Possibilities of porous-structure representation – an overview
DOI:
https://doi.org/10.14513/actatechjaur.00591Keywords:
Pore-scale simulation, Micro-structure, Porous-structure, MicroscopyAbstract
Porous media can be found in all areas of scientific life, such as medicine, civil engineering, material science, fluid dynamics. Computing has achieved high efficiency and computational capacity – so far. However, three-dimensional Computational Fluid Dynamics (CFD) simulations of microstructure remain significant challenges. Pore-scale simulations can help understand the physical processes and determine macroscopic parameters such as the high-frequency limit of dynamic tortuosity, viscous, and thermal characteristic lengths. Independent of whether the computational problem is two or three-dimensional, the geometry as input parameter must be prepared. For this reason, geometry representation methods play a crucial role in the analysis at the pore-scale, especially in numerical simulations. In this article, an insight into microstructures’ visualization capabilities is provided essentially for CFD simulations.
Downloads
References
T. Ramstad, C. F. Berg, K. Thompson, Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications, Transport in Porous Media 130 (2019) pp. 77–104. doi: https://doi.org/10.1007/s11242-019-01289-9
N. Kovalchuk, C. Hadjistassou, Laws and Principles Governing Fluid Flow through Porous Media, The European Physical Journal E 42 (2019) pp. 1–6. doi: https://doi.org/10.1140/epje/i2019-11819-6
W. R. Zimmerman, Fluid Flow In Porous Media, in: W. R. Zimmerman (Ed.), Imperial College Lectures in Petroleum Engineering, 5th Edition, World Scientific Publishing Company, New Jersey, 2018, pp. 1–201. doi: https://doi.org/10.1142/q0146
M. Oostrom, Y. Mehmani et al., Pore-Scale and Continuum Simulations of Solute Transport Micromodel benchmark experiments, Computational Geoscience 20 (2014) pp. 857–897. doi: https://doi.org/10.1007/s10596-014-9424-0
A. Fick, About Diffusion, Annals of Physics 170 (1855) pp. 59–86, in German. doi: https://doi.org/10.1002/andp.18551700105
J. Fu, S. Cui et al., Statistical Characterization and Reconstruction of Heterogeneous Microstructures Using Deep Neural-Network, Computer Methods in Applied Mechanics & Engineering 373 (2021) pp. 1–38. doi: https://doi.org/10.1016/j.cma.2020.113516
M. Matrecano, Porous Media Characterization by Micro-Tomographic Image Processing, Ph.D. thesis, Colorado School of Mines (2014). doi: http://dx.doi.org/10.6092/UNINA/FEDOA/8518
G. Pawar, Modelling, and Simulation of the Pore-Scale Multiphase Fluid Transport in Shale Reservoirs: A Molecular Dynamics Simulation Approach, Ph.D. thesis, The University of Utah (2018). URL: https://collections.lib.utah.edu/ark:/87278/s6rv3x25
H. Xu, F. Usseglio-Virett et al., Microstructure Reconstruction of Battery Polymer Separators by Fusing 2D and 3D Image Data for Transport Property Analysis, Journal of Power Sources 480 (2020) pp. 1–9. doi: https://doi.org/10.1016/j.jpowsour.2020.229101
N. Abdussamie, Navier-Stokes Solutions for Flow and Transport in Realistic Porous Media, in: COMSOL (Ed.), Proceedings of the COMSOL Conference, Boston, 2010, pp. 1–5. URL: https://www.comsol.com/paper/download/101193/abdussamie_paper.pdf
Q. Sheng, Pore-to-Continuum Multiscale Modeling of Two-Phase Flow through Porous Media, Ph.D. thesis, Louisiana State University – LSU (2013). URL: https://core.ac.uk/download/pdf/217390152.pdf
J. Alvarez, G. Saudino et al., 3D Analysis of Ordered Porous Polymeric Particles using Complementary Electron Microscopy Methods, Scientific Reports 9 (2019) pp. 1–10. doi: https://doi.org/10.1038/s41598-019-50338-2
J. Wanek, C. Papageorgopoulou, F. Rühli, Fundamentals of Paleoimaging Techniques: Bridging the Gap Between Physicists and Paleopathologists, in: L. A. Grauer (Ed.), A Companion to Paleopathology, 1st Edition, Blackwell Publishing Ltd, Hoboken, 2011, pp. 1–43. doi: https://doi.org/10.1002/9781444345940.ch18
S. Wieghold, L. Nienhaus, Probing Semiconductor Properties with Optical Scanning Tunneling Microscopy, Joule 4 (2020) pp. 1–15. doi: https://doi.org/10.1016/j.joule.2020.02.003
X. Yin, Pore-Scale Mechanisms of Two-Phase Flow through Porous Materials – Volume of Fluid Method and Pore-Network Modeling, Ph.D. thesis, Utrecht University Repository (2018). URL: https://dspace.library.uu.nl/bitstream/1874/361289/1/Yin.pdf
I. Kozma, I. Zsoldos, CT-based tests and finite element simulation for failure analysis of syntactic foams, Engineering Failure Analysis 104 (2019) pp. 371-378. doi: https://doi.org/10.1016/j.engfailanal.2019.06.003
I. Kozma, I. Zsoldos, G. Dorogi, S. Papp, Computer tomography based reconstruction of metal matrix syntactic foams, Periodica Polytechnica Mechanical Engineering 58 (2), 2014, pp. 87-91. doi: https://doi.org/10.3311/PPme.7337
I. Kozma, I. Fekete, I. Zsoldos, Failure Analysis of Aluminum – Ceramic Composites, Materials Science Forum 885, 2017, pp. 286–291. doi: https://doi.org/10.4028/www.scientific.net/MSF.885.286
M. Shams, Modelling Two-phase Flow at the Micro-Scale Using a Volume-of-Fluid Method, Ph.D. thesis, Imperial College London (2018). doi: https://doi.org/10.25560/62652
A. T. Vuong, A Computational Approach to Coupled Poroelastic Media Problems, Ph.D. thesis, Technische Universität München – TUM (2016). URL: http://mediatum.ub.tum.de/?id=1341399
K. Wang, B. Xu, Current Status and Perspectives, in: X. Guo (Ed.), Molecular-Scale Electronics, 1st Edition, Springer Press, Cham, 2019, pp. 1–43. doi: https://doi.org/10.1007/978-3-030-03305-7
P. Kowalczky, A. P. Gauden, et al., Atomic-Scale Molecular Models of Oxidized Activated Carbon Fibre Nanoregions: Examining the Effects of Oxygen Functionalities on Wet Formaldehyde Adsorption, Carbon 165 (2020) pp. 67–81. doi: https://doi.org/10.1016/j.carbon.2020.04.025
T. Zhu, Unsteady Porous-Media Flows, Ph.D. thesis, Technische Universität München – TUM (2017). URL: https://mediatum.ub.tum.de/doc/1279870/1279870.pdf
J. Fu, R. H. Thomas, C. Li, Tortuosity of Porous Media: Image Analysis and Physical Simulation, Earth-Science Reviews 212 (2021) pp. 1–98. doi: https://doi.org/10.1016/j.earscirev.2020.103439
V. D. Chapman, H. Du et al., Optical Super-Resolution Microscopy in Polymer Science, Progress in Polymer Science 111 (2020) pp. 1–71. doi: https://doi.org/10.1016/j.progpolymsci.2020.101312
E. Widiatmoko, M. Abdullah, K. Khair, A Method to Measure Pore Size Distribution of Porous Materials Using Scanning Electron Microscopy Images, American Institute of Physics (AIP) Conference Proceedings 1284 (2010) pp. 23–27. doi: https://doi.org/10.1063/1.3515554
A. Borel, A. Ollé et al., Scanning Electron and Optical Light Microscopy: Two Complementary Approaches for the Understanding and Interpretation of Usewear and Residues on Stone Tools, Journal of Archaeological Science 48 (2014) pp. 46–59. doi: https://doi.org/10.1016/j.jas.2013.06.031
G. Zou, J. She et al., Two-Dimensional SEM Image-Based Analysis of Coal Porosity and its Pore Structure, International Journal of Coal Science & Technology 7 (2020) pp. 350– 361. doi: https://doi.org/10.1007/s40789-020-00301-8
C. C. Moura, A. Miranda et al., Correlative Fluorescence and Atomic Force Microscopy to Advance the Bio-Physical Characterisation of Co-Culture of Living Cells, Biochemical and Biophysical Research Communications 529 (2020) pp. 392–397. doi: https://doi.org/10.1016/j.bbrc.2020.06.037
S. M. Shah, J. P. Crawshaw, E. S. Boek, Three-Dimensional Imaging of Porous Media Using Confocal Laser Scanning Microscopy, Journal of Microscopy 265 (2016) pp. 1–11. doi: https://doi.org/10.1111/jmi.12496
T. Antequera, D. Caballera et al., Evaluation of Fresh Meat Quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A Review, Meat Science 172 (2021) pp. 1–12. doi: https://doi.org/10.1016/j.meatsci.2020.108340
V. K. Gerke, V. E. Korostilev et al., Going Submicron in the Precise Analysis of Soil Structure: A FIBSEM Imaging Study at Nanoscale, Geoderma 383 (2021) pp. 1–12. doi: https://doi.org/10.1016/j.geoderma.2020.114739
C. Kizilyaprak, J. Daraspe, B. M. Humbel, Focused Ion Beam Scanning Electron Microscopy in Biology, Journal of Microscopy 254 (2014) pp. 109–114. doi: https://doi.org/10.1111/jmi.12127
C. E. Muir, V. O. Petrov et al., Measuring Miscible Fluid Displacement in Porous Media with Magnetic Resonance Imaging, Water Resources Research 50 (2014) pp. 1859–1868. doi: https://doi.org/10.1002/2013WR013534
J. M. Noel, J. F. Lemineur, Optical Microscopy to Study Single Nanoparticles Electrochemistry: From Reaction to Motion, Current Opinion in Electrochemistry 25 (2021) pp. 1–13. doi: https://doi.org/10.1016/j.coelec.2020.100647
A. M. Parades, MICROSCOPY Scanning Electron Microscopy, in: A. B. Carl, L. T. Mary (Eds.), Encyclopedia of Food Microbiology, 2nd Edition, Academic Press, New York, 2014, pp. 693–701. doi: https://doi.org/10.1016/B978-0-12-384730-0.00215-9
M. Röding, C. Fager et al., Three-Dimensional Reconstruction of Porous Polymer Films from FIB-SEM Nanotomography Data Using Random Forests, Journal of Microscopy 281 (2021) pp. 76–86. doi: https://doi.org/10.1111/jmi.12950
K. D. Veron-Parry, Scanning Electron Microscopy: An Introduction, III-Vs Review 13 (4) (2000) pp. 40–44. doi: https://doi.org/10.1016/S0961-1290(00)80006-X
H. Zhang, J. Huang et al., Atomic Force Microscopy for Two-Dimensional Materials: A Tutorial Review, Optics Communications 406 (2018) pp. 3–17. doi: https://doi.org/10.1016/j.optcom.2017.05.015
S. Yesilkir-Baydar, N. O. Oztel et al., Evaluation Techniques, in: M. Razavi, A. Thakor (Eds.), Nanobiomaterials Science, Development and Evaluation, 1st Edition, Woodhead Publishing, New York, 2017, pp. 211–232. doi: https://doi.org/10.1016/B978-0-08-100963-5.00011-2
D. den Boer, A. A. W. J. Elemans, Triggering chemical reactions by Scanning Tunneling Microscopy: From atoms to polymers, European Polymer Journal 83 (2016) pp. 390-406. doi: https://doi.org/10.1016/j.eurpolymj.2016.03.002
C. M. M. Rodrigues, M. Militzer, Application of the Rolling Ball Algorithm to Measure Phase Volume Fraction from Backscattered Electron Images, Materials Characterization 163 (2020) pp. 1–7. doi: https://doi.org/10.1016/j.matchar.2020.110273
Y. Hashimoto, S. Takeuchi et al., Voltage contrast imaging with energy filtered signal in a field-emission scanning electron microscope, Ultramicroscopy 209 (2020) pp. 1-22. doi: https://doi.org/10.1016/j.ultramic.2019.112889
T. Kanemaru, K. Hirata et al., A fluorescence scanning electron microscope, Materials today 12 (1) (2010) pp 18-23. doi: https://doi.org/10.1016/S1369-7021(10)70141-3
W. Chrzanowski, F. Dehghani, Standardised Chemical Analysis and Testing of Biomaterials, in: V. Salih (Ed.), Standardisation in Cell and Tissue Engineering, 1st Edition, Woodhead Publishing, New York, 2013, pp. 166–197. doi: https://doi.org/10.1533/9780857098726.2.166
T. Xu, J. I. Rodrigez-Devora et al., Bioprinting for Constructing Microvascular Systems for Organs, in: R. Narayan (Ed.), Rapid Prototyping of Biomaterials, 1st Edition, Woodhead Publishing, New York, 2014, pp. 201–220. doi: https://doi.org/10.1533/9780857097217.201
E. S. Statnik, A. I. Salimon, A. M. Korsunsky, On the application of digital optical microscopy in the study of materials structure and deformation, Materials today: PROCEEDINGS 33 (2020) pp 1917-1923. doi: https://doi.org/10.1016/j.matpr.2020.05.600
Y. E. Bulbul, T. Uzunoglu et al., Investigation of nanomechanical and morphological properties of silane-modified halloysite clay nanotubes reinforced polycaprolactone bio-composite nanofibers by atomic force microscopy, Polymer Testing 92 (2020) pp. 1-11. doi: https://doi.org/10.1016/j.polymertesting.2020.106877
M. Potter, A. Li et al., Artificial Cells as a Novel Approach to Gene Therapy, in: S. Prakash (Ed.), Artificial Cells, Cell Engineering and Therapy, 2nd Edition, Woodhead Publishing, New York, 2007, pp. 236–291. doi: https://doi.org/10.1533/9781845693077.3.236
A. Canette, R. Briandet, MICROSCOPY Confocal Laser Scanning Microscopy, in: A. C. Batt, L. M. Tortorello (Eds.), Encyclopedia of Food Microbiology, 2nd Edition, Academic Press, New York, 2014, pp. 676–683. doi: https://doi.org/10.1016/B978-0-12-384730-0.00214-7
P. Prabhakaran, D. T. Kim, K. S. Lee, Polymer Photonics, in: K. Matyjaszewski, M. Möller (Eds.), Polymer Science: A Comprehensive Reference, 2nd Edition, Elsevier Press, New York, 2012, pp. 211–260. doi: https://doi.org/10.1016/B978-0-444-53349-4.00207-7
L. A. Trinh, E. S. Fraser, Chapter 21 – Imaging the Cell and Molecular Dynamics of Craniofacial Development – Challenges and New Opportunities in Imaging Developmental Tissue Patterning, in: Y. Chai (Ed.), Current Topics in Developmental Biology. 2nd Edition, Elsevier Press, New York, 2015, pp. 599–629. doi: https://doi.org/10.1016/bs.ctdb.2015.09.002
Z. Földes-Papp, U. Demel, G. P. Tilz, Laser scanning confocal fluorescence microscopy: an overview, International Immunopharmacology 3 (2003) pp. 1715-1729. doi: https://doi.org/10.1016/S1567-5769(03)00140-1
P. Mhaske, L. Condict et al., Phase volume quantification of agarose-ghee gels using 3D confocal laser scanning microscopy and blending law analysis: A comparison, LWT 129 (2020) pp. 1-9. doi: https://doi.org/10.1016/j.lwt.2020.109567
P. Parlanti, F. Brun et al., Size and Specimen-Dependent Strategy for X-Ray Micro-CT and TEM Correlative Analysis of Nervous System Samples, Scientific Reports 7 (2017) pp. 1–12. doi: https://doi.org/10.1038/s41598-017-02998-1
M. Utlaut, Focused ion beams for nano-machining and imaging, in: M. Feldman (Ed.), Nanolithography, 1st Edition, Woodhead Publishing Limited, Cambridge, 2014, pp. 116-157. doi: https://doi.org/10.1533/9780857098757.116
S. P. Kumar, G. K. Pavithra, M. Naushad, Characterization Techniques for Nanomaterials, in: S. Thomas, M. H. E. Sakho et al. (Eds.), Nanomaterials for Solar Cell Applications, 2nd Edition, Elsevier Press, New York, 2019, pp. 97–124. doi: https://doi.org/10.1016/B978-0-12-813337-8.00004-7
Z. L. Wang, J. L. Lee, Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles, in: R. Kohli, K. L Mittal (Eds.), Development in Surface Contamination and Cleaning, 2nd Edition, Elsevier Inc., Amsterdam, 2016, pp. 395-443. doi: https://doi.org/10.1016/B978-0-323-29960-2.00009-5
H. Saka, Transmission Electron Microscopy, in: E. Yasuda, M. Inagaki et al. (Eds.), Carbon Alloys, 1st Edition, Elsevier Ltd., Oxford, 2003, pp. 223-238. doi: https://doi.org/10.1016/B978-008044163-4/50014-0
Y. Gao, Micro-CT Imaging of Multiphase Flow at Steady State, Ph.D. thesis, Imperial College London – ICL (2019). URL: https://doi.org/10.25560/76496
A. Palmroth, S. Pitkanen et al., Evaluation of Scaffold Microstructure and Comparison of Cell Seeding Methods Using Micro-Computed Tomography-Based Tools, Journal of the Royal Society Interface 17 (2020) pp. 1–12. doi: https://doi.org/10.1098/rsif.2020.0102
Y. Guo, X. Chen et al., Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography, Construction and Building Materials online (2020) pp. 1-11. doi: https://doi.org/10.1016/j.conbuildmat.2020.121773
P. Goggin, E. M. L. Ho et al., Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue,” Bone 131 (2020) pp. 1-47. doi: https://doi.org/10.1016/j.bone.2019.115107
M. J. Carcione, Wave Fields in Real Media, in: M. J. Carcione (Ed.), Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Medium, 3rd Edition, Springer Press, Berlin, 2015, pp. 560–690. doi: https://doi.org/10.1016/C2013-0-18893-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Acta Technica Jaurinensis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.