LoRaWAN Network Performance Test

Authors

  • Istvan Drotar Széchenyi István University, Department of Telecommunications, Egyetem tér 1, H-9026 Győr, Hungary
  • Balazs Lukacs Széchenyi István University, Department of Telecommunications, Egyetem tér 1, H-9026 Győr, Hungary
  • Miklós Kuczmann Széchenyi István University, Department of Automation, Egyetem tér 1, H-9026 Győr, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.v13.n4.547

Keywords:

Low Power Wide Area Network, Performance analysis, Radiowave propagation, Internet of Things

Abstract

There are several types of wireless IoT (Internet of Things) networks based on the connection distance between two communicating devices. For covering wide areas, LPWAN (Low Power Wide Area) networks can provide a good solution. These networks provide big coverage and low power consumption. One of the most popular LPWAN network is LoRaWAN (Long Range Wide Area Network). LoRaWAN networks are ideal for sending infrequent, small messages through long distances. In this article the network’s capacity, coverage and energy consumption have been tested. These are the most important attributes when designing a LoRaWAN network, so it can satisfy the requirements of LPWAN networks.

Downloads

Download data is not yet available.

References

H. N. Saha, A. Mandal, A. Sinha, Recent trends in the Internet of Things, in: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), 2017. doi: https://doi.org/10.1109/ccwc.2017.7868439

P. Sethi, S. R. Sarangi, Internet of Things: Architectures, Protocols, and Applications, Journal of Electrical and Computer Engineering 2017 (2017) pp. 1–25. doi: https://doi.org/10.1155/2017/9324035

K. K. Patel, S. M. Patel, Internet of Things-IOT: Definition, Characteristics, Architecture, Enabling Technologies, Application & Future Challenges, International Journal of Engineering Science and Computing 6 (5) (2016) pp. 6122-6131.

D. M. Ibrahim, Internet of Things Technology based on LoRaWAN Revolution, in: 2019 10th International Conference on Information and Communication Systems (ICICS), 2019 pp. 234-237. doi: https://doi.org/10.1109/iacs.2019.8809176

M. A. Ertürk, M. A. Aydin, M. T. Büyükakkslar, A Survey on LoRaWAN Architecture, Protocol and Technologies, Future Internet 11 (10) (2019) p. 216. doi: https://doi.org/10.3390/fi11100216

R. Harwahyu, A. Presekal, R. F. Sari, LoRaWAN Performance Evaluation with Optimized Configuration, International Journal of Future Generation Communication and Networking 11 (4) (2018) pp. 51–68. doi: http://dx.doi.org/10.14257/ijfgcn.2018.11.4.05

M. C. Bor, U. Roeding, T. Voigt, Do LoRa Low-Power Wide-Area Networks Scale?, in: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems: 2016, pp. 59-67. doi: https://doi.org/10.1145/2988287.2989163

M. Chiani, A. Elzanaty, On the LoRa Modulation for IoT: Waveform Properties and Spectral Analysis, IEEE Internet of Things Journal 6 (5) (2019) pp. 8463–8470. doi: https://doi.org/10.1109/jiot.2019.2919151

LoRa Alliance Inc., LoRaWANTM 1.1 Specification, 2017. URL https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf

A. Farhad, D. Kim, J. Pyun, Resource Allocation to Massive Internet of Things in LoRaWANs, Sensors 20 (9) (2020) p. 2655. doi: https://doi.org/10.3390/s20092645

P. Keawbunsong, P. Supanakoon, S. Promwong, Hata’s Path Loss Model Calibration for Prediction DTTV Propagation in Urban Area of Southern Thailand, IOP Conference Series: Materials Science and Engineering 83 (2015) doi: https://doi.org/10.1088/1757-899x/83/1/012013

ITU, Handbook – Terrestrial land mobile radiowave propagation in the VHF/UHF bands, Geneva, 2002. URL http://www.itu.int/net4/ITU-T/registration/Resolver/Index?handle_id=11.1002/pub/800c94ad-en

N. S. Nkordeh, A.A.A Atayero, LTE Network Planning using the Hata-Okumura and the COST-231 Hata Pathloss Models, in: World Congress on Engineering (WCE) 1 (2014).

B. Martinez, M. Montón, The Power of Models: Modeling Power Consumption for IoT devices, IEEE Sensors Journal 15 (10) (2015) pp. 5777–5789. doi: https://doi.org/10.1109/jsen.2015.2445094

D. Magrin, M. Capuzzo, A. Zanella, A through Study of LoRaWAN Performance Under Different Parameter Settings, IEEE Internet of Things Journal 7 (1) (2020) pp. 116-127. doi: https://doi.org/10.1109/jiot.2019.2946487

Downloads

Published

2020-08-11

How to Cite

Drotar, I., Lukacs, B., & Kuczmann, M. (2020). LoRaWAN Network Performance Test. Acta Technica Jaurinensis, 13(4), 268–280. https://doi.org/10.14513/actatechjaur.v13.n4.547

Issue

Section

Acta Technica Jaurinensis