Modelling the ZalaZONE Proving Ground: a benchmark of State-of-the-art Automotive Simulators PreScan, IPG CarMaker, and VTD Vires
DOI:
https://doi.org/10.14513/actatechjaur.00606Keywords:
automotive proving ground, simulation software, automotive testing and validation, autonomous vehicles, virtual testingAbstract
In our days, simulation based development is a core element of vehicle engineering, especially considering highly automated or fully autonomous vehicles. Accordingly, the paper presents a benchmark of three different automotive simulators: PreScan, IPG CarMaker, and VTD Vires. The three software tools were applied for the same goal, namely, modelling the ZalaZONE Proving Ground of Hungary for vehicle testing. The paper aims to highlight the experiences while creating the virtual models by presenting and comparing the relevant software features and providing suggestions for scientific or practical application.
Downloads
References
T. Tettamanti, I. Varga, Zs. Szalay, Impacts of Autonomous Cars from a Traffic Engineering Perspective, Periodica Polytechnica Transportation Engineering 44 (4) (2016), pp. 244-250. doi: https://doi.org/10.3311/PPtr.9464
P. Koopman and M. Wagner, Challenges in Autonomous Vehicle Testing and Validation. SAE Int. J. Trans. Safety 4 (1) (2016), pp. 15-24.
Y. Kang, H. Yin, C. Berger, Test Your Self-Driving Algorithm: An Overview of Publicly Available Driving Datasets and Virtual Testing Environments, IEEE Transactions on Intelligent Vehicles, 4 (2) (2019), pp. 171-185. doi: https://doi.org/10.1109/TIV.2018.2886678
S. Riedmaier, J. Nesensohn, et al., Validation of X-in-the-Loop Approaches for Virtual Homologation of Automated Driving Functions. In: Proceedings of the 11th Graz Symposium Virtual Vehicle (2018).
Y. Laschinsky, K. von Neumann-Cosel, et al., Evaluation of an Active Safety Light using Virtual Test Drive within Vehicle in the Loop, IEEE International Conference on Industrial Technology, Vina del Mar, (2010), pp. 1119-1112. doi: https://doi.org/10.1109/ICIT.2010.5472583
R. Kallweit, P. Prescher, M. Butenuth, Vehicle-in-the-loop: augmenting real-world driving tests with virtual scenarios in order to enhance validation of active safety systems. 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Detroit (2017).
D. Gruyer, S. Demmel, et al., Simulation architecture for the design of Cooperative Collision Warning systems. 2012 15th International IEEE Conference on Intelligent Transportation Systems, (2012), pp. 697-703. doi: https://doi.org/10.1109/ITSC.2012.6338733
A. Belbachir, J-C. Smal, J-M. Blosseville, D. Gruyer, Simulation-Driven Validation of Advanced Driving-Assistance Systems, Procedia - Social and Behavioral Sciences, 48, (2012), 1205-1214, ISSN 1877-0428. doi: https://doi.org/10.1016/j.sbspro.2012.06.1096
M. Worm, R. van der Made, Verifying ADAS and autonomous driving performance, Siemens PLM Software White paper (2019).
H. Németh, A. Háry, et al., Proving Ground Test Scenarios in Mixed Virtual and Real Environment for Highly Automated Driving. In: Proff H. (eds) Mobilität in Zeiten der Veränderung. Springer Gabler, Wiesbaden (2019), pp. 199-210. doi: https://doi.org/10.1007/978-3-658-26107-8_15
Zs. Szalay, M. Szalai, et al., Proof of concept for Scenario-in-the-Loop (SciL) testing for autonomous vehicle technology, Graz: IEEE International Conference on Connected Vehicles and Expo (ICCVE), (2019), pp. 1-5. doi: https://doi.org/10.1109/ICCVE45908.2019.8965086
Zs. Szalay, Z. Hamar, P. Simon, A Multi-layer Autonomous Vehicle and Simulation Validation Ecosystem Axis: ZalaZONE. In: Strand M., Dillmann R., Menegatti E., Ghidoni S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, Vol 867, Springer, Cham, 2019. doi: https://doi.org/10.1007/978-3-030-01370-7_74
Zs. Szalay, T. Tettamanti, et al., Development of a Test Track for Driverless Cars: Vehicle Design, Track Configuration, and Liability Considerations, Periodica Polytechnica Transportation Engineering, 46 (1) (2018), pp. 29-35. doi: https://doi.org/10.3311/PPtr.10753
Zs. Szalay, Á. Nyerges, Z. Hamar, M. Hesz, Technical Specification Methodology for an Automotive Proving Ground Dedicated to Connected and Automated Vehicles, Periodica Polytechnica Transportation Engineering, 45 (3) (2017), pp. 168-174. doi: https://doi.org/10.3311/PPtr.10708
M. Dupuis and H. Grezlikowski, OpenDRIVE® - an open standard for the description of roads in driving simulations. In Driving Simulation Conference (2006), pp. 25–36, Paris, France.
BME AutomatedDrive github repository URL https://github.com/BMEAutomatedDrive
BMEAutomatedDrive homepage URL https://www.automateddrive.bme.hu/
P. A. Lopez et al., Microscopic Traffic Simulation using SUMO, 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, (2018), pp. 2575-2582. doi: https://doi.org/10.1109/ITSC.2018.8569938
M. Szalai, B. Varga, T. Tettamanti and V. Tihanyi, Mixed reality test environment for autonomous cars using Unity 3D and SUMO, 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, (2020), pp. 73-78. doi: https://doi.org/10.1109/SAMI48414.2020.9108745
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Acta Technica Jaurinensis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.