Possibilities of porous-structure representation – an overview

Authors

  • Herman Szűcs Széchenyi István University, Department of Whole Vehicle Engineering, Egyetem tér 1, 9026 Győr, Hungary // Audi Hungaria Zrt., Engine Development, Audi Hungária út 1, 9027 Győr, Hungary
  • Balázs Vehovszky Széchenyi István University, Department of Whole Vehicle Engineering, Egyetem tér 1, 9026 Győr, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.00591

Keywords:

Pore-scale simulation, Micro-structure, Porous-structure, Microscopy

Abstract

Porous media can be found in all areas of scientific life, such as medicine, civil engineering, material science, fluid dynamics. Computing has achieved high efficiency and computational capacity – so far. However, three-dimensional Computational Fluid Dynamics (CFD) simulations of microstructure remain significant challenges. Pore-scale simulations can help understand the physical processes and determine macroscopic parameters such as the high-frequency limit of dynamic tortuosity, viscous, and thermal characteristic lengths. Independent of whether the computational problem is two or three-dimensional, the geometry as input parameter must be prepared. For this reason, geometry representation methods play a crucial role in the analysis at the pore-scale, especially in numerical simulations. In this article, an insight into microstructures’ visualization capabilities is provided essentially for CFD simulations.

Downloads

Download data is not yet available.

References

T. Ramstad, C. F. Berg, K. Thompson, Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications, Transport in Porous Media 130 (2019) pp. 77–104. doi: https://doi.org/10.1007/s11242-019-01289-9

N. Kovalchuk, C. Hadjistassou, Laws and Principles Governing Fluid Flow through Porous Media, The European Physical Journal E 42 (2019) pp. 1–6. doi: https://doi.org/10.1140/epje/i2019-11819-6

W. R. Zimmerman, Fluid Flow In Porous Media, in: W. R. Zimmerman (Ed.), Imperial College Lectures in Petroleum Engineering, 5th Edition, World Scientific Publishing Company, New Jersey, 2018, pp. 1–201. doi: https://doi.org/10.1142/q0146

M. Oostrom, Y. Mehmani et al., Pore-Scale and Continuum Simulations of Solute Transport Micromodel benchmark experiments, Computational Geoscience 20 (2014) pp. 857–897. doi: https://doi.org/10.1007/s10596-014-9424-0

A. Fick, About Diffusion, Annals of Physics 170 (1855) pp. 59–86, in German. doi: https://doi.org/10.1002/andp.18551700105

J. Fu, S. Cui et al., Statistical Characterization and Reconstruction of Heterogeneous Microstructures Using Deep Neural-Network, Computer Methods in Applied Mechanics & Engineering 373 (2021) pp. 1–38. doi: https://doi.org/10.1016/j.cma.2020.113516

M. Matrecano, Porous Media Characterization by Micro-Tomographic Image Processing, Ph.D. thesis, Colorado School of Mines (2014). doi: http://dx.doi.org/10.6092/UNINA/FEDOA/8518

G. Pawar, Modelling, and Simulation of the Pore-Scale Multiphase Fluid Transport in Shale Reservoirs: A Molecular Dynamics Simulation Approach, Ph.D. thesis, The University of Utah (2018). URL: https://collections.lib.utah.edu/ark:/87278/s6rv3x25

H. Xu, F. Usseglio-Virett et al., Microstructure Reconstruction of Battery Polymer Separators by Fusing 2D and 3D Image Data for Transport Property Analysis, Journal of Power Sources 480 (2020) pp. 1–9. doi: https://doi.org/10.1016/j.jpowsour.2020.229101

N. Abdussamie, Navier-Stokes Solutions for Flow and Transport in Realistic Porous Media, in: COMSOL (Ed.), Proceedings of the COMSOL Conference, Boston, 2010, pp. 1–5. URL: https://www.comsol.com/paper/download/101193/abdussamie_paper.pdf

Q. Sheng, Pore-to-Continuum Multiscale Modeling of Two-Phase Flow through Porous Media, Ph.D. thesis, Louisiana State University – LSU (2013). URL: https://core.ac.uk/download/pdf/217390152.pdf

J. Alvarez, G. Saudino et al., 3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods, Scientific Reports 9 (2019) pp. 1–10. doi: https://doi.org/10.1038/s41598-019-50338-2

J. Wanek, C. Papageorgopoulou, F. Rühli, Fundamentals of Paleoimaging Techniques: Bridging the Gap Between Physicists and Paleopathologists, in: L. A. Grauer (Ed.), A Companion to Paleopathology, 1st Edition, Blackwell Publishing Ltd, Hoboken, 2011, pp. 1–43. doi: https://doi.org/10.1002/9781444345940.ch18

S. Wieghold, L. Nienhaus, Probing Semiconductor Properties with Optical Scanning Tunneling Microscopy, Joule 4 (2020) pp. 1–15. doi: https://doi.org/10.1016/j.joule.2020.02.003

X. Yin, Pore-Scale Mechanisms of Two-Phase Flow through Porous Materials – Volume of Fluid Method and Pore-Network Modeling, Ph.D. thesis, Utrecht University Repository (2018). URL: https://dspace.library.uu.nl/bitstream/1874/361289/1/Yin.pdf

I. Kozma, I. Zsoldos, CT-based tests and finite element simulation for failure analysis of syntactic foams, Engineering Failure Analysis 104 (2019) pp. 371-378. doi: https://doi.org/10.1016/j.engfailanal.2019.06.003

I. Kozma, I. Zsoldos, G. Dorogi, S. Papp, Computer tomography based reconstruction of metal matrix syntactic foams, Periodica Polytechnica Mechanical Engineering 58 (2), 2014, pp. 87-91. doi: https://doi.org/10.3311/PPme.7337

I. Kozma, I. Fekete, I. Zsoldos, Failure Analysis of Aluminum – Ceramic Composites, Materials Science Forum 885, 2017, pp. 286–291. doi: https://doi.org/10.4028/www.scientific.net/MSF.885.286

M. Shams, Modelling Two-phase Flow at the Micro-Scale Using a Volume-of-Fluid Method, Ph.D. thesis, Imperial College London (2018). doi: https://doi.org/10.25560/62652

A. T. Vuong, A Computational Approach to Coupled Poroelastic Media Problems, Ph.D. thesis, Technische Universität München – TUM (2016). URL: http://mediatum.ub.tum.de/?id=1341399

K. Wang, B. Xu, Current Status and Perspectives, in: X. Guo (Ed.), Molecular-Scale Electronics, 1st Edition, Springer Press, Cham, 2019, pp. 1–43. doi: https://doi.org/10.1007/978-3-030-03305-7

P. Kowalczky, A. P. Gauden, et al., Atomic-Scale Molecular Models of Oxidized Activated Carbon Fibre Nanoregions: Examining the Effects of Oxygen Functionalities on Wet Formaldehyde Adsorption, Carbon 165 (2020) pp. 67–81. doi: https://doi.org/10.1016/j.carbon.2020.04.025

T. Zhu, Unsteady Porous-Media Flows, Ph.D. thesis, Technische Universität München – TUM (2017). URL: https://mediatum.ub.tum.de/doc/1279870/1279870.pdf

J. Fu, R. H. Thomas, C. Li, Tortuosity of Porous Media: Image Analysis and Physical Simulation, Earth-Science Reviews 212 (2021) pp. 1–98. doi: https://doi.org/10.1016/j.earscirev.2020.103439

V. D. Chapman, H. Du et al., Optical Super-Resolution Microscopy in Polymer Science, Progress in Polymer Science 111 (2020) pp. 1–71. doi: https://doi.org/10.1016/j.progpolymsci.2020.101312

E. Widiatmoko, M. Abdullah, K. Khair, A Method to Measure Pore Size Distribution of Porous Materials Using Scanning Electron Microscopy Images, American Institute of Physics (AIP) Conference Proceedings 1284 (2010) pp. 23–27. doi: https://doi.org/10.1063/1.3515554

A. Borel, A. Ollé et al., Scanning Electron and Optical Light Microscopy: Two Complementary Approaches for the Understanding and Interpretation of Usewear and Residues on Stone Tools, Journal of Archaeological Science 48 (2014) pp. 46–59. doi: https://doi.org/10.1016/j.jas.2013.06.031

G. Zou, J. She et al., Two-Dimensional SEM Image-Based Analysis of Coal Porosity and its Pore Structure, International Journal of Coal Science & Technology 7 (2020) pp. 350– 361. doi: https://doi.org/10.1007/s40789-020-00301-8

C. C. Moura, A. Miranda et al., Correlative Fluorescence and Atomic Force Microscopy to Advance the Bio-Physical Characterisation of Co-Culture of Living Cells, Biochemical and Biophysical Research Communications 529 (2020) pp. 392–397. doi: https://doi.org/10.1016/j.bbrc.2020.06.037

S. M. Shah, J. P. Crawshaw, E. S. Boek, Three-Dimensional Imaging of Porous Media Using Confocal Laser Scanning Microscopy, Journal of Microscopy 265 (2016) pp. 1–11. doi: https://doi.org/10.1111/jmi.12496

T. Antequera, D. Caballera et al., Evaluation of Fresh Meat Quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A Review, Meat Science 172 (2021) pp. 1–12. doi: https://doi.org/10.1016/j.meatsci.2020.108340

V. K. Gerke, V. E. Korostilev et al., Going Submicron in the Precise Analysis of Soil Structure: A FIBSEM Imaging Study at Nanoscale, Geoderma 383 (2021) pp. 1–12. doi: https://doi.org/10.1016/j.geoderma.2020.114739

C. Kizilyaprak, J. Daraspe, B. M. Humbel, Focused Ion Beam Scanning Electron Microscopy in Biology, Journal of Microscopy 254 (2014) pp. 109–114. doi: https://doi.org/10.1111/jmi.12127

C. E. Muir, V. O. Petrov et al., Measuring Miscible Fluid Displacement in Porous Media with Magnetic Resonance Imaging, Water Resources Research 50 (2014) pp. 1859–1868. doi: https://doi.org/10.1002/2013WR013534

J. M. Noel, J. F. Lemineur, Optical Microscopy to Study Single Nanoparticles Electrochemistry: From Reaction to Motion, Current Opinion in Electrochemistry 25 (2021) pp. 1–13. doi: https://doi.org/10.1016/j.coelec.2020.100647

A. M. Parades, MICROSCOPY Scanning Electron Microscopy, in: A. B. Carl, L. T. Mary (Eds.), Encyclopedia of Food Microbiology, 2nd Edition, Academic Press, New York, 2014, pp. 693–701. doi: https://doi.org/10.1016/B978-0-12-384730-0.00215-9

M. Röding, C. Fager et al., Three-Dimensional Reconstruction of Porous Polymer Films from FIB-SEM Nanotomography Data Using Random Forests, Journal of Microscopy 281 (2021) pp. 76–86. doi: https://doi.org/10.1111/jmi.12950

K. D. Veron-Parry, Scanning Electron Microscopy: An Introduction, III-Vs Review 13 (4) (2000) pp. 40–44. doi: https://doi.org/10.1016/S0961-1290(00)80006-X

H. Zhang, J. Huang et al., Atomic Force Microscopy for Two-Dimensional Materials: A Tutorial Review, Optics Communications 406 (2018) pp. 3–17. doi: https://doi.org/10.1016/j.optcom.2017.05.015

S. Yesilkir-Baydar, N. O. Oztel et al., Evaluation Techniques, in: M. Razavi, A. Thakor (Eds.), Nanobiomaterials Science, Development and Evaluation, 1st Edition, Woodhead Publishing, New York, 2017, pp. 211–232. doi: https://doi.org/10.1016/B978-0-08-100963-5.00011-2

D. den Boer, A. A. W. J. Elemans, Triggering chemical reactions by Scanning Tunneling Microscopy: From atoms to polymers, European Polymer Journal 83 (2016) pp. 390-406. doi: https://doi.org/10.1016/j.eurpolymj.2016.03.002

C. M. M. Rodrigues, M. Militzer, Application of the Rolling Ball Algorithm to Measure Phase Volume Fraction from Backscattered Electron Images, Materials Characterization 163 (2020) pp. 1–7. doi: https://doi.org/10.1016/j.matchar.2020.110273

Y. Hashimoto, S. Takeuchi et al., Voltage contrast imaging with energy filtered signal in a field-emission scanning electron microscope, Ultramicroscopy 209 (2020) pp. 1-22. doi: https://doi.org/10.1016/j.ultramic.2019.112889

T. Kanemaru, K. Hirata et al., A fluorescence scanning electron microscope, Materials today 12 (1) (2010) pp 18-23. doi: https://doi.org/10.1016/S1369-7021(10)70141-3

W. Chrzanowski, F. Dehghani, Standardised Chemical Analysis and Testing of Biomaterials, in: V. Salih (Ed.), Standardisation in Cell and Tissue Engineering, 1st Edition, Woodhead Publishing, New York, 2013, pp. 166–197. doi: https://doi.org/10.1533/9780857098726.2.166

T. Xu, J. I. Rodrigez-Devora et al., Bioprinting for Constructing Microvascular Systems for Organs, in: R. Narayan (Ed.), Rapid Prototyping of Biomaterials, 1st Edition, Woodhead Publishing, New York, 2014, pp. 201–220. doi: https://doi.org/10.1533/9780857097217.201

E. S. Statnik, A. I. Salimon, A. M. Korsunsky, On the application of digital optical microscopy in the study of materials structure and deformation, Materials today: PROCEEDINGS 33 (2020) pp 1917-1923. doi: https://doi.org/10.1016/j.matpr.2020.05.600

Y. E. Bulbul, T. Uzunoglu et al., Investigation of nanomechanical and morphological properties of silane-modified halloysite clay nanotubes reinforced polycaprolactone bio-composite nanofibers by atomic force microscopy, Polymer Testing 92 (2020) pp. 1-11. doi: https://doi.org/10.1016/j.polymertesting.2020.106877

M. Potter, A. Li et al., Artificial Cells as a Novel Approach to Gene Therapy, in: S. Prakash (Ed.), Artificial Cells, Cell Engineering and Therapy, 2nd Edition, Woodhead Publishing, New York, 2007, pp. 236–291. doi: https://doi.org/10.1533/9781845693077.3.236

A. Canette, R. Briandet, MICROSCOPY Confocal Laser Scanning Microscopy, in: A. C. Batt, L. M. Tortorello (Eds.), Encyclopedia of Food Microbiology, 2nd Edition, Academic Press, New York, 2014, pp. 676–683. doi: https://doi.org/10.1016/B978-0-12-384730-0.00214-7

P. Prabhakaran, D. T. Kim, K. S. Lee, Polymer Photonics, in: K. Matyjaszewski, M. Möller (Eds.), Polymer Science: A Comprehensive Reference, 2nd Edition, Elsevier Press, New York, 2012, pp. 211–260. doi: https://doi.org/10.1016/B978-0-444-53349-4.00207-7

L. A. Trinh, E. S. Fraser, Chapter 21 – Imaging the Cell and Molecular Dynamics of Craniofacial Development – Challenges and New Opportunities in Imaging Developmental Tissue Patterning, in: Y. Chai (Ed.), Current Topics in Developmental Biology. 2nd Edition, Elsevier Press, New York, 2015, pp. 599–629. doi: https://doi.org/10.1016/bs.ctdb.2015.09.002

Z. Földes-Papp, U. Demel, G. P. Tilz, Laser scanning confocal fluorescence microscopy: an overview, International Immunopharmacology 3 (2003) pp. 1715-1729. doi: https://doi.org/10.1016/S1567-5769(03)00140-1

P. Mhaske, L. Condict et al., Phase volume quantification of agarose-ghee gels using 3D confocal laser scanning microscopy and blending law analysis: A comparison, LWT 129 (2020) pp. 1-9. doi: https://doi.org/10.1016/j.lwt.2020.109567

P. Parlanti, F. Brun et al., Size and Specimen-Dependent Strategy for X-Ray Micro-CT and TEM Correlative Analysis of Nervous System Samples, Scientific Reports 7 (2017) pp. 1–12. doi: https://doi.org/10.1038/s41598-017-02998-1

M. Utlaut, Focused ion beams for nano-machining and imaging, in: M. Feldman (Ed.), Nanolithography, 1st Edition, Woodhead Publishing Limited, Cambridge, 2014, pp. 116-157. doi: https://doi.org/10.1533/9780857098757.116

S. P. Kumar, G. K. Pavithra, M. Naushad, Characterization Techniques for Nanomaterials, in: S. Thomas, M. H. E. Sakho et al. (Eds.), Nanomaterials for Solar Cell Applications, 2nd Edition, Elsevier Press, New York, 2019, pp. 97–124. doi: https://doi.org/10.1016/B978-0-12-813337-8.00004-7

Z. L. Wang, J. L. Lee, Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles, in: R. Kohli, K. L Mittal (Eds.), Development in Surface Contamination and Cleaning, 2nd Edition, Elsevier Inc., Amsterdam, 2016, pp. 395-443. doi: https://doi.org/10.1016/B978-0-323-29960-2.00009-5

H. Saka, Transmission Electron Microscopy, in: E. Yasuda, M. Inagaki et al. (Eds.), Carbon Alloys, 1st Edition, Elsevier Ltd., Oxford, 2003, pp. 223-238. doi: https://doi.org/10.1016/B978-008044163-4/50014-0

Y. Gao, Micro-CT Imaging of Multiphase Flow at Steady State, Ph.D. thesis, Imperial College London – ICL (2019). URL: https://doi.org/10.25560/76496

A. Palmroth, S. Pitkanen et al., Evaluation of Scaffold Microstructure and Comparison of Cell Seeding Methods Using Micro-Computed Tomography-Based Tools, Journal of the Royal Society Interface 17 (2020) pp. 1–12. doi: https://doi.org/10.1098/rsif.2020.0102

Y. Guo, X. Chen et al., Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography, Construction and Building Materials online (2020) pp. 1-11. doi: https://doi.org/10.1016/j.conbuildmat.2020.121773

P. Goggin, E. M. L. Ho et al., Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue,” Bone 131 (2020) pp. 1-47. doi: https://doi.org/10.1016/j.bone.2019.115107

M. J. Carcione, Wave Fields in Real Media, in: M. J. Carcione (Ed.), Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Medium, 3rd Edition, Springer Press, Berlin, 2015, pp. 560–690. doi: https://doi.org/10.1016/C2013-0-18893-9

Downloads

Published

2021-04-22

How to Cite

Szűcs, H., & Vehovszky, B. (2021). Possibilities of porous-structure representation – an overview. Acta Technica Jaurinensis, 14(4), 553–576. https://doi.org/10.14513/actatechjaur.00591

Issue

Section

Reviews