Special reinforcement solutions of railway permanent ways’ soil substructures

Authors

  • Muayad Habashneh Széchenyi István University, Department of Structural Engineering Egyetem tér 1, 9026 Győr, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.00612

Keywords:

permanent ways, soil reinforcement, substructures, subgrade

Abstract

This mini review aims to summarize relevant international publications. Thus, based on this, giving a comprehensive review about the reinforcement solutions of permanent ways' soil substructure. Generally, the core weakness of soil is its inadequacy to resist tensile stresses. The main target of strengthening the soil is to enhance the engineering characteristics of the soil to build up specific parameters such as shear strength, compressibility, density, and hydraulic conductivity. In addition, special reinforcement techniques of railway permanent ways' soil substructures will be considered in this paper due to the increasing demand of improving railways and rehabilitation process. The main findings of this study that there are a lot of special reinforcement techniques which can be considered as effective solution for soil stabilization such as geosynthetic reinforcement.

Downloads

Download data is not yet available.

References

S. Kazemian, B. B. K. Huat et al. A review of stabilization of soft soils by injection of chemical grouting, Australian Journal of Basic and Applied Sciences 4 (12) (2010) pp. 5862–5868.

H. I. Ling, D. Leshchinsky, F. Tatsuoka, eds. Reinforced soil engineering: advances in research and practice. CRC Press, 2003.

B. Eller, S. Fischer. Tutorial on the emergence of local substructure failures in the railway track structure and their renewal with existing and new methodologies, Acta Technica Jaurinensis 14 (1) (2021) pp. 80–103. doi: https://doi.org/10.14513/actatechjaur.00565

W. E. Ebersohn, E. T. Selig. Evaluation of Substructure Using Field Tests. Report No. LA-009, Association of American Railroads, Washington, DC, (1996).

E. T. Selig, J. M. Waters. Track geotechnology and substructure management. Thomas Telford, 1994. doi: https://doi.org/10.1680/tgasm.20139.fm

D. Li. Railway track granular layer thickness design based on subgrade performance under repeated loading. Ph.D. thesis. University of Massachusetts Amherst (1994).

D. Li, E. T. Selig. Wheel/track dynamic interaction: track substructure perspective, Vehicle System Dynamics 24 (1) (1995) pp. 183–196. doi: https://doi.org/10.1080/00423119508969624M

G. P. Raymond, Z. Cai. Dynamic track support loading from heavier and faster train sets. Transportation Research Record 1381 (1993).

T. Dahlberg. Some railroad settlement models – a critical review, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 215 (4) (2001) pp. 289–300. doi: https://doi.org/10.1243/0954409011531585

D. Li, E. T. Selig. Method for railroad track foundation design. I: Development. Journal of geotechnical and geoenvironmental engineering 124 (4) (1998), pp. 316–322. doi: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(316).

R. L. Michalowski, A. Zhao. Failure of fiber-reinforced granular soils. Journal of geotechnical engineering 122 (3) (1996) pp. 226–234. doi: https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(226)

A. Sawicki. Plastic limit behavior of reinforced earth, Journal of geotechnical engineering 109 (7) (1983) pp. 1000–1005. doi: https://doi.org/10.1061/(ASCE)0733-9410(1983)109:7(1000)

S. Wang et al. Volume change behaviour and microstructure of stabilized loess under cyclic freeze–thaw conditions, Canadian Journal of Civil Engineering 43 (10) (2016) pp. 865–874. doi: https://doi.org/10.1139/cjce-2016-0052

V. Toufigh. Experimental and Analytical Studies of Geo-Composite Applications in Soil Reinforcement. Ph.D. thesis, The University of Arizona (2012). URL http://hdl.handle.net/10150/255167

B. Eller, S. Fischer. Review of the Modern Ballasted Railway Tracks’ Substructure and Further Investigations, Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport 6 (84) (2019) pp. 72–85. doi: https://doi.org/10.15802/stp2019/195831

H. Venkateswarlu, A. Hegde. Effect of infill materials on vibration isolation efficacy of geocell-reinforced soil beds, Canadian Geotechnical Journal 57 (9) (2020) pp. 1304–1319. doi: https://doi.org/10.1139/cgj-2019-0135

R. K. Rowe, K. L. Soderman. An approximate method for estimating the stability of geotextile-reinforced embankments, Canadian Geotechnical Journal 22 (3) (1985) pp. 392–398. doi: https://doi.org/10.1139/t85-050

D. T. Bergado, C. Teerawattanasuk. 2D and 3D numerical simulations of reinforced embankments on soft ground, Geotextiles and Geomembranes 26 (1) (2008) pp. 39–55. doi: https://doi.org/10.1016/j.geotexmem.2007.03.003

K. Farrag, Y. B. Acar, I. Juran. Pull-out resistance of geogrid reinforcements, Geotextiles and Geomembranes 12 (2) (1993) pp. 133–159. doi: https://doi.org/10.1016/0266-1144(93)90003-7

T. M. Allen, R. J. Bathurst. Soil reinforcement loads in geosynthetic walls at working stress conditions, Geosynthetics International 9 (5-6) (2002) pp. 525–566. doi: https://doi.org/10.1680/gein.9.0227.

S. M. Hejazi, M. Sayyed et al. A simple review of soil reinforcement by using natural and synthetic fiber, Construction and building materials 30 (2012) pp. 100–116. doi: https://doi.org/10.1016/j.conbuildmat.2011.11.045

Ghazavi, Mahmoud, and Mahya Roustaei. "Freeze–thaw performance of clayey soil reinforced with geotextile layer." Cold Regions Science and Technology 89 (2013): 22-29. doi: https://doi.org/10.1016/j.coldregions.2013.01.002

Perkins, S. W., J. J. Bowders et al. Geosynthetic reinforcement for pavement systems: US perspectives, International Perspectives on Soil Reinforcement Applications (2005) pp. 1–13. doi: https://doi.org/10.1061/40788(167)2

F. Vahedifard, S. Shahrokhabadi, D. Leshchinsky. Geosynthetic reinforced soil structures, Journal of Geotechnical Engineering 115 (10) (1989) pp. 1459–1478. doi: https://doi.org/10.1016/j.geotexmem.2016.01.004

B. O. Oyegbile, B. A. Oyegbile. Applications of geosynthetic membranes in soil stabilization and coastal defence structures, International Journal of Sustainable Built Environment 6 (2) (2017) pp. 636–662. doi: https://doi.org/10.1016/j.ijsbe.2017.04.001

M. Valipour, Mehdi, P. T. Shourijeh, A. Mohammadinia. Application of recycled tire polymer fibers and glass fibers for clay reinforcement, Transportation Geotechnics 27 (2021) p. 100474. doi: https://doi.org/10.1016/j.trgeo.2020.100474

R. Alsirawan. Review of Geosynthetic-Reinforced Pile-Supported (GRPS) embankments-parametric study and design methods, Acta Technica Jaurinensis 14 (1) (2021) pp. 36–59.doi: https://doi.org/10.14513/actatechjaur.00566

A. Pecker, J. Salenc. Ground reinforcement in seismic areas. Proceedings of the XI Panamerican Conference on Soil Mechanics and Geotechnical Engineering. Iguac¸u, Brazil; 1999.

A. E. Ramaji. A review on the soil stabilization using low-cost methods, Journal of Applied Sciences Research 8 (4) (2012), pp. 2193-2196.

S. Shukla, N. Sivakugan, B. Das. Fundamental concepts of soil reinforcement – an overview, International Journal of Geotechnical Engineering 3 (3) (2009) pp. 329–342. doi: https://doi.org/10.3328/IJGE.2009.03.03.329-342

S. Gowthaman, K. Nakashima, S. Kawasaki. A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: Past findings, present trends and future directions, Materials 11 (4) (2018) p. 553. doi: https://doi.org/10.3390/ma11040553

E. Juhász, S. Fischer. Tutorial on the fragmentation of the railway ballast particles and calibration methods in discrete element modelling, Acta Technica Jaurinensis 14 (1) (2021) pp. 104–122. doi: https://doi.org/10.14513/actatechjaur.00569

E. Fortunato, S. Fontul et al. Case study on the rehabilitation of old railway lines: experimental field works, Proceedings of the international conferences on the bearing capacity of roads, railways and airfields. 2013.

E. Juhász, S. Fischer. Railroad ballast particle breakage with unique laboratory test method, Acta Technica Jaurinensis 12 (1) (2019) pp. 26–54. doi: https://doi.org/10.14513/actatechjaur.v12.n1.489

B. Indraratna, S. S. Nimbalkar et al. Performance improvement of rail track substructure using artificial inclusions – Experimental and numerical studies, Transportation Geotechnics 8 (2016) pp. 69–85. doi: https://doi.org/10.1016/j.trgeo.2016.04.001

C. Sowmiya, J. T. Shahu. "Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: model tests." Geotextiles and Geomembranes 44.3 (2016): 366-380. doi: https://doi.org/10.1016/j.geotexmem.2016.01.005

Downloads

Published

2021-05-21

How to Cite

Habashneh, M. (2021). Special reinforcement solutions of railway permanent ways’ soil substructures. Acta Technica Jaurinensis, 14(3), 339–363. https://doi.org/10.14513/actatechjaur.00612

Issue

Section

Mini reviews