be better evaluated for train systems.

Downloads

Download data is not yet available.

References

EN 13848-5 Railway applications-Track-Track geometry quality-Part 5: Geometric quality assessment (2005).

EN 13848-3 Railway Applications: Track. Track Geometry Quality. Part 3: Measuring Systems. Track Construction and Maintenance Machines (2009).

J. Barnett, B. Kedem. Zero-crossing rates of mixtures and products of gaussian processes. IEEE Transactions on Information Theory (1998), 44(4):1672–1677. https://doi.org/10.1109/18.681350.

A. R. B. Berawi R. Delgado R. Calçada, C. Vale. Evaluating track geometrical quality through different methodologies. Int. J. Technol. (2010), 1(1):38–47.

K. Dybeł, A. Kampczyk. Sensitivity of geometric parameters in the sustainability development of continuous welded rail. Acta Technica Jaurinensis (2022), 15(3):150–161.

Federal Railroad Administration. Develop ment of objective track quality indices (2005), pages 6–9. http://www.fra.dot.gov/downloads/research/rr0501.pdf.

S. Fischer N. Liegner P. Bocz Á. Vinkó, G. Terdik. Investigation of Track Gauge and Alignment Parameters of Ballasted Railway Tracks Based on Real Measurements Using Signal Processing Techniques. Infrastructures (2023), 8(2). https://doi.org/10.3390/infrastructures8020026.

L. Guo H. Lin X. Wu, H. Cui. Study on comprehensive evaluation method for track irregularitybased on hsmm. In: 2015 4th International Conference on Sensors, Measurement and Intelligent Materials (2016). Atlantis Press, pages 1191–1194.

N. E. Huang Z. Shen S. R. Long M. C. Wu H. H. Shih Q. Zheng N.-C. Yen C. C. Tung, H. H. Liu. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. of the Royal Society of London. Ser. A: Mathematical (1998), pages 903–995.

ISO 23054 (2020). Railway applications — Track geometry quality — Part 1: Characterization of track geometry and track geometry quality. Standard ISO/IEC TR ISO 23054-1:2022, 13 A. B. A. Dawod and G. Terdik– Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2024 International Organization for Standardization, Geneva, CH. https://standards.iteh.ai/catalog/standards/sist/8f0d380b31fd-437e-b673-ee5d18304be5/iso-230541-2022.

S. Jovanovic. Railway track quality assessment and related decision making. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583) (2004), volume 6. pages 5038–5043 vol.6. https://doi.org/10.1109/ICSMC.2004.1400992.

V. Jover, S. Fischer. Statistical analysis of track geometry parameters on tramway line no. 1 in budapest. Baltic Journal of Road & Bridge Engineering (RTU Publishing House) (2022), 17(2).

T. Karis. Correlation between track irregularities and vehicle dynamic response based on measurements and simulations (2018). https://www.divaportal.org/smash/record.jsf?pid=diva2%3A1206424&dswid=2266.

B. Kedem. Spectral analysis and discrimination by zero-crossings. Proceedings of the IEEE (1986), 74(11):1477–1493. https://doi.org/10.1109/proc.1986.13663.

B. Kedem, S. Yakowitz. Time series analysis by higher order crossings (1994). IEEE press, New York.

R.-K. Liu P. Xu Z.-Z. Sun C. Zou Q.-X. Sun et al. Establishment of track quality index standard recommendations for beijing metro. Discrete Dynamics in Nature and Society (2015), 2015.

P. J. J. Luukko J. Helske, E. Räsänen. Introducing libeemd: a program package for performing the ensemble empirical mode decomposition. Computational Statistics (2015), 31(2):545–557. https://doi.org/10.1007/s00180-015-0603-9.

I. Majstorovi ́c M. Ahac J. Madejski, S. Lakuši ́c. Influence of the Analytical Segment Length on the Tram Track Quality Assessment. Appl. Sci. (2022), 12(19). https://doi.org/10.3390/app121910036.

D. E. Martin. Detection of periodic autocorrelation in time series data via zerocrossings. Journal of Time Series Analysis (1999), 20(4):435–452.

E. Nedeliaková V. Štefancová, Š. Kudláˇc. Six sigma and dynamic models application as an important quality management tool in railway companies. Procedia Engineering (2017), 187:242–248.

J. Neuhold I. Vidovic, S. Marschnig. Preparing track geometry data for automated maintenance planning. Journal of Transportation Engineering, Part A: Systems (2020), 146(5):04020032.

C. Ngamkhanong S. Kaewunruen, B. J. A. Costa. State-of-the-art review of railway track resilience monitoring. Infrastructures (2018), 3(1):3.

S. Offenbacher J. Neuhold P. Veit, M. Landgraf. Analyzing major track quality indices and introducing a universally applicable tqi. Appl. Sci. (2020), 10(23):1–17. https://doi.org/10.3390/app10238490.

S. O. Rice. Mathematical analysis of random noise. The Bell System Technical Journal (1945), 24(1):46–156.

R. A. Rios, R. F. de Mello. Applying empirical mode decomposition and mutual information to separate stochastic and deterministic influences embedded in signals. Signal Processing (2016), 118:159–176. https://doi.org/10.1016/j.sigpro.2015.07.003.

J. Šestáková A. Pultznerová, M. Meˇcár. The maintenance of the railway superstructure and its influence on the track geometry of regional line. Acta Technica Jaurinensis (2022), 15(3):162–173.

I. Soleimanmeigouni A. Ahmadi H. Khajehei, A. Nissen. Investigation of the effect of the inspection intervals on the track geometry condition. Structure and Infrastructure Engineering (2020), 16(8):1138–1146. https://doi.org/10.1080/15732479.2019.1687528.

Á. Vinkó, P. Bocz. Experimental investigation on condition monitoring opportunities of tramway tracks. Periodica Polytechnica Civil Engineering (2018), 62(1):180–190.

Z. Yang B. W.-K. Ling, C. Bingham. Trend extraction based on separations of consecutive empirical mode decomposition components in hilbert marginal spectrum. Measurement (2013), 46(8):2481–2491. https://doi.org/10.1016/j.measurement.2013.04.071.

Downloads

Published

2024-02-17

How to Cite

Dawod, A., & Terdik, G. (2024). Use of Zero-crossings Segmentation for Track Quality Assessment. Acta Technica Jaurinensis, 17(1), 8–21. https://doi.org/10.14513/actatechjaur.00726

Issue

Section

Research articles