Stability Analysis of an Assembly Process Using Simulation
DOI:
https://doi.org/10.14513/actatechjaur.v13.n1.531Keywords:
stability, nonlinear structure, friction, snap-fitAbstract
This paper deals with an assembly process of batteries with cell holder. The operation involves snap-fitting phenomenon, which is a mechanical stability problem. The structure of the cell holder is modelled with 2D flexible beam elements assuming large displacements. The stability of the equilibrium is investigated taking into consideration non-frictional and Coulomb frictional contacts. The goal of the analysis to determine the boundary point of the feed-motion from which the battery snaps-in to the final assembled position autonomously. The effect of the velocity of the battery feed-motion is also considered with energy approach.
Downloads
References
BASF Corporation, Snap-Fit Design Manual (2007) [cited 2020-01-04] URL www.plasticsportal.com/usa
BAYER Materialscience LLC, Snap-Fit Joints for Plastics, A design Guide, Bayer Polycarbonates Business Unit, Pittsburg, Pennsylvania, 1998.
C. Klahn, D. Singer, M. Meboldt, Design Guidelines for Additive Manufactured Snap-Fit Joints, Procedia CIRP 50 (2016) pp. 264–269. doi: https://doi.org/10.1016/j.procir.2016.04.130
R. M. Kshirsagarl, D. B. Pawar, Design and analysis of snap fit joint in plastic part, International Journal of Innovative and Emerging Research in Engineering 2 (1) (2015) pp. 83–87.
M. Radi, G. Reinhart: Industrial Haptic Robot Guidance System for Assembly Processes, IEEE Conference, Lecco, Italy, 2009, pp.1–6. doi: https://doi.org/10.1109/HAVE.2009.5356135
L. Rónai, T. Szabó, Snap-fit Assembly Process with Industrial Robot Including Force Feedback, Robotica, Cambridge University Press 38 (2) (2020) pp.317–336. doi: https://doi.org/10.1017/S0263574719000614
Gy. Béda, I. Kozák, Mechanics of elastic bodies, Műszaki könyvkiadó, Budapest, 1987, in Hungarian.
N. Rouche, P. Habets, M. Laloy, Stability Theory by Liapunovs Direct method, Springer-Verlag, New York, 1977.
L. Fehér L, J. Égert, FEM Modeling and Weight Reduction of a Solar Energy Driven Racing Car Chassis, Acta Technica Jaurinensis 8 (4) (2015) pp. 296–311. doi: https://doi.org/10.14513/actatechjaur.v8.n4.385
J. Égert, Finite Element Mechanical Modeling Opportunities in Machine Design, Acta Technica Jaurinensis 1 (1) (2008) pp. 47–59.
P. Horváth, J. Égert, Dynamic Analysis of a One-cylinder Engine Crankshaft, Acta Technica Jaurinensis 8 (4) (2015) pp. 280–295. doi: https://doi.org/10.14513/actatechjaur.v8.n4.379
K. J. Bathe: Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey, 1996.
M. A. Crisfield: Non-linear Finite Element Analysis of Solids and Structures, John Wiley and Sons, New York City, 1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Acta Technica Jaurinensis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.