Effect of Reprocessing on the Crystallization of Different Polyesters


  • Zoubeida Taha Taha Department of Innovative Vehicles and Materials, GAMF Faculty of Engineering and Computer Science, John von Neumann University, Izsáki út 10, H-6000, Kecskemét, Hungary // Doctoral School of Materials Sciences and Technologies, Óbuda University, Népszínház u. 8, H-1081 Budapest, Hungary
  • Andrea Ádámné Major Department of Innovative Vehicles and Materials, GAMF Faculty of Engineering and Computer Science, John von Neumann University, Izsáki út 10, H-6000, Kecskemét, Hungary
  • Ferenc Ronkay Department of Innovative Vehicles and Materials, GAMF Faculty of Engineering and Computer Science, John von Neumann University, Izsáki út 10, H-6000, Kecskemét, Hungary




polyesters, bio-based polymer, petroleum-based polymer, crystallization, recycling


The changes in crystallization characteristics of four polyesters were investigated during multiple processing. Two of these were petroleum-based materials: poly (ethylene terephthalate) (PET) and poly (butylene terephthalate) (PBT), and two were bio-based materials: poly (lactic acid) (PLA) and poly (butylene succinate) (PBS). We found that during non-isothermal crystallization the different type of polyesters shown different behaviour: the PET and PLA materials were more sensitive to the cooling rate than the PBT and PBS. Interestingly, at low cooling rates, the number of reprocessing steps had no significant effect on the crystallinity of PBT and PBS, but reduced it for PET, but increased it for PBT.


Download data is not yet available.


J. D. Reehard, Understanding Solids, the Science of Materials, Wiley Sons ltd, England, 2004.

R. M. Wang, S. R. Zheng,Y. P. Zheng, Polymer matrix composites and technology, Woodhead Publishing and Science Press, 2011, https://doi.org/10.1533/9780857092229

D. B. Harris, Engineering composite materials, The Institute of Materials, London, 1999, : https://doi.org/10.1007/978-1-84882-831-5

D. L. Chung, Composite Materials -Science and Applications, Engineering Materials and Processes, London, 2010, https://doi.org/10.1007/978-1- 84882-831-5

W. D. Callister, Materials science and engineering, John Wiley & Sons, Inc, USA, 2006, https://doi.org/10.1007/BF01184995

J. Scheirs, T. E. Long, Modern polyesters chemistry and technology of polyesters and copolyesters, Wiley series in Polymer Science, 2003.

Q. Zhang, M. Song, Y. Xu, W. Wang, Z. Wang, L. Zhang, Bio-based polyesters: Recent progress and future prospects, Progress in Polymer Science 120 (2021) 101430. https://doi.org/10.1016/j.progpolymsci.2021.101430

P. B. Yang, M. G. Davidson, K. J. Edler, S. Brown, Synthesis, Properties, and Applications of Bio-Based Cyclic Aliphatic Polyesters, Biomacromolecules, 2021, https://doi.org/10.1021/acs.biomac.1c00638

M. Rabnawaz, I. Wyman, R. Auras, S. Cheng, A roadmap towards green packaging: current status and future outlook for polyesters in the packaging industry, Green Chemistry, 2017, https://doi.org/10.1039/x0xx00000x

Larrañaga, E. Lizundia,, A review on the thermomechanical properties and biodegradation behaviour of polyesters, European Polymer Journal, Volume 121, December 2019, 109-296, https://doi.org/10.1016/j.eurpolymj.2019.109296

R. Franz, F. Welle, Recycling of Post-Consumer Packaging Materials into New Food Packaging Applications—Critical Review of the European Approach and Future Perspectives, Sustainability 2022, 14, 824. https://doi.org/10.3390/su14020824

V. Shanmugam, O. Das, R. E. Neisiany, K. Babu, S. Singh, M. S. Hedenqvist, F. Berto, S. Ramakrishna, Polymer Recycling in Additive Manufacturing: An Opportunity for the Circular Economy, Materials Circular Economy, 2020. https://doi.org/10.1007/s42824-020-00012-0

B. Molnar, F. Ronkay, Effect of solid-state polycondensation on crystalline structure and mechanical properties of recycled polyethylene-terephthalate, Polymer Bulletin, 76, 2387–2398, 2019, https://doi.org/10.1007/s00289-018-2504-x

D. Heidrich, M. Gehde, The 3-Phase Structure of Polyesters (PBT, PET) after Isothermal and Non-Isothermal Crystallization, Polymers, 14(4),793,2022, https://doi.org/10.3390/polym14040793

M. C. Righetti, M. L. di Lorenzo, P. Cinelli, M. Gazzano, Temperature dependence of the rigid amorphous fraction of poly (butylene succinate). RSC Adv. 11, 25731–25737, 2021, https://doi.org/10.1039/D1RA03775G

O. Mysiukiewicz, M. Barczewski, Crystallization of polylactide-based green composites filled with oil-rich waste fillers, Journal of Polymer Research 27: 374,2020, https://doi.org/10.1007/s10965-020-02337-5

S. Saeidlou, M. A uneault, C. B. Li H.,Park, Poly(lactic acid) crystallization, Progress in Polymer Science, Volume 37, Issue 12, Pa 1657-1677,2012, https://doi.org/10.1016/j.progpolymsci.2012.07.005

P. C. Zilanova, S. M. Ribas, G. M. Guzman, Isothermal crystallization of poly(ethylene-terephthalate) of low molecular weight by differential scanning calorimetry: 1. Crystallization kinetics, Polymer, volume 26, Issue3, Pages 423-428, 1985, https://doi.org/10.1016/0032-3861(85)90205-8

M. L. Di Lorenzo, C. Silvestre, Non-isothermal crystallization of polymers, Progress in Polymer Science, 1999, Vol. 24, No. 6, pp. 917–950, https://doi.org/10.1016/S0079-6700(99)00019-2

A. Mehta, U. Gaur, B. Wunderlich, Equilibrium melting parameters of poly (ethylene terephthalate), Journal of Polymer Science: Polymer Physics Edition, Vol. 16, 289-296,1978, https://doi.org/10.1002/pol.1978.180160209

D. Heidrich, M. Gehde, Calorimetric analysis of the crystallization of PBT considering the dynamic cooling condition of real processing, Polymer Testing, Volume 85, May 2020, 106459, https://doi.org/10.1016/j.polymertesting.2020.106459

R. Androsch, K. Jariyavidyanont, A. Janke, C. Schick, Poly (butylene succinate): Low-temperature nucleation and crystallization, complex morphology and absence of lamellar thickening, Polymer, Volume 285, 126311, 2023, https://doi.org/10.1016/j.polymer.2023.126311

V. M. Nadkarni, N. N. Bulakh, J. P. Jog, Assessing polymer crystallizability from nonisothermal crystallization behavior, Advances in Polymer Technology, Vol. 12, No. 1, 73-79, 1993, https://doi.org/10.1002/adv.1993.060120107




How to Cite

Taha Taha, Z., Ádámné Major, A., & Ronkay, F. (2023). Effect of Reprocessing on the Crystallization of Different Polyesters. Acta Technica Jaurinensis, 17(1), 1–7. https://doi.org/10.14513/actatechjaur.00723



Research articles