A survey on the performance analysis of IPv6 transition technologies


  • Ahmed Taha Hammo Al-hamadani Budapest University of Technology and Economics, Department of Networked Systems and Services, Magyar tudósok körútja 2, 1117 Budapest, Hungary
  • Gábor Lencse Budapest University of Technology and Economics, Department of Networked Systems and Services, Magyar tudósok körútja 2, 1117 Budapest, Hungary




IPv6 Transition Technologies; 464XLAT; Dual Stack; Tunneling; MAP-T/E


As the public IPv4 address space has already been depleted, the full deployment of IPv6 became indispensable, especially for service providers, as it offers a sufficient address pool. However, the ongoing IPv6 transition seems to be a lengthy task because of the numerous challenges it faces. Therefore, it is expected that IPv4 and IPv6 will coexist for a long time. Consequently, many transition technologies have been developed for this purpose. Several research papers have conducted performance analysis for a number of these transition technologies and even compared them based on some measuring metrics like RTT, throughput, jitter, packet loss, and so on. This paper reviews the results of these papers, discusses their findings, and gives some guidelines fora feasible benchmarking methodology.


Download data is not yet available.


A. Al-Azzawi, Towards the security analysis of the five most prominent IPv4aaS technologies, Acta Technica Jaurinensis 13 (2) (2020) pp. 85–98. doi: http://doi.org/10.14513/actatechjaur.v13.n2.530

G. Altangerel, E. Tsogbaatar, D. Yamkhin, Performance analysis on IPv6 transition technologies and transition method, in: 2016 11th International Forum on Strategic Technology (IFOST), 2016, pp. 465–469. doi: https://doi.org/10.1109/IFOST.2016.7884155

A. S. Ahmed, R. Hassan, N. E. Othman, Security threats for IPv6 transition strategies: A review, in: 2014 4th International Conference on Engineering Technology and Technopreneuship (ICE2T),2014, pp. 83–88. doi: https://doi.org/10.1109/ICE2T.2014.7006224

M. Georgescu, L. Pislaru, G. Lencse, Benchmarking ethodology for IPv6 transition technologies, IETF RFC 8219 (2017). doi: https://doi.org/10.17487/RFC8219

E. Nordmark, R. Gilligan, Basic transition mechanisms for IPv6 hosts and routers, IETF RFC 4213 (2005). doi: https://doi.org/10.17487/RFC4213

D. Wing, A. Yourtchenko, Happy eyeballs: Success with dual-stack hosts, IETF RFC 6555 (2012). doi: https://doi.org/10.17487/RFC6555

D. Schinazi, T. Pauly, Happy eyeballs version 2: Better connectivity using concurrency, IETF RFC 8305 (2017). doi: https://doi.org/10.17487/RFC8305

B. Carpenter, K. Moore, Connection of IPv6 domains via IPv4 clouds, IETF RFC 3056 (2001). doi: https://doi.org/10.17487/RFC3056

G. Lencse, Y. Kadobayashi, Comprehensive survey of IPv6 transition technologies: A subjective classification for security analysis, IEICE Transactions on Communications 102 (10) (2019) pp. 2021–2035. doi: http://doi.org/10.1587/transcom.2018EBR0002

B. Carpenter, Advisory guidelines for 6to4 deployment, IETF RFC 6343 (2011). doi: https://doi.org/10.17487/RFC6343

E. Aben, 6to4 - How bad is it really?, RIPE NCC [cited 2020-11-9]. URL https://labs.ripe.net/Members/emileaben/6to4-how-bad-is-it-really

C. Huitema, Teredo: Tunneling IPv6 over UDP through network address translations (NATs), IETF RFC 4380 (2006). doi: https://doi.org/10.17487/RFC4380

F. Templin, T. Gleeson, D. Thaler, Intra-site automatic tunnel addressing protocol (ISATAP), IETF RFC 5214 (2008). doi: https://doi.org/10.17487/RFC5214

Y. Sookun, V. Bassoo, Performance analysis of IPv4/IPv6 transition techniques, in: 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), 2016, pp. 188–193. doi: https://doi.org/10.1109/EmergiTech.2016.7737336

W. Townsley, O. Troan, IPv6 rapid deployment on IPv4 infrastructures (6rd) -- Protocol Specification, IETF RFC 5969 (2010). doi: https://doi.org/10.17487/RFC5969

A. Durand, P. Fasano et al., IPv6 tunnel broker, IETF RFC 3053 (2001). doi: https://doi.org/10.17487/RFC3053

A. Durand, R. Droms et al., Dual-stack lite broadband deployments following IPv4 exhaustion, IETF RFC 6333 (2011). doi: https://doi.org/10.17487/RFC6333

P. Srisuresh, M. Holdrege, IP network address translator (NAT) terminology and considerations, IETF RFC 2663 (1999). doi: https://doi.org/10.17487/RFC2663

G. Lencse, J. P. Martinez et al., Pros and cons of IPv6 transition technologies for IPv4aaS, active Internet Draft, 2020.[cited 2020-11-15]. URL https://tools.ietf.org/html/draft-lmhp-v6ops-transition-comparison-05

E. O. Troan, W. Dec et al., Mapping of address and port with encapsulation (MAP-E), IETF RFC 7597 (2015). doi: https://doi.org/10.17487/RFC7597

Y. Cui, Q. Sun et al., Lightweight 4over6: An extension to the dual-stack lite architecture, IETF RFC 7596 (2015). doi: https://doi.org/10.17487/RFC7596

M. Bagnulo, A. Sullivan et al., DNS64: DNS extensions for network address translation from IPv6 clients to IPv4 servers, IETF RFC 6147 (2011). doi: https://doi.org/10.17487/RFC6147

M. Bagnulo, P. Matthews, I. V. Beijnum, Stateful NAT64: Network address and protocol translation from IPv6 clients to IPv4 servers, IETF RFC 6146 (2011). doi: https://doi.org/10.17487/RFC6146

E. S. Perreault, I. Yamagata et al., Common requirements for carrier-grade NATs (CGNs), IETF RFC 6888 (2013). doi: https://doi.org/10.17487/RFC6888

C. Bao, C. Huitema et al., IPv6 addressing of IPv4/IPv6 translators, IETF RFC 6052 (2010). doi: https://doi.org/10.17487/RFC6052

G. Lencse, A. Soós, Design, implementation and testing of a tiny multi-threaded DNS64 server, International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems 5 (2) (2016) pp. 68–78. doi: http://doi.org/10.11601/ijates.v5i2.129

S. Répás, T. Hajas, G. Lencse, Application compatibility of the NAT64 IPv6 transition technology, in: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), 2015, pp. 1–7. doi: https://doi.org/10.1109/TSP.2015.7296383

C. Bao, X. Li et al., IP/ICMP translation algorithm, IETF RFC 7915 (2016). doi: https://doi.org/10.17487/RFC7915

G. Tsirtsis, P. Srisuresh, Network address translation - protocol translation (NAT-PT), IETF RFC 2766 (2000). doi: https://doi.org/10.17487/RFC2766

C. Aoun, E. Davies, Reasons to move the network address translator - protocol translator (NAT-PT) to historic status, IETF RFC 4966 (2007). doi: https://doi.org/10.17487/RFC4966

M. Mawatari, M. Kawashima, C. Byrne, 464XLAT: Combination of stateful and stateless translation, IETF RFC 6877 (2013). doi: https://doi.org/10.17487/RFC6877

J. Palet, Using 464XLAT in residential networks, RIPE 74 (2017) [cited 2020-11-11]. URL https://ripe74.ripe.net/presentations/151-ripe-74-ipv6-464xlat-residential-v2.pdf

A. McConachie, Case Study: T-Mobile US goes IPv6-only using 464XLAT, Internet Society (2014) [cited 2020-11-13]. URL https://www.internetsociety.org/resources/deploy360/2014/case-study-t-mobile-us-goes-ipv6-only-using-464xlat/

M. Mawatari, 464XLAT tutorial, Japan Internet Exchange Co., Ltd. (APNIC 40) (2015) [cited 2020-11-15]. URL https://www.slideshare.net/apnic/464xlat-tutorial

X. Li, C. Bao et al., Mapping of address and port using translation (MAP-T), IETF RFC 7599 (2015). doi: https://doi.org/10.17487/RFC7599

I. Raicu, S. Zeadally, Evaluating IPv4 to IPv6 transition mechanisms, in: 10th International Conference on Telecommunications, 2003. ICT 2003., 2003, pp. 1091–1098 vol.2. doi: https://doi.org/10.1109/ICTEL.2003.1191589

M. Shin, H. Kim et al., An empirical analysis of IPv6 transition mechanisms, in: 2006 8th International Conference Advanced Communication Technology, 2006, pp. 6 pp.-1996. doi: https://doi.org/10.1109/ICACT.2006.206385

S. Narayan, S. Tauch, IPv4-v6 transition mechanisms network performance evaluation on operating systems, in: 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 664–668. doi: https://doi.org/10.1109/ICCSIT.2010.5564141

G. Lencse, S. Répás, Performance analysis and comparison of four DNS64 implementations under different free operating systems, Telecommunication Systems 63 (4) (2016) pp. 557–577. doi: http://doi.org/10.1007/s11235-016-0142-x

S. R. Répás, P. Farnadi, G. Lencse, Performance and stability analysis of free NAT64 implementations with different protocols, Acta Technica Jaurinensis 7 (4) (2014) pp. 404–427. doi: http://doi.org/10.14513/actatechjaur.v7.n4.340

G. Lencse, S. Répás, Performance analysis and comparison of 6to4 relay implementations, International Journal of Advanced Computer Science and Applications (IJACSA) 4 (9) (2013) doi: http://doi.org/10.14569/IJACSA.2013.040903

M. Georgescu, H. Hazeyama et al., Empirical analysis of IPv6 transition technologies using the IPv6 Network Evaluation Testbed, EAI Endorsed Transactions on Industrial Networks and Intelligent Systems 2 (2) (2015) doi: http://doi.org/10.4108/inis.2.2.e1

E. J. Bound, IPv6 enterprise network scenarios, IETF RFC 4057 (2005). doi: https://doi.org/10.17487/RFC4057

M. Asama, Map supported vyatta, Echigo Network Operators' Group [cited 2020-11-7]. URL https://enog.jp/~masakazu/vyatta/map/

A. Botta, A. Dainotti, A. Pescapé, A tool for the generation of realistic network workload for emerging networking scenarios, Computer Networks 56 (15) (2012) pp. 3531–3547. doi: https://doi.org/10.1016/j.comnet.2012.02.019

M. A. Hossain, D. Podder et al., Performance analysis of three transition mechanisms between IPv6 network and IPv4 network: Dual Stack, Tunneling and Translation, International Journal of Computer (IJC) 20 (1) (2016) pp. 217–228.

A. Quintero, F. Sans, E. Gamess, Performance evaluation of IPv4/IPv6 transition mechanisms, International Journal of Computer Network and Information Security 8 (2) (2016) pp. 1–14. doi: http://doi.org/10.5815/ijcnis.2016.02.01

K. Velásquez, E. Gamess, A Survey of network benchmark tools, in: Machine Learning and Systems Engineering. Dordrecht, Springer Netherlands, 2010, pp. 465–480.

J. Dugan, S. Elliott et al., Iperf homepage, NLANR/DAST [cited 2020-11-8]. URL https://iperf.fr/

S. Singalar, R. M. Banakar, Performance analysis of IPv4 to IPv6 transition mechanisms, in: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), 2018, pp. 1–6. doi: https://doi.org/10.1109/ICCUBEA.2018.8697539

S. Yu, B. Carpenter, Measuring IPv4–IPv6 translation techniques, Department of Computer Science, The University of Auckland, Tech. Rep 1 ((2012)

Ecdysis: open-source implementation of a NAT64 gateway, Viagénie [cited 2020-11-15]. URL http://ecdysis.viagenie.ca/index.html

M. Aazam, A. M. Syed et al., Evaluation of 6to4 and ISATAP on a test LAN, in: 2011 IEEE Symposium on Computers & Informatics, 2011, pp. 46–50. doi: https://doi.org/10.1109/ISCI.2011.5958881

F. Sans, E. Gamess, Analytical performance evaluation of native IPv6 and several tunneling technics using benchmarking tools, in: 2013 XXXIX Latin American Computing Conference (CLEI), 2013, pp. 1–9. doi: https://doi.org/10.1109/CLEI.2013.6670610

J. L. Shah, J. Parvez, An examination of next generation IP migration techniques: Constraints and evaluation, in: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014, pp. 776–781. doi: https://doi.org/10.1109/ICCICCT.2014.6993064

D. Hadiya, R. Save, G. Geetu, Network performance evaluation of 6to4 and configured tunnel transition mechanisms: An empirical test-bed analysis, in: 2013 6th International Conference on Emerging Trends in Engineering and Technology, 2013, pp. 56–60. doi: https://doi.org/10.1109/ICETET.2013.14

R. Denis-Courmont, Miredo: Teredo IPv6 tunneling for Linux and BSD, Remlab (2020) [cited 2020-11-7]. URL https://www.remlab.net/miredo/

S. Bradner, J. McQuaid, Benchmarking methodology for network interconnect devices, IETF RFC 2544 (1999). doi: https://doi.org/10.17487/RFC2544

C. Popoviciu, A. Hamza et al., IPv6 benchmarking methodology for network interconnect devices, IETF RFC 5180 (2008). doi: https://doi.org/10.17487/RFC5180

G. Lencse, Design and implementation of a software tester for benchmarking stateless NAT64 gateways, IEICE Transactions on Communications, E104-B (2) (2021) pp. 128–140. doi: http://doi.org/10.1587/transcom.2019EBN0010

G. Lencse, D. Bakai, Design and implementation of a test program for benchmarking DNS64 servers, IEICE Transactions on Communications E100-B (6) (2016) pp. 948–954. doi: http://doi.org/10.1587/transcom.2016EBN0007

G. Lencse, 6transperf: Implementation of a benchmarking program for IPv6 transition technologies, Budapest University of Technology and Economics (2020) [cited 2020-11-5]. URL https://www.hit.bme.hu/edu/project/data?id=19179




How to Cite

Al-hamadani, A. T. H., & Lencse, G. (2021). A survey on the performance analysis of IPv6 transition technologies. Acta Technica Jaurinensis, 14(2), 186–211. https://doi.org/10.14513/actatechjaur.00577