Literature review on steel fibre, silica fume and fly ash: improving methods for recycled and multiple recycled aggregate concretes

Authors

  • Maysam Shmlls Széchenyi István University, Department of Architecture and Building Construction, Egyetem tér 1, 9026 Győr, Hungary
  • Dávid Bozsaky Széchenyi István University, Department of Architecture and Building Construction, Egyetem tér 1, 9026 Győr, Hungary
  • Tamás Horváth Széchenyi István University, Department of Architecture and Building Construction, Egyetem tér 1, 9026 Győr, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.00570

Keywords:

recycled coarse aggregate, steel fibre, silica fume, fly ash, multiple recycled aggregate concrete

Abstract

If all concrete is to be recycled in a future scenario, recycled concrete will be needed. Usually concrete recycling causes loss of properties, but this does not have to be truth for all the mixtures. This paper shows a comprehensive knowledge about the improving methods used to keep the properties of the recycled aggregate concrete (RAC). In the reviewed literature several kinds of RAC were tested with various replacement ratios. The effect of adding steel fibres, silica fume or fly ash to the mixture were also examined both separately and together. Most of the experiments demonstrated excellent mechanical properties of the RAC compared with ordinary concretes. Based on these results the ideal RAC composition can be deduced and a future can be imagined when concrete can be recycled multiple times (MRAC).

Downloads

Download data is not yet available.

References

D. K. Panesar, Supplementary cementing materials, in: S. Mindess (ed.), Developments in the Formulation and Reinforcement of Concrete, Woodhead Publishing, 2019, pp. 55–85. doi: https://doi.org/10.1016/B978-0-08-102616-8.00003-4

M. Pigeon, R. Cantin, Flexural properties of steel fibre-reinforced concretes at low temperatures, Cement and Concrete Composites 20 (5) (1998) pp. 365–375. doi: https://doi.org/10.1016/S0958-9465(98)00017-1

R. Pérez-López, J. M. Nieto, G. R. de Almodóvar, Utilization of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: Column experiments, Chemosphere 67 (8) (2007) pp. 1637–1646. doi: https://doi.org/10.1016/j.chemosphere.2006.10.009

S. M. Levy, Calculations Relating to Concrete and Masonry, in: Construction Calculations Manual, Butterworth-Heinemann, 2012, pp. 211–264. doi: https://doi.org/10.1016/B978-0-12-382243-7.00005-X

D. G. Snelson, J. M. Kinuthia, Characterisation of an unprocessed landfill ash for application in concrete, Journal of Environmental Management 91 (11) (2010) pp. 2117–2125. doi: https://doi.org/10.1016/j.jenvman.2010.04.015

T. E. T. Buttignol, J. L. A. O. Sousa, T. N. Bittencourt, Ultra-high-performance fibre-reinforced concrete (UHPFRC): a review of material properties and design procedures, Revista IBRACON de Estruturas e Materiais 10 (4) (2017) pp. 957–971. doi: https://doi.org/10.1590/s1983-41952017000400011

A. M. Brandt, Fibre reinforced cement based (FRC) composites after over 40 years of development in building and civil engineering, Composite Structures 86 (1–3) (2008) pp. 3–9. doi: https://doi.org/10.1016/j.compstruct.2008.03.006

M. Kalpana, A. Tayu, Experimental investigation on lightweight concrete added with industrial waste (steel waste), Materials Today: Proceedings 22 (3) (2020) pp. 887–889. doi: https://doi.org/10.1016/j.matpr.2019.11.096

S. Rico, R. Farshidpour, F. M. Tehrani, State-of-the-art report on fiber-reinforced lightweight aggregate concrete masonry, Advances in Civil Engineering (Special Issue) (2017) p. 9. doi: https://doi.org/10.1155/2017/8078346

B. Ramesh, Review on the flexural properties of fibre reinforced self-compacting concrete by the addition of M-sand. Materials Today: Proceedings 22 (3) (2020) pp. 1155–1160. doi: https://doi.org/10.1016/j.matpr.2019.12.041

A. S. Dhaher, Fracture behaviour of reinforced self-compacting concrete with hybrid fibres, M.Sc. thesis, University of Technology, Iraq, (2016). URL https://www.researchgate.net/publication/292157685

A. M. Wagih, H. Z. El-Karmoty, M. Ebid, S. H. Okba, Recycled construction and demolition concrete waste as aggregate for structural concrete, HBRC Journal 9 (3) (2013) pp. 193–200. doi: https://doi.org/10.1016/j.hbrcj.2013.08.007

Y. Zhang, W. Luo, J. Wang, Y. Wang, Y. Xu, J. Xiao, A review of life cycle assessment of recycled aggregate concrete, Construction and Building Materials 209 (2019) pp. 115–125. doi: https://doi.org/10.1016/j.conbuildmat.2019.03.078

L. Vignal, Destruction-in-Progress: revolution, repression and war planning in Syria, Built Environment 40 (3) (2014) pp 326–341. doi: https://doi.org/10.2148/benv.40.3.326

The Observatory of Economic Complexity: Which countries import Gravel and Crushed Stone? (2000-2017) [cited 2020-09-25]. URL https://oec.world/en/visualize/stacked/hs92/import/ show/all/2517/2000.2017/

N. Kisku, H. Joshi, M. Ansari, S. K. Panda, S. Nayak, S. C. Dutta, A critical review and assessment for usage of recycled aggregate as sustainable construction material, Construction and Building Materials 131 (2017) pp 721–740. doi: https://doi.org/10.1016/j.conbuildmat.2016.11.029

K. Rahal, Mechanical properties of concrete with recycled coarse aggregate, Building and Environment 42 (1) (2007) pp. 407–415. doi: https://doi.org/10.1016/j.buildenv.2005.07.033

M. Rakshvir, S. V. Barai, Studies on recycled aggregates-based concrete, Waste Management and Research 24 (3) (2006) pp. 225–233. doi: https://doi.org/10.1177/0734242X06064820

J. Sharma, S. Singla, Study of recycled concrete aggregates, International Journal of Engineering Trends and Technology 13 (3) (2014) pp. 1–5. doi: https://doi.org/10.14445/22315381/IJETT-V13P226

C. S. Poon, Z. H. Shui, L. Lam, H. Fok, S. C. Kou, Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete, Cement and Concrete Research 34 (1) (2004) pp. 31–36. doi: https://doi.org/10.1016/j.cemconres.2003.12.019

I. B. Topcu, S. Sengel, Properties of concretes produced with waste concrete aggregate, Cement and Concrete Research 34 (8) (2004) pp. 1307–1312. doi: https://doi.org/10.1016/j.cemconres.2003.12.019

N. Fonseca, J. de Brito, L. Evangelista, The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste, Cement and Concrete Composites 33 (6) (2011) pp. 637–643. doi: https://doi.org/10.1016/j.cemconcomp.2011.04.002

M. Abed, R. Nemes, Long-term durability of self-compacting high-performance concrete produced with waste materials, Construction and Building Materials 212 (2019) pp. 350–361. doi: https://doi.org/10.1016/j.conbuildmat.2019.04.004

P. Chindaprasirt, T. Cao, Reuse of recycled aggregate in the production of alkali-activated concrete, in: Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, 2015, pp. 519–538. doi: https://doi.org/10.1533/9781782422884.4.519

J. P. B. Vieira, J.R. Correia, J. de Brito, Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates, Cement and Concrete Research 41 (5) (2011) pp. 533–541. doi: https://doi.org/10.1016/j.cemconres.2011.02.002

C. Laneyrie, A. Beaucour, M. F. Green, R. L. Hebert, B. Ledesert, A. Noumowe, Influence of recycled coarse aggregates on normal and high-performance concrete subjected to elevated temperatures, Construction and Building Materials 111 (2016) pp. 368–378. doi: https://doi.org/10.1016/j.conbuildmat.2016.02.056

J. Z. Xiao, J. B. Li, C. Zhang, On relationships between the mechanical properties of recycled aggregate concrete: An overview, Materials and Structures 39 (2006) pp. 655–664. doi: https://doi.org/10.1617/s11527-006-9093-0

J. Xiao, D. Lu, J. Ying, Durability of recycled aggregate concrete: An over¬view, Journal of Advanced Concrete Technology 11 (12) (2013) pp. 347–359. doi: https://doi.org/10.3151/jact.11.347

S. Pilehvar, A. M. Szczotok, J. F. Rodríguez, L. Valentini, M. Lanzón, R. Pamies, A. Kjøniksen, Effect of freeze-thaw cycles on the mechanical behaviour of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials, Construction and Building Materials 200 (2019) pp. 94–103. doi: https://doi.org/10.1016/j.conbuildmat.2018.12.057

Ö. Çakır, Ö. Ö. Sofyanlı, Influence of silica fume on mechanical and physical properties of recycled aggregate concrete, HBRC Journal 11 (2) (2015) pp. 157-166. doi: https://doi.org/10.1016/j.hbrcj.2014.06.002

I. H. Adebakin, T. O. Ipaye, Effect of elevated temperature on the compressive strength of recycled aggregate concrete, Research Journal of Engineering Sciences 5 (9) (2016) pp. 1–4. URL http://www.isca.in/IJES/Archive/v5/i9/1.ISCA-RJEngS-2016-119.pdf

D. Gao, L. Zhang, J. Zhao, P. You, Durability of steel fibre-reinforced recycled coarse aggregate concrete, Construction and Building Materials 232 (2020) Paper Nr. 117119 doi: https://doi.org/10.1016/j.conbuildmat.2019.117119

M. Kunieda, N. Ueda, H. Nakamura, Ability of recycling on fibre reinforced concrete, Construction and Building Materials 67 (C) (2014) pp. 315–320. doi: http://dx.doi.org/10.1016/j.conbuildmat.2014.01.060

W. M. Shaban, J. Yang, H. Su, K. H. Mo, L. Li, J. Xie, Quality improvement techniques for recycled concrete aggregate: A review, Journal of Advanced Concrete Technology 17 (2019) pp. 151–167. doi: https://doi.org/10.3151/jact.17.4.151

J. Xie, C. Fang, Z. Lu, Z. Li, L. Li, Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres, Journal of Cleaner Production 197 (1) (2018) pp. 656-667. doi: https://doi.org/10.1016/j.jclepro.2018.06.237

C. Thomas, J. de Brito, A. Cimentada, J. A. Sainz-Aja, Macro- and micro- properties of multi-recycled aggregate concrete, Journal of Cleaner Production 245 (2020) Paper Nr. 118843. doi: https://doi.org/10.1016/j.jclepro.2019.118843

Á. Salesa, J. A. Pérez-Benedicto, D. Colorado-Aranguren, P. L. López-Julián, L. M. Esteban, L. J. Sánz-Baldúz, J. L. Sáez-Hostaled, J. Ramis, D. Olivares, Physio – mechanical properties of multi – recycled concrete from precast concrete industry, Journal of Cleaner Production 141 (2017) pp. 248-255. doi: http://dx.doi.org/10.1016/j.jclepro.2016.09.058

S. B. Huda, M. S. Aram, Mechanical behavior of three generations of 100% repeated recycled coarse aggregate concrete, Construction and Building Materials 65 (2014) pp. 574-582. doi: https://doi.org/10.1016/j.conbuildmat.2014.05.010

I. Marie, H. Quiasrawi, Closed-loop recycling of recycled concrete aggregates, Journal of Cleaner Production 37 (2012) pp. 243-248. doi: http://dx.doi.org/10.1016/j.jclepro.2012.07.020

M. Abed, R. Nemes, B. A. Tayeh, Properties of self-compacting high-strength concrete containing multiple use of recycled aggregate, Journal of King Saud University – Engineering Sciences 32 (2) (2020) pp. 108-114. doi: https://doi.org/10.1016/j.jksues.2018.12.002

Downloads

Published

2021-02-24

How to Cite

Shmlls, M., Bozsaky, D., & Horváth, T. (2021). Literature review on steel fibre, silica fume and fly ash: improving methods for recycled and multiple recycled aggregate concretes. Acta Technica Jaurinensis, 14(1), 60–79. https://doi.org/10.14513/actatechjaur.00570

Issue

Section

Reviews