Stability Analysis of an Assembly Process Using Simulation

Authors

  • László Rónai University of Miskolc, Robert Bosch Department of Mechatronics, Egyetemváros, 3515 Miskolc, Hungary
  • Tamás Szabó University of Miskolc, Robert Bosch Department of Mechatronics, Egyetemváros, 3515 Miskolc, Hungary

DOI:

https://doi.org/10.14513/actatechjaur.v13.n1.531

Keywords:

stability, nonlinear structure, friction, snap-fit

Abstract

This paper deals with an assembly process of batteries with cell holder. The operation involves snap-fitting phenomenon, which is a mechanical stability problem. The structure of the cell holder is modelled with 2D flexible beam elements assuming large displacements. The stability of the equilibrium is investigated taking into consideration non-frictional and Coulomb frictional contacts. The goal of the analysis to determine the boundary point of the feed-motion from which the battery snaps-in to the final assembled position autonomously. The effect of the velocity of the battery feed-motion is also considered with energy approach.

Downloads

Download data is not yet available.

References

BASF Corporation, Snap-Fit Design Manual (2007) [cited 2020-01-04] URL www.plasticsportal.com/usa

BAYER Materialscience LLC, Snap-Fit Joints for Plastics, A design Guide, Bayer Polycarbonates Business Unit, Pittsburg, Pennsylvania, 1998.

C. Klahn, D. Singer, M. Meboldt, Design Guidelines for Additive Manufactured Snap-Fit Joints, Procedia CIRP 50 (2016) pp. 264–269. doi: https://doi.org/10.1016/j.procir.2016.04.130

R. M. Kshirsagarl, D. B. Pawar, Design and analysis of snap fit joint in plastic part, International Journal of Innovative and Emerging Research in Engineering 2 (1) (2015) pp. 83–87.

M. Radi, G. Reinhart: Industrial Haptic Robot Guidance System for Assembly Processes, IEEE Conference, Lecco, Italy, 2009, pp.1–6. doi: https://doi.org/10.1109/HAVE.2009.5356135

L. Rónai, T. Szabó, Snap-fit Assembly Process with Industrial Robot Including Force Feedback, Robotica, Cambridge University Press 38 (2) (2020) pp.317–336. doi: https://doi.org/10.1017/S0263574719000614

Gy. Béda, I. Kozák, Mechanics of elastic bodies, Műszaki könyvkiadó, Budapest, 1987, in Hungarian.

N. Rouche, P. Habets, M. Laloy, Stability Theory by Liapunovs Direct method, Springer-Verlag, New York, 1977.

L. Fehér L, J. Égert, FEM Modeling and Weight Reduction of a Solar Energy Driven Racing Car Chassis, Acta Technica Jaurinensis 8 (4) (2015) pp. 296–311. doi: https://doi.org/10.14513/actatechjaur.v8.n4.385

J. Égert, Finite Element Mechanical Modeling Opportunities in Machine Design, Acta Technica Jaurinensis 1 (1) (2008) pp. 47–59.

P. Horváth, J. Égert, Dynamic Analysis of a One-cylinder Engine Crankshaft, Acta Technica Jaurinensis 8 (4) (2015) pp. 280–295. doi: https://doi.org/10.14513/actatechjaur.v8.n4.379

K. J. Bathe: Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey, 1996.

M. A. Crisfield: Non-linear Finite Element Analysis of Solids and Structures, John Wiley and Sons, New York City, 1991.

Downloads

Published

2020-02-14

How to Cite

Rónai, L., & Szabó, T. (2020). Stability Analysis of an Assembly Process Using Simulation. Acta Technica Jaurinensis, 13(1), 14–24. https://doi.org/10.14513/actatechjaur.v13.n1.531

Issue

Section

Acta Technica Jaurinensis