A survey on efforts to apply IPv6 in V2X communication networks
DOI:
https://doi.org/10.14513/actatechjaur.00693Keywords:
Vehicle-to-Everything (V2X);, Internet Protocol version 6 (IPv6), vehicular ad-hoc networks (VANETs), IEEE 802.11-OCB, WAVE, GN6ASLAbstract
This survey focuses on the application possibilities of using Internet Protocol (version 6) in Vehicle-to-Everything (V2X) networking architectures by analyzing existing standards and related papers in this field. The article explains the terminology used in IP-based V2X networks, introduces the considered use cases, and gives an overview of the three standardized options applying IPv6 in vehicular environments: IEEE WAVE provides networking services to applications in vehicular networks through IPv6, IPv6 over 802.11-OCB can be implemented in Wi-Fi-based ad hoc vehicular networks for both V2V and V2I, and the Geo Networking IPv6 adaption sub-layer (GN6ASL) for IPv6 support in the ETSI ITS protocol family. The paper also highlights non-standardized solutions and available techniques designed for IPv6-based V2X infrastructures, summarizes wireless connection requirements, and mobility management needs, together with the newest research efforts aiming at the applications of IPv6 in V2X communications.
Downloads
References
G American (2018) ‘5G Americas White Paper: Cellular V2X Communications Towards 5G’, http://Www.5Gamericas.Org.
Sattiraju, R. et al. (2020) ‘Link level performance comparison of C-V2X and ITS-G5 for vehicular channel models’, arXiv.
Group, I. 1609 W. (2014) IEEE Guide for Wireless Access in Vehicular Environments (WAVE) - Architecture, IEEE Std 1609.0-2013.
Jiang, D. and Delgrossi, L. (2008a) ‘IEEE 802.11p: Towards an international standard for wireless access in vehicular environments’, IEEE Vehicular Technology Conference, pp. 2036–2040. https://doi.org/10.1109/VETECS.2008.458
Gräfling, S., Mähönen, P. and Riihijärvi, J. (2010) ‘Performance evaluation of IEEE 1609 WAVE and IEEE 802.11p for vehicular communications’, ICUFN 2010 - 2nd International Conference on Ubiquitous and Future Networks, pp. 344–348. https://doi.org/10.1109/ICUFN.2010.5547184
ITS Standards Program | Fact Sheets | ITS Standards Fact Sheets (2021). Available at: https://www.standards.its.dot.gov/Factsheets/Factsheet/80 (Accessed: 23 April 2021).
Jeong, J. et al. (2021) ‘A comprehensive survey on vehicular networks for smart roads: A focus on IP-based approaches’, Vehicular Communications. Elsevier Inc., 29, p. 100334. https://doi.org/10.1016/j.vehcom.2021.100334
Miao, L., Virtusio, J. J. and Hua, K. L. (2021) ‘Pc5-based cellular-v2x evolution and deployment’, Sensors (Switzerland), 21(3), pp. 1–14. https://doi.org/10.3390/s21030843
ETSI - Automotive Intelligent Transport | Intelligent Transport Systems (ITS) (2021). Available at: https://www.etsi.org/technologies/automotive-intelligent-transport (Accessed: 24 April 2021).
Lee, L. S. (2011) ‘The New Internet Protocol’, Internet Auditor, 68(11), pp. 21–23.
Report, G. (2020) ‘Etsi gr ip6 030 V.1.1.1 (2020-10)’, 1, pp. 1–30.
Litvik, I. D. and J. (2021) ‘An overview of neighbor discovery issues in vehicular V2X networks’, pp. 80–83.
Yu, H. et al. (2012) ‘Implementation of an IP-based In-Vehicle Gateway, version 6’, World Automation Congress Proceedings, pp. 4–7.
Steffen, R. et al. (2009) ‘Design and Realization of an IP-based In-car Network Architecture’.https://doi.org/10.4108/icst.isvcs2008.3543
Bello, L. lo (2012) ‘The case for Ethernet in automotive communications’.
AECC (2020) ‘General Principle and Vision-White Paper’, pp. 1–15.
Haidar, F., Kaiser, A. and Lonc, B. (2018) ‘On the performance evaluation of vehicular PKI protocol for V2X communications security’, IEEE Vehicular Technology Conference, 2017-Septe, pp. 1–5. https://doi.org/10.1109/VTCFall.2017.8288286
European Commission (2021) ‘5G HarmoniseD Research and TrIals for serVice Evolution between EU and China’, pp. 1–42.
Hwang, T. and Jeong, J. (Paul) (2014) ‘SANA: Safety-aware navigation application for pedestrian protection in vehicular networks’. IEEE, 9502, pp. 127–138. https://doi.org/10.1007/978-3-319-27293-1_12
Linget, T. (2021) ‘5GAA Automotive Association Technical Report Tele-Operated Driving(ToD): System Requirements Analysis and Architecture’. Available at: www.5gaa.org.
GAA (2020) ‘5GAA TR S-200137 Study of spectrum needs for safety related intelligent transportation system - day 1 and advanced use cases’, pp. 1–50.
Tiempo Secure (2023). Available at: https://www.tiempo-secure.com (Accessed: 4 January 2023).
YoGoKo - Mobility data exchange made simple (no date). Available at: https://www.yogoko.com/ (Accessed: 28 January 2023).
Weil, T. (2009) ‘Service management for ITS using WAVE (1609.3) networking’, 2009 IEEE Globecom Workshops, Gc Workshops 2009. https://doi.org/10.1109/GLOCOMW.2009.5360714
Transportation, (2010) 1609.3 - IEEE Standard for Wireless Access in Vehicular Environments ( WAVE )— Networking Services IEEE Vehicular Technology Society.
Morgan, Y. L. (2010) ‘Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics’, IEEE Communications Surveys and Tutorials, 12(4), pp. 504–518. https://doi.org/10.1109/SURV.2010.033010.00024
Ahmed, S. A. M., Ariffin, S. H. S. and Fisal, N. (2013) ‘Overview of wireless access in vehicular environment (wave) protocols and standards’, Indian Journal of Science and Technology, 6(7), pp. 4994–5001. https://doi.org/10.17485/ijst/2013/v6i7.18
Dolnak, I., Jantosova, A. and Dado, M. (2020) ‘Using IPv6 protocol in V2X networks based on IEEE 802.11-OCB mode of operation’, 2nd International Conference on Electrical, Communication and Computer Engineering, ICECCE 2020, (June), pp. 12–13. https://doi.org/10.1109/ICECCE49384.2020.9179202
Mugabarigira, B. A. (2020) ‘IPv6 Vehicular Communications over IEEE 802 . 11-OCB Wireless Link’, (Mm), pp. 482–483.
Yoshizawa, T. and Preneel, B. (2019) ‘Survey of Security Aspect of V2X Standards and Related Issues’, 2019 IEEE Conference on Standards for Communications and Networking, CSCN 2019. IEEE, pp. 1–5. https://doi.org/10.1109/CSCN.2019.8931311
RFC 8691: Basic Support for IPv6 Networks Operating Outside the Context of a Basic Service Set over IEEE Std 802.11 (no date). Available at: https://www.rfc-editor.org/rfc/rfc8691.html (Accessed: 30 April 2021).
Thomson, S., Narten, T. and Jinmei, T. (2007) ‘IPv6 Stateless Address Autoconfiguration Status’, Request for Comments, pp. 1–30. Available at: https://tools.ietf.org/html/rfc4862.
IPv6 Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases (no date). Available at: https://tools.ietf.org/id/draft-ietf-ipwave-vehicular-networking-13.html (Accessed: 30 April 2021).
Victor Sandonis, I. S. and , Maria Calderon, M. U. (2016) ‘Vehicle to Internet communications using the ETSI ITS GeoNetworking protocol’, Transactions on emerging telecommunications technologies, 25(3), pp. 294–307. https://doi.org/10.1002/ett
ETSI (2013) ‘EN 302 636-6-1 - V1.2.1 - Intelligent Transport Systems (ITS); Vehicular Communications; GeoNetworking; Part 6: Internet Integration; Sub-part 1: Transmission of IPv6 Packets over GeoNetworking Protocols’, 1, pp. 1–47.
Gramaglia, M. et al. (2012) ‘IPv6 address autoconfiguration in geonetworking-enabled VANETs: Characterization and evaluation of the ETSI solution’, Eurasip Journal on Wireless Communications and Networking, 2012. https://doi.org/10.1186/1687-1499-2012-19
ETSI (2011) ‘Vehicular communications ; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications’;, Intelligent Transport Systems, 1, pp. 1–75. Available at: http://www.etsi.org/deliver/etsi_ts/102600_102699/1026360401/01.01.01_60/.
Petrescu, A. et al. (2016) ‘Intelligent Transportation Systems and the IETF To cite this version ’, 12(1), pp. 11–14.
Makhijani, K. et al. (2018) ‘A Survey of Internet Protocol and Architectures in the Context of Emerging Technologies’, (c), pp. 14–19.
Karagiannis, G. et al. (2011) ‘Vehicular Networking : A Survey and Tutorial on Requirements ’, 13(4), pp. 584–616.
IPv6 Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases (2021). Available at: https://datatracker.ietf.org/doc/draft-ietf-ipwave-vehicular-networking/21/ (Accessed: 30 April 2021).
Baccelli, E. et al. (2011) ‘IPv6 Operation for WAVE - Wireless Access in Vehicular Environments To cite this version : HAL Id : hal-00651593 IPv6 Operation for WAVE - Wireless Access in Vehicular Environments’.
Ko, M., Kim, H. and Min, S.-G. (2022) ‘A Vehicular Mobility Management Scheme for a Shared-Prefix Model over IEEE WAVE IPv6 Networks’, IEEE Access. IEEE, 10(September), pp. 1–1. https://doi.org/10.1109/access.2022.3201520
ETSI (2014) ‘ETSI EN 302 636-1 v1.2.1 (2014-04) Intelligent Transport Systems; Vehicular Communications; GeoNetworking; Part 1: Requirements’, 1, pp. 1–14. Available at: http://www.etsi.org/deliver/etsi_en/302600_302699/30263601/01.02.01_60/en_30263601v010201p.pdf.
Mariyasagayam, M. N., Menouar, H. and Lenardi, M. (2008) ‘GeoNet: A project enabling active safety and IPv6 vehicular applications’, Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safety, ICVES 2008, pp. 312–316. https://doi.org/10.1109/ICVES.2008.4640897
Choi, J. H. et al. (2008) ‘IPv6 support for VANET with geographical routing’, Proceedings - 2008 8th International Conference on Intelligent Transport System Telecommunications, ITST 2008, pp. 222–227. https://doi.org/10.1109/ITST.2008.4740261
Toukabri, T. et al. (2011) ‘Experimental evaluation of an open source implementation of IPv6 GeoNetworking in VANETs’, 2011 11th International Conference on ITS Telecommunications, ITST 2011, pp. 237–245. https://doi.org/10.1109/ITST.2011.6060060
Noguchi, S. et al. (2011) ‘Real-vehicle integration of driver support application with IPv6 GeoNetworking’, IEEE Vehicular Technology Conference, pp. 2–6. https://doi.org/10.1109/VETECS.2011.5956756
Geoaddressing and Georouting for vehicular communications | GeoNet Project | FP7 | CORDIS | European Commission (no date). Available at: https://cordis.europa.eu/project/id/216269 (Accessed: 15 May 2021).
Khaled, Y., Tsukada, M. and Ernst, T. (2009) ‘Geographical information extension for IPv6: Application to VANET’, 2009 9th International Conference on Intelligent Transport Systems Telecommunications, ITST 2009, pp. 304–308. https://doi.org/10.1109/ITST.2009.5399339
RFC 5177: Network Mobility (NEMO) Extensions for Mobile IPv4 (2008). Available at: https://www.rfc-editor.org/rfc/rfc5177.html (Accessed: 4 December 2022).
RFC 4885: Network Mobility Support Terminology (2007). Available at: https://www.rfc-editor.org/rfc/rfc4885 (Accessed: 4 December 2022).
Fernández, P. J. et al. (2016) ‘Securing Vehicular IPv6 Communications’, IEEE Transactions on Dependable and Secure Computing, 13(1), pp. 46–58. https://doi.org/10.1109/TDSC.2015.2399300
Fernández, P. J. et al. (2017) ‘Towards seamless inter-technology handovers in vehicular IPv6 communications’, Computer Standards and Interfaces. Elsevier, 52(February), pp. 85–96. https://doi.org/10.1016/j.csi.2017.01.013
Santa, J. et al. (2012) ‘Continuous IPv6 Communications in a Vehicular Networking Stack for Current and Future ITS Services’, pp. 1–7.
Ernst, T. and De La Fortelle, A. (2006) ‘Car-to-car and car-to-infrastructure communication system based on nemo and manet in IPV6’, 13th World Congress on Intelligent Transport Systems and Services, (September 2014).
IPv6 Moving Object Networking (ipmon) (2022). Available at: https://datatracker.ietf.org/doc/bofreq-jeong-ipv6-moving-object-networking-ipmon/ (Accessed: 14 November 2022).
Jeong, et al. (2022) draft-jeong-ipwave-vehicular-neighbor-discovery-14 - Vehicular Neighbor Discovery for IP-Based Vehicular Networks. Available at: https://datatracker.ietf.org/doc/draft-jeong-ipwave-vehicular-neighbor-discovery/ (Accessed: 14 November 2022).
Jeong, J. P. (2022) draft-jeong-ipwave-vehicular-mobility-management-08 - Vehicular Mobility Management for IP-Based Vehicular Networks. Available at: https://datatracker.ietf.org/doc/draft-jeong-ipwave-vehicular-mobility-management/ (Accessed: 14 November 2022).
Jeong, Jaehoon (2022) draft-jeong-ipwave-security-privacy-06 - Basic Support for Security and Privacy in IP-Based Vehicular Networks. Available at: https://datatracker.ietf.org/doc/draft-jeong-ipwave-security-privacy/ (Accessed: 15 November 2022).
Jeong, J. (2022) draft-jeong-ipwave-context-aware-navigator-06 - Context-Aware Navigation Protocol for IP-Based Vehicular Networks. Available at: https://datatracker.ietf.org/doc/draft-jeong-ipwave-context-aware-navigator/ (Accessed: 15 November 2022).
CNNIC, Z. Y. (2022) ‘Service and Neighbor Vehicle Discovery in IPv6-Based Vehicular Networks draft-yan-ipwave-nd-10.txt’. Available at: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf.
Jaehoon, J. P. (2022) draft-jeong-ipwave-iot-dns-autoconf-13 - DNS Name Autoconfiguration for Internet-of-Things Devices in IP-Based Vehicular Networks. Available at: https://datatracker.ietf.org/doc/draft-jeong-ipwave-iot-dns-autoconf/ (Accessed: 15 November 2022).
Imadali, S. et al. (2013) ‘eHealth service support in future IPv6 vehicular networks’, Future Internet, 5(3), pp. 317–335. https://doi.org/10.3390/fi5030317
Khaled, Y. et al. (2009) ‘Application of IPv6 multicast to VANET’, 2009 9th International Conference on Intelligent Transport Systems Telecommunications, ITST 2009, pp. 198–202. https://doi.org/10.1109/ITST.2009.5399356
Yu, H. et al. (2018) ‘A study of IP-based vehicular gateway with IPv6’, International Journal of Embedded Systems, 10(2), pp. 168–179. https://doi.org/10.1504/IJES.2018.090573
Wang, X. and Zhong, S. (2013) ‘Research on IPv6 address configuration for a VANET’, Journal of Parallel and Distributed Computing. Elsevier Inc., 73(6), pp. 757–766. https://doi.org/10.1016/j.jpdc.2013.02.002
Qualcomm (2022) ‘C- V2X IPv6 Transaction Support via Global IP Address Revision history’.
Lee, J. H., Ernst, T. and Bonnin, J. M. (2011) ‘Cross-layered architecture for securing IPv6 ITS communication: Example of pseudonym change’, 2011 3rd International Workshop on Cross Layer Design, IWCLD 2011. IEEE. https://doi.org/10.1109/IWCLD.2011.6123070
Wang, X. (2015) ‘IPv6-based vehicular cloud networking’, IEEE Communications Letters, 19(6), pp. 933–936. https://doi.org/10.1109/LCOMM.2015.2422703
Riley, G. F. and Henderson, T. R. (2010) ‘The ns-3 network simulator’, Modeling and Tools for Network Simulation. Springer Berlin Heidelberg, pp. 15–34. https://doi.org/10.1007/978-3-642-12331-3_2/COVER
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Acta Technica Jaurinensis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.