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1. Introduction 
The main goal of the paper is to describe the representation and implementation details 
of a hysteresis model into finite element analysis of a field calculation problem in the 
COMSOL-Matlab environment. It will be shown, that the quite difficult task of 
representation and implementation of a complicated hysteresis operator can be handled 
relatively easily by means of an appropriate description of the hysteresis operator and 
the efficient usage of the high level software environment, what the interaction of the 
COMSOL and Matlab packages can offer. 

Since there are numerous engineering fields, where the proper application of a 
hysteresis operator is required, (like ferromagnetics, porous media flow, fatigue of 
mechanical structures, vapour-liquid phase transitions etc.) and the ‘mainstream’ 
numerical tool for the solution of these kind of problems is the Finite Element Method 
(FEM), it is a naturally arising need, that the hysteresis operator of choice should be 
ready to use, directly in the high-level FEM packages. Since the commercial FEM 
packages do not provide hysteresis models directly, it relies on the user building his/her 
implementation. In the paper a simple hysteretic diffusion problem is solved as a case 
study in the COMSOL Multiphysics finite element analysis software, and by the aid of 
this case study, the details of application of a hysteresis model in the COMSOL-Matlab 
environment is presented. 

2. The Comsol FEM package and the Matlab environment 
As the primary tool for the finite element analysis of the problem, the COMSOL 
Multiphysics engineering simulation software is applied. The COMSOL package is a 
high level modelling and simulation environment providing tools for all steps of 
modelling (geometry definition, mesh generation, physics definition, solution, post-
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processing etc.), and having a set of very advantageous properties, which enables a 
highly customized way of building models, and running simulations. One of the most 
important features of the package is the equation-based modelling, facilitating the weak 
form representation of the partial differential equations (PDEs) of the problem, which is 
really advantageous, because by the application of the weak form, the user has full 
control over the physics defined on various domains of the modelled geometry. Another 
extremely useful feature is the capability of using functions written in the Matlab 
environment. This way, practically any kind of function or multi-valued operator can be 
implemented into the finite element model. As a consequence of the fundamental nature 
of the connection between COMSOL and Matlab, implementing a hysteresis operator 
requires a fair amount of initialization tasks preceding the actual usage of the operator, 
but after that, it can be used easily, as if it was a part of the FEM package. 

3. The Preisach Operator 
The defining equation of the operator applied here is based on the work of P. Krejci et 
al. [2] 
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where u  is the input of the operator, r  is the abscissa of the phase space, the auxiliary 
function g  contains the integration of the distribution function ϕ  (the usual Preisach-
distribution) over the phase space, where the upper bound [ , ]( )u tλ℘  of integration (2) 
is the output of the memory operator ℘ , and λ  is a function of the Λ  phase space. The 
definition of the phase space is 
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which represents a set of functions with the property of having a maximum absolute 
steepness of one, and having value of zero at r →∞ . This definition basically describes 
an infinitely large triangle bounding the functions of the phase space. The actual state of 
the phase space (the concrete λ  function) represents the memory of the hysteresis 
operator. Putting (1) and (2) together gives a double integral defining the Preisach-
operator as 
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where the integration takes place over a subdomain of the phase space, defined by the 
actual state function λ , which can be obtained from the memory operator.  

4. The implementation of the hysteresis operator 
In order to implement the operator (4) into a numerical computation it is advantageous 
to make some practical modifications. First of all, in order to apply an operator in a 
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numerical environment, the phase space has to be finite. In other words, infinitely large 
inputs are not allowed, thus an upper bound value su  has to be introduced. Besides the 
construction of the finite phase space defined as 

 ( )= { : :| ( ) ( ) | | | , : lim = 0},
sr u

r s r s r s rλ λ λ λ+ + →
Λ → − ≤ − ∀ ∈R R R  (5) 

I have introduced a memory operator ν , which is responsible for the computation of 
the new state (memory function) in view of the actual state λ , the input u , and the time 
derivative u&  of the input. The defining equation (4) of the Preisach-operator thus 
replaced by 
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which contains the memory operator ν  as the upper bound of the inner integration 
having the same role as the memory operator ℘  in (4), but with a different realization. 

5. The structure of the phase space and the behaviour of the memory 
operator 

The phase space defined by (5) is basically a usual Preisach-triangle rotated by 45 
degrees counter-clockwise. The role of the memory operator [ , , ]( )u u tν λ &  is to calculate 
the new state function λ  based on the actual state and the input. The behaviour of the 
operator in the phase space (Preisach-triangle) can be tracked by the aid of Fig. 1, which 
shows a possible state function and the corresponding hysteresis curve. 
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Figure 1. A state function in the phase space with the corresponding hysteresis curve 

In the left subfigure the memory function ( )rλ  can be seen as the upper boundary of 
the filled region of the phase space, the lower boundary is ( ) sl r r u= − , where the su  is 
normalized to { }1,1−  in the figure. 
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Integration (6) takes place over the filled subdomain of the phase space bounded by 
the fixed “lower” side of the triangle and the continuously changing memory function 
resulting from the memory operator. The input-output relation of the operator appears as 
a hysteresis curve, which can be seen in the right hand side subfigure, where ( )u t  and 

( )v t  denotes the input and the output of the operator (6) respectively. The memory 

operator utilizes an auxiliary line ( )( ) sgne r u r u= − +&  (dashed line in figure) for the 
purpose of tracking the changes of the phase space. The intersecting point of the ( )e r  
line and the ( )rλ  axis represents the actual value of the input ( )u t , and starting from a 
given state (for example the one depicted in Fig. 1.) the change of the input of the 
hysteresis operator causes the moving of the ( )e r  line upwards or downwards 
depending on the sign of the time derivative of the input. The moving of ( )e r  results in 
a new intersection point of the ( )e r  line with the actual state function ( )rλ , and the 
new memory function is constructed simply by “concatenating” the segment of ( )e r  
preceding the intersection with the segment of ( )rλ  beyond the intersection.  

Fig. 2 shows the new state and the corresponding hysteresis curve after decreasing the 
value of the input ( )u t . 
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Figure 2. State function and hysteresis curve after decresing the input from state 

depicted in Fig. 1 

Further decreasing the input results in “wiping out” the portion of memory (state 
function), which represents the inside minor loop, which can be seen in Fig. 3. 
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Figure 3. Phase space and hysteresis curve after a “wipe out” 

The main advantage of this representation is, that the complicated changes in the phase 
space can be tracked very easily by the aid of the introduced memory operator, since the 
line ( )e r  can be constructed without any problems in view of the input of the hysteresis 
operator and the state function representing the memory is described by a single-valued 
function, which is very easy to handle as well. 

The Matlab (or any suitable numerical tool) implementation of the operator described 
above consists of the discrete representation of ( )rλ  in a form of a finite dimensional 

vector, and the main task to perform is to find the intersection of ( )e r  and ( )rλ  in 
order to construct the new state function. The method of finding the intersection is the 
following  

 ( )1 sgn , ,
2mi ⎡ ⎤= ∆ −⎣ ⎦e λ i  (7) 

where e  and λ  are the vectors of m�  corresponding to the discretized ( )e r  and ( )rλ  

respectively,  is the difference operator, [ ]1,2, m=i K  is an index vector, .,.  denotes 
the usual dot product, and mi  is the index of the intersection point. After finding the 
location of the intersection, the construction of the new state function is straightforward. 

The representation outlined here can be immediately applicable to define a Preisach-
operator in a numerical environment, and furthermore – resulting from the nature of the 
memory operator applied – the algorithm is easily vectorizable, so it can be 
implemented into finite element computation as is. One further point is, that the 
integration of the distribution over the phase space can be calculated off-line, thus 
during the actual computation it can be substituted by interpolation, which significantly 
speeds up the procedure of numerical computation. 
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6. Implementation of the hysteresis operator into finite element 
computation 

The finite element implementation is demonstrated through a case study in the 
COMSOL environment. Since COMSOL is highly customizable, can handle 
complicated nonlinear problems, and it is possible to use Matlab functions directly from 
the user interface without explicit usage of Matlab, it is a really good tool for solving 
nolinear problems involving hysteresis phenomena. 

The problem solved in the case study is a one-dimensional nonlinear diffusion 
problem defined as  

 { }2

0

1 , ,H H M M H
σµ

− ∇ = − =& & P  (8) 

where H  is the magnetic field strength, M  is the magnetization, and {}.P  denotes the 
Preisach-operator. In the COMSOL environment, after defining the diffusion equation 
(8) as the governing physics, the hysteretic relation has to be defined. It can be managed 
by defining an auxiliary dependent variable for M , and providing the weak-form 
equation connecting the auxiliary variable M  and the hysteresis operator, which is 
represented by a variable assigned to the predefined Matlab function. The Matlab 
function definitions can also be done from the COMSOL environment in the global 
definitions section. 

Solving the problem defined by (8) on a one-dimensional domain results in the time 
evolution of the H  and M  fields. In Fig. 4 and Fig. 5 minor hysteresis curves can be 
seen corresponding to different locations in space, which were obtained by solving the 
nonlinear diffusion problem with the application of the Preisach-operator using the 
representation described above. (The value of magnetization is normalized to [ ]0,1 .) 

 
Figure 4. Minor hysteresis curves 
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Figure 5. Minor hysteresis curves 

It is important to emphasize, that after initializing the Preisach-model in the Matlab 
environment, it can be used similarly to a built-in function in COMSOL by the aid of an 
auxiliary dependent variable defined by a weak expression, and this way most of the 
programming difficulties of the Matlab implementation can be avoided, since the 
hysteresis operator can be used directly from the COMSOL user interface, and all of the 
modelling tasks (solution, post-processing) can also be accomplished without explicit 
usage of Matlab, which has the clear advantage of using a high level user-friendly 
interface instead of tweaking with the subtleties of programming. 

7. Conclusion 
As a concluding remark it can be stated, that the representation and the implementation 
outlined in the paper can be a productive way of application of the Preisach-model of 
hysteresis for handling nonlinear numerical field calculation problems involving 
hysteresis phenomena  
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