Comparison of Annual Prediction Methods for Spring Flow in the Aggtelek Region

K Mátyás, K Bene



DOI: http://dx.doi.org/10.14513/actatechjaur.v10.n1.427

Abstract


Karst spring flow plays an increasing important role in groundwater resources in Hungary. This paper evaluates three different estimation methods to predict mean annual spring flows in the Aggtelek region, using GIS based catchment area. Annual spring flow was predicted by two regional regression equations, by applying the Budyko equations, and by the original and modified Maucha method. Using measured spring flows, precipitation and temperature data between 1975-1992 each method was evaluated and compared for 12 spring location in the Aggtelek region. Neither method was found significantly better than the others. The Budyko curves gave a good estimation for annual spring flows, with average variance. The non-linear regression method gave the best result, with the smallest median error, and error variance.


Keywords


Aggtelek; Karst; Hydrology Statistics

Full Text:

PDF

References


C. J. Taylor, E. A. Greene: Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water, in Hydrogeologic Characterization and Methods Used in the Investigation of Karst Hydrology, 2008, pp. 75-111

R. Koch: Hydrological evluation of Karst-springs, Győr, 2016

K. Bene, R. Koch, G. Hajnal: Hydrological Study of the Aggtelek Karst Springs, Pollack Periodica, vol. 8, pp. 107-116, 2012, DOI: http://dx.doi.org/10.1556/Pollack.8.2013.2.12

H. Kessler: Estimation of Subsurface Water Resources in Karstic Regions, IASH II, Toronto, 1957

L. Maucha: Results and undisturbed data of karsthydrological researches on Aggtelek Hills, Vízgazdálkodási és Kutató Részvénytársaság Hidrológiai Intézete, Budapest, 1998

C. J. Willmott, C. M. Rowe, Y. Mintz: Climatology of the Terrestrial Reasonal Water Cycle, Journal of Clmyatology, vol. 5, pp. 589-606, 1985, DOI: 10.1002/joc.3370050602

L. Zámbó: The Aggtelek Karst geomorphological characterization (in Hungarian), Földrajzi Értesítő, vol. 47, no. 3, pp. 359-378, 1998

M. Veress: Factors influencing solution in karren and on covered karst, Hungarian Geographical Bulletin, vol. 59, no. 3, pp. 289-306, 2010

L. Gyalog: Explanatory book of the 1:100 000 surface geological map series of Hungary (Magyarázó Magyarország fedett földtani térképéhez 1:100000), Budapest: Magyar Állami Földtani Intézet, 2005

M. Pardé: Fleuves et rivières, Paris: Armand Colin, 1933

C. H. B. Priestley, R. J. Taylor: On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters, Monthly Weather Review, vol. 100, no. 2, pp. 81-92, 1972, DOI: http://dx.doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2

T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, T. R. McVicar: Estimating actual, potential, reference crop and pan evaporation using standard meterological data: a pragmatic synthesis, Hydrology and Earth System Sciences, no. 17, pp. 1331-1363, 2013, DOI: 10.5194/hess-17-1331-2013

L. Y. Rao, G. Sun, C. R. Ford, J. M. Vosemodeling: Potential evapotranspiration of two forested watersheds in the southern Appalachians, American Society of Agricultural and Biological Engineers, vol. 54, no. 6, pp. 2067-2078, 2011, DOI: 10.13031/2013.40666

M. I. Budyko: Climate and Life, Orlando, FL: Academic Press, 1974

L. K. Zhang, W. Hickel, W. R. Dawes , F. H. S. Chiew , A. W. Western, P. R. Briggs: A rational function approach for estimating mean annual evapotranspiration, Water Resources Research, vol. 40, p. W02502, 2004, DOI: 10.1029/2003WR002710

B. P. Fu, F. B. P.: On the calculation of the evaporation from land surface [in Chinese], Scientia Atmospherica Sinica, vol. 5, no. 1, pp. 23-31, 1981

D. Yang, F. Sun, Z. Liu, Z. Cong, G. Ni, Z. Lei: Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis, Water Resources Research, vol. 43, p. W04426, 2007, DOI: 10.1029/2006WR005224

L. Turc: Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date, Ann. Agron., vol. 12, pp. 13-49, 1961.

J. Parajka, J. Szolgay: Grid-based mapping of long-term mean annual potential and actual evapotranspiration in Slovakia, Hydrology, Water Resources and Ecology in Headwaters, no. 248, pp. 123-129, 1998

Á. D. Kovács: Specifying lake and areal evapotranspiration rates in Hungary (in Hungarian), Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2011

V. Alloca, F. Manna, P. De Vita: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrology and Earth System Sciences, vol. 18, pp. 803-817, 2014, DOI: 10.5194/hess-18-803-2014

G. Blöschl, M. Sivapalan, T. Wagener, A. Viglione, H. Savenije: Prediction of annual runoff in ungauged basins, in Synthesis across Processes, Places and Scales, Cambridge, Cambridge University Press, 2012, pp. 70-101, DOI: http://dx.doi.org/10.1017/CBO9781139235761.008




Acta Technica Jaurinensis

ISSN 1789-6932 (Print)
ISSN 2064-5228 (Online)

© Szechenyi Istvan University, Gyor, Hungary