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Abstract: The specific relationships between the classical pole-placement state 

feedback, the Riccati equation based LQ paradigm and the Kalman 

frequency domain approach are discussed. It is shown that arbitrary pole 

placement is not possible by standard LQ optimality. A possible solution of 

this anomaly is to use more general LQ criterion with specific weights on 

the state, input and crossterm. 
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1. Introduction 

In the early time of control theory the optimization of transient processes in dynamic 

systems used a quadratic criterion, i.e., the integral square of error 

 I2  e2 t dt
0



  E s E s ds
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Here e t  is the error signal of a closed-loop control system. The second half of (1) is 

the so-called Parseval theorem [3], [6], using the strictly proper E s , the Laplace 

transform of e t . 
This integral criterion was very popular, because the evaluation of (1) could be 

performed analytically and easily computed even by the early slow computers (by 

preprogrammed formulas). The general theory was called Wiener approach [3] and 

thousands of papers were published for the different optimal designs. The first critics 

came from the industry: the optimal regulators minimizing (1) were not acceptable in 

the practice, because they resulted a very large (20~25 %) overshoot in the step 

response transients. 

One way to overcome this problem was first to introduce a more general quadratic 

integral criterion, penalizing the different state variables as 
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which is called generalized quadratic criterion. It is not difficult to show that (2) has an 

equivalent form 

   ( )  ∫ [     ̇       ( )]
 
  

 

 
 (3) 

where  ( )   ̇( )     (   )( )    and co  1xo
2

, xo  x 0 . The 

coefficients of the two forms depend on each other by the Rekasius-Feldbaum equations 

[1], [2] 
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From (3) the minimum can be easily seen, if x t  fulfils the differential equation 

    ( )       
(   )                  . (5) 

Here the signal x t  is more general than e t , because it can be one of the state 

variables of a linear system. 

2. State feedback (SFB) 

Consider a SISO continuous time linear time invariant (LTI) dynamic plant described 

by the state variable representation (SVR) 

 

  

  
  ̇       

     
 (6) 

Here u , y  and x  are the input, output and state variables of the controlled process 

and T stands for transposition. The transfer function representation (TFR) of the open-

loop system can be calculated by 

  

P s 
B s 
A s 

 cT s I  A 1b  cT s b
 (7) 

where I  is the unit matrix, 

   

 s  sI  A 1  L eAt   s 
A s 

 s  adj sI  A 
 (8) 

and 

  ( )        
                  ( )  (9) 
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are the numerator and denominator polynomials, respectively. If the feedback is 

restricted to a linear SFB, then the classical solution can be written as 
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u  kr rkT x

 (11) 

where r  is the reference signal, kr  is a calibrating constant and k
T  is the linear SFB 

vector. It is easy to check that the transfer function from the reference signal r  to the 

output y  is [4] 

  

Try s  cT s I  A bkT 
1
bkr 

kr B s 
A s  kT s b

 (12) 

where kr  is obtained by requiring that the static gain of Try  should be equal to one 
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k
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The usual classical design goal is to determine the feedback gain k
T  so that the 

closed-loop system has the characteristic polynomial 

  ( )        
                (14) 

The solution formally means equating the characteristic polynomial of the closed-loop 

with the desired polynomial ("pole placement method") 

  
R s  det sI  A bkT  A s  kT s b  A s K s 

 (15) 

to compute k
T . The solution always exists if P s  is controllable. 

If the TFR of the process is known then one can easily form a controllable canonical 

form Ac ,bc ,cc
T  with 

    [
   

 

   
]                                                    (16) 

and now the feedback gain is obtained from (15) as 

   
                                     (17) 

because 

   ( )                 (18) 

and 
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               ( ). (19) 

The calibration factor is calculated by 
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The SVR of the closed-loop system is described by 

 

dx

d t
 A bkT x kr b r  A kr b r

y  cTx  (21) 

It is easy to see from equation (12) that Try s  is now 

  

Try s 
krB s 

R s 
 (22) 

i.e., besides reaching the desired pole-placement the SFB leaves the open-loop zeros 

untouched. 

3. The LQR (Linear system - Quadratic criterion - Regulator) problem 

Not only the bad transient of the error signal obtained from the optimal quadratic 

criterion was the problem, but also the big amplitude jumps necessary to the control 

action. An other way suggested to overcome the combined problem was the 

introduction of a penalty for the energy of the control signal. This optimization was 

formulated by the more general [3], [4] quadratic criterion 
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 (23) 

where x t  is the state vector, u t  is the input of the process, respectively. The 

positive definite Wx  stands for penalizing the variations in the state space, wu  is for 

penalizing the energy of the control action, which is more general than (2). The 

solution, minimizing (23) is again a negative SFB [7] 

 
u t  kLQ

T
x t 

 (24) 

where kLQ
T  is given by 

 

kLQ
T 

1

wu
bTP

 (25) 

where the symmetric positive semi definite matrix P  can be obtained from the solution 

of the algebraic Riccati equation [4] 

 

P A AT P 
1

wu
PbbTP  Wx

 (26) 

Analytic solution is not possible, because this equation is nonlinear in P , therefore 

only numeric solution can be obtained by MATLAB
©
 and other CACSD programs. 
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Introducing the orthogonal factorization 

 
Wx  G

T
G

 (27) 

the closed-loop system is stable if the auxiliary process 

 
v  Gx

 (28) 

is observable. 

The characteristic polynomial coefficients are computed now from 

                  
                (29) 

Note that this SFB also provides the same Try s  as (22) before. 

A joint use of time domain optimality criteria, prescribed constraints and pole 

locations are often required in practice. Optimal and partially optimal pole placement 

based on optimality criteria (58) was studied in [19], [20], [21] and [22]. It can be 

shown, however, that [20] does not provide solution for the general problem (illustrated 

by the examples later), mainly due to the fact that it uses only the weights Wx , Wu  but 

not the cross term Wux . 

4. The frequency domain solution of the LQR problem 

The LQR approach is widely used for control problems in all over the world, 

however, in a practical problem it is not an easy task to find the best Wx  and wu  

weights, which are usually obtained by trial and error iterative methods. The LQR 

problem has an almost forgotten frequency domain solution, too, which will give us a 

deterministic design process to find useful relationships between the classical pole 

placement SFB solution and the LQR paradigm. It can be shown that the simpler dyadic 

factorization [3] 

                             (30) 

can also be used. The frequency domain condition of the minimum of (23) is called the 

Kalman equation [3] or sometimes it is named frequency domain identity (FDI) 
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2
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Assuming unity weight wu  1  the equation becomes even simpler 
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2
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Using the well known relationship of complex functions 

 
Z s  

2
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2
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 (33) 

and introducing the (n-1)-th order polynomial G(s) as the numerator of 

  ( )     ( )  
 ( )
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the equation (32) can be rearranged into a new form 

   ( )     ( )  ⏟            
 ( )

  (  )     (  )  ⏟              
 (  )
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which provides the quadratic polynomial solution of the Kalman equation. Thus the 

final quadratic equation, ensuring relationship between the process 
 
A s , design 

 
R s  

and weighting 
 
G s  polynomials, is 

  
R s R s  A s A s G s G s 
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2
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2
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 (36) 

or in the general form 

  
wu R s 

2
 wu A s 

2
 G s 

2

 (37) 

Observe that the solution tends to 
 
R s  A s  if Wu   and gTx  0  if wu  0 . 

Do not forget that 
 
K s  and 

 
G s  are of n 1 -th order [8]. 

5. Some anomalies in the LQR problem 

The solution of the polynomial equation can be a direct coefficient comparison or a 

spectral factorization approach [5]. Consider some examples in the sequel. 

 

Example 1 

Consider a first order example with 

  
A s  s  a1         

R s  s  r1         
G s  g1  (38) 

The two sides of (35) are 

 
s2  r1s  r1s  r1

2  s2  a1s  a1s  a1
2  g1

2

 (39) 

and the solution is 

 
r1
2  a1

2  g1
2  0

 (40) 

and 

 
k1  r1  a1  a1

2  g1
2  a1  0  (41) 

If we want to ensure (place) a required pole then the necessary weight in the LQR 

problem is 

 
g1  r1

2  a1
2

 (42) 

It is easy to see that only such r1  can be placed, which fulfills the condition 

 
r1
2  a1

2  r1  a1  r1  a1  (43) 
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for stable design polynomial R(s). So this example shows that only a faster pole can be 

placed by the LQR optimization comparing to the original process pole. 

 

Example 2 

Consider a second order example with 

  
A s  s2  a1s  a2       

R s  s2  r1s  r2         
G s  g1s  g2  (44) 

The two sides of (35) are now 
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 (45) 

and the solutions are 
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2  2 r2  a2  a1
2  g1

2  a1  0
 (47) 

The SFB to be applied is given by 

 
k1  r1  a1  0     

k2  r2  a2  0  (48) 

For pole placement the necessary LQR weights are 
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2  a2
2

 (49) 
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a
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It is easy to see that there are such r1 ,r2  domains, which can not be reached by any 

g1 ,g2  selection. These conditions are 

 
r2
2  a2

2  r2  a2  r2  a2  (53) 
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and 

 
r2 
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2

2
 2a

2 
r1
2

2
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2  2a2 
 (54) 

 
Figure 1. Unreachable design parameter domains 

These conditions are graphically demonstrated on Fig.1, where the shaded area shows 

the unreachable design parameters for the case of open-loop process parameters 

a2  0.8  and 2a
2  0.5 . 

One can check these results either via the solution of the Riccati equation (very time 

consuming method) or by the spectral factorization approach 

  
R s R s  A s A s G s G s  


A s A s G s G s  



 (55) 

as the solution of (36), i.e., by 

  
R s  A s A s G s G s  



 (56) 

6. Solutions for LQ-pole placement 

We can not explain the above anomalies physically and provide unique solutions, 

however, offer some applicable solutions. Therefore it is necessary to discuss first the 

original MIMO LQR problem. 
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Infinite-horizon, continuous-time LQ Regulator (LQR) 

For a continuous-time MIMO linear system described by 

 

 

  

  
  ̇       

 ( )    

 (57) 

with a LQ cost functional (performance index) defined as 

 

J(x0 ,u) =
1

2
x
T
Wxx  u

T
Wuu 

0



 dt

 (58) 

with Wx  0  and Wu > 0 , the stabilizing feedback control law that minimizes the value 

of the cost is 

 
u = Kx

 (59) 

where K  is given by 

 
K = Wu

1
B
T
P

 (60) 

and P = PT > 0  is the solution of the continuous time algebraic Riccati equation 

 
A
T
P  PA  PBWu

1
B
T
P Wx = 0  (61) 

It is possible to construct an even more general LQR performance index, which 

penalizes the interaction of the state and control variables, too: 

 

J(x0 ,u) =
1

2
x
T
Wxx  2u

T
Wuxx  u

T
Wuu 

0



 dt

      Wx  0      
Wu > 0  (62) 

where the stabilizing feedback control law that minimizes the value of the cost is again 

 
u = Kx

 

but here K  is given by 

 
K = Wu

1
Wux  B

T
P 

 (63) 

and P = PT > 0  is now the solution of a more complex algebraic Riccati equation 

 
PA ATP  PBWux

T Wu1 Wux  BTP Wx = 0
 (64) 

These results are standard facts of the LQR theory. For the sake of completeness a 

sketch of the proof for the sufficiency is given as follows: assume that Wux > 0 , 

Wx  0 , Wux  are given. Then it will be shown that (62) is minimized by K  in (60). 

The Riccati equation can be rewritten as 

 
PA  ATP  KWu

1
K Wx = 0  (65) 
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Pre- and post-multiplying by xT  and x , respectively and substituting     ̇    , it 

follows: 

    ( ̇    )  ( ̇    )                    

Using WuK = B
T
P Wux  and 

 

  
(    )   ̇        ̇, one arrives at 

 

xTWxx  2u
TWuxx  u

TWuu = 
d

d t
xTPx  u  Kx TWu u  Kx 

 
and by integration 

 

J x0 ,u =
1

2
x
T t0 Pt0

x t0 
1

2
u  Kx TWu u  Kx 

t0



 d t

 

is obtained. Obviously Jmin x0 =
1

2
x
T t0 Pt0

x t0  if u = Kx . 

Inverse optimality for LQR performance  

Given a stabilizing feedback u = Kx  for (57) one can formulate the problem whether 

there exists an LQR problem of the form (58) or (62) that has the given feedback as a 

solution, i.e., the feedback is optimal. If the pair A,B  is controllable, then for any 

given spectrum   there is a feedback gain K  such that  A BK =  . 

Concerning the pole-placement problem one can state that a spectrum   is LQ optimal 

if there is an associated K  such that it is a solution of the RICCATI equation with a 

Wx  0 . 

It turns out that the problem associated to the performance index (58) is nontrivial 

while the general case, corresponding to (62) can be always solved. 

 

The MIMO KALMAN-FDI 

In frequency domain the solution of the problem leads to the so called return 

difference condition. Its single input formulation is due to Kalman and was later 

extended by Anderson and Moore [9]. 

Specifically, K  is optimal for Wx =Wx
T  0  and Wu =Wu

T > 0  if and only if 

A BK  is stable and there exists an Wu =Wu
T > 0  that satisfies the return difference 

inequality: 

 
I  HLQ s  

T
Wu I  HLQ s   Wu  (66) 

for all s = j ,     or equivalently the Kalman-FDI is also satisfied: 

 
I  HLQ s  

T
Wu I  HLQ s   =Wu  H s H s 

 (67) 

where 

 
HLQ s = K(sI  A)1B

     
H s =G sI  A 1B      Wx  G

T
G  (68) 
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Choosing Wu = wuI , wu > 0  one has: 

Proposition 1 Consider (58), then the static state feedback gain K  is optimal for 

some Wx > 0 , Wu > 0  if and only if 

 
Rei A BK < 0

  
 i

 

 
i I K(i A)1B >1

  
 i

 
 

 

where  i  denotes the singular values. For SISO systems the Kalman-FDI becomes: 

 

 
wu 1 HLQ s   1 HLQ s   = wu  H s H s 

 (69) 

where   ( )  
 ( )

 ( )
 and 

  

HLQ s = kT sI  A 1 b kT s b 
k
T s b
A s 

. 

Denoting the closed loop characteristic align by
 
R s , 

 

  
R s = det sI  A bkT  det sI  A det 1 kT sI  A 1b



  

 

leading to 

  
R s = A s  1 HLQ s    

 

if wu  1  is chosen. From the Kalman-FDI one obtains: 

 

  

wu
R s R s 
A s A s 

 wu 
G s G s 
A s A s             

R s R s 
A s A s 

=1wu
1 G s G s 

A s A s   (70) 

which corrresponds to (36). We now give a simple test for a given state feedback gain k 

to decide if it can be an LQ optimal gain. 

Proposition 2 Assume that with u = kTx  the closed loop is stable. Then k is optimal 

for some Wx  0 , and wu > 0  if and only if 

 

  

R i 
A i 

 1


 (71) 

Proof. If k is LQ optimal, then the closed loop is stable and from the Kalman-FDI 

follows that 1 HLQ  1
 and (71) is satisfied. On the contrary, if k is stabilizing and 

(71) is satisfied, one can find a Wx  0  and wu > 0  such that the Kalman-FDI is 



Vol. 6. No. 5. 2013  Acta Technica Jaurinensis 

32 

satisfied, too, i.e., k is LQ optimal with this Wx  and wu .  

Example 3 

Let the system be given as 

 x  2x  u  
 

i.e., A = A  a = 2 , B= B  b =1. The open loop (plant) transfer function is 

 

P(s) =
1

s  2
=

b1

s  a1      
A s = s  a1  

Applying state feedback u = k x , allocate the pole to p1  r1 = 1 , i.e. 
 
R s  s  r1 . 

This will be performed by k =1 and the closed loop system will be 

 x = 1x  u  

i.e., 

  
R s = s  r1 = s 1

 

Plotting the Bode diagram for 

  

R i 
A i 


1

2

1 i

1 i 2
 

one can deduce that this is below the 0  dB for small frequencies and asymptotically 

approaches 0  dB if  . This shows that this k cannot be optimal for the LQR 

performance index (58). 

It is seen that using static state feedback, it is not possible to "slow down" the system 

since r1 > a1  has to be satisfied for LQ optimality. 

Time domain conditions 

In time domain inverse optimality of the feedback gain can be described through the 

concept of passivity. 

For a LTI system passivity, equivalent in this case to the positive realness, is assured 

in accordance with the following lemma, often termed as the KALMAN-YACUBOVICH-

POPOV lemma: 

Lemma 1 A stable system (57) is passive, if and only if, there exists a matrix 

P = PT > 0  such that 

 

 

PA ATP = Wx  0

PB = CT  (72) 

with  CRmn  a suitable output matrix for system (61). Then, inverse optimality is 

given by the following result: 

Proposition 3 A stable feedback gain-matrix K  is optimal for a given input weighting 

matrix Wu > 0  and some state weighting matrix Wx  0 , i.e., it minimizes a 

performance index of the form of (58), if and only if, the closed-loop system with gain-



Acta Technica Jaurinensis  Vol. 6. No. 5. 2013 

33 

matrix 

 
K =

1

2
K

 (73) 

is passive for an output matrix C = WuK . 

 

Inverse optimality for LQR performance (67) 

Including the cross term Wux  in the LQR performance index makes the problem 

trivial. For a stabilizing state feedback K one can find the extended matrix W (see (75)) 

such, that K is LQ optimal according to the performance (62). The procedure of deriving 

such weighting matrices, however, is neither trivial, nor unique. We show one possible 

solution that follows the procedure in [12]. 

It is obvious, that for any Wu > 0  the stabilizing feedback u = Kx  is optimal for 

the performance index: 

 

J(x0 ,u) =
1

2
u  Kx TWu u  Kx 

0



 d t

 (74) 

i.e., Wx = K
T
WuK  0  and Wux = WuK  in (58). Observe that this corresponds to the 

solution P = 0  of the Riccati equation. 

A more standard solution is given by the following result: 

 

Proposition 4 For a given stabilizing feedback K  there exists a feedback law 

u = Kx  and an extended matrix 

 

W 
Wx Wux

Wux
T

Wu









 > 0

 (75) 

such that 

 

[xTuT]
Wx Wux

Wux
T

Wu










x

u










0



 dt min
KKstab

 (76) 

if 

 

Wu >
B
T
P

2 P A BK 
 (77) 

where P = PT > 0  satisfies the Lyapunov equation 

 
P A BK  A BK T P < 0

 (78) 
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Then 

 
Wx = P(A  BK)  (A  BK)

T
P  KTWuK  KTBTP  PBK

 (79) 

 Wux = (B
T
P WuK)  (80) 

 

Example 4 

Consider the Example 3 again. Let 

 x = 2x  u  

and apply the state feedback k =1. The closed loop system x = 1x  u  becomes 

stable and "slower". It can be shown that this k =1 is optimal for the LQR performance 

index 

 

5x2  4xu  u2 
0



 d t

 (81) 

Indeed, using the Riccati-equation with 

 A  A = a = 2       B B =b =1      
Wx Wx = wx = 5  

 
Wux  Wux  wux = 2     

Wu  Wu  wu =1 

and 

 
4p2  p  2 2  5 = 0

 

and choosing the positive solution p =1 , the state feedback is given by 

 
k = wu

1 bp wux =  1 2 =1
 

and the closed loop matrix A A = a = a bk  21= 1 as required, i.e., 

p1  r1  1 . So the closed-loop is slower- 

This result was obtained by using the method in Proposition 4. Pick any p > 0  such 

that it is a solution of the Lyapunov equation 2p a  bk < 0 . Since a = abk =1  

and 2p 1 < 0  for all p > 0 , one can choose p =1  and compute 

 

wu,min =
bp 2

2p a
=
1

2
 

Choose any wu > wu,min , e.g., let wu =1 , then wx = 2 1 2 = 5  and 

wux = (11) = 2 . Notice that this solution is not unique, any Wu  wu  1 

would do, e.g., wu = 2  results in wx =10 , wux = 4 . 
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7. Conclusions 

The paper presents the specific historical comparison of the relationships between the 

classical quadratic integral criterion, the pole-placement state feedback, the algebraic 

Riccati equation based LQR paradigm and Kalman's frequency domain approach.  

Then two low order examples are shown how the obtained quadratic polynomial 

equation can be used. It is shown that arbitrary pole placement is not possible by 

standard classical LQ optimality by choosing only Wx , Wu  weights. For a second order 

case the unreachable domains are graphically demonstrated. 

The MIMO LTI case is discussed next with more general LQR criterion which 

penalizes the interaction between the state and input variables. In this framework it is 

possible to obtain LQR solutions for the whole parameter space, but the design of the 

crossterm weight Wux  is necessary, too. The uniqueness of the proposed solution is not 

guaranteed. 
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