
 

ACTA TECHNICA JAURINENSIS 

Vol. XX, No. Y, pp. ZZ-ZZ, 2026 

10.14513/actatechjaur.00929 
 

 

0 

Research Article 

Integrating Explainable AI into Model-Driven and Low-Code 

Enterprise Applications 

Dominik Banka1,*, Tamas Orosz1, Attila Ritzl2 

1Department of Data Science and Data Engineering, Eötvös Loránd University 

Pázmány Péter sétány 1/C, 1117 Budapest, Hungary  
2SAP Hungary Kft. 

Záhony u. 7., 1031 Budapest, Hungary 

*e-mail: f64nte@inf.elte.hu 

Submitted: 28/11/2025 Revised: 21/01/2026 Accepted: 22/01/2026 Published online: 05/02/2026 

Abstract: Explainable artificial intelligence has become increasingly important in enterprise settings, as 

organisations require transparent and trustworthy decision-support tools. At the same time, low-code 

and model-driven platforms are widely adopted for building business applications, yet their high level 

of abstraction often hides the reasoning behind automated recommendations. This study examines 

how explainability can be systematically incorporated into such environments by introducing a 

modular approach that separates predictive functions from the generation of human-interpretable 

explanations. The proposed concept builds on an external reasoning layer that provides both 

predictive outputs and concise, user-oriented justifications through a unified interface, allowing 

enterprise systems to present explanations without modifying existing development workflows. To 

demonstrate the feasibility of the approach, the study applies it to a representative enterprise scenario 

involving personalised recommendations. The proof-of-concept implementation shows that 

explanations can be delivered in real time and integrated seamlessly into standard business user 

interfaces. The results highlight that the proposed solution can enhance transparency, support user 

trust, and increase the adoption of data-driven features in low-code and model-driven applications. 

The study contributes a practical architectural pattern that can serve as a foundation for future 

explainable enterprise systems and provides initial evidence that explanation services can operate 

effectively alongside contemporary development paradigms. 
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I. INTRODUCTION 

Artificial Intelligence (AI) has become integral to 

enterprise systems, offering predictive insights that 

enhance automation and decision-making across 

industries. Yet, the opacity of many machine 

learning models creates barriers to adoption: 

business users often struggle to trust 

recommendations they cannot interpret, while 

regulatory frameworks increasingly demand 

transparency and accountability [1]. Explainable 

Artificial Intelligence (XAI) addresses this challenge 

by making model reasoning accessible through 

techniques such as LIME (Local Interpretable 

Model-Agnostic Explanations) and SHAP (SHapley 

Additive exPlanations) [2]. In enterprise contexts, 

explainability is not only a technical feature but also 

a prerequisite for trust, compliance, and effective 

human–AI collaboration [3]. The maturity of the 

XAI field is reflected in several comprehensive 

reviews that consolidate explanation methods, 

application domains, and open challenges [4]. 

Recent systematic reviews indicate that XAI 

evaluation is still predominantly conducted in 

isolated, method-centric settings and often relies on 

anecdotal evidence, with limited insight into how 

explanations function within integrated, real-world 

systems [5]. However, despite the growing interest 

in explainability, little attention has been given to its 

practical integration into low-code enterprise 

environments, where the abstraction layers often 

prevent access to the information required for 

generating explanations, even though recent research 

highlights that XAI should span the entire software 

development lifecycle, from design to deployment 

[6]. Parallel to these developments, low-code 

platforms have gained prominence for rapidly 

building enterprise applications with minimal coding 

effort. Solutions such as SAP Build or Microsoft 
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Power Apps empower both developers and business 

users to assemble applications quickly, often with 

embedded AI services. These can be complemented 

by model-driven frameworks such as SAP’s Cloud 

Application Programming Model (CAP), which 

generates standardized data models and backend 

services for enterprise applications. However, these 

integrations generally expose AI as a black-box 

service, providing limited insight into how 

predictions are generated and making it difficult for 

users to rely on the results in practice [7]. This 

agenda is further accelerated by emerging regulatory 

expectations (e.g., risk-based governance and 

transparency duties) and enterprise demands for 

audit-ready AI [8]. This paper examines how 

explanation techniques can be embedded into 

enterprise low-code and model-driven applications 

in a way that is technically feasible and usable for 

different organisational roles. The work focuses on a 

concrete enterprise scenario using SAP’s CAP and 

demonstrates how explanations can be exposed 

through APIs and consumed in a low-code user 

interface. 

 The contributions of this paper are threefold: 

• Identify the technical and architectural 

challenges that arise when integrating XAI methods 

into low-code and model-driven enterprise 

platforms. 

• Propose a practical architecture that 

operationalises explainability as a service, enabling 

predictions and explanations to be retrieved through 

a unified interface. 

• Demonstrating the feasibility of the 

approach through a prototype built with SAP’s CAP 

and provide initial empirical observations regarding 

performance and usability. 

The remainder of this paper presents the proposed 

architecture, the prototype implementation, and the 

results of the initial evaluation. 

II. METHODOLOGY AND SYSTEM 

ARCHITECTURE 

This section outlines the methodological basis of 

the proposed approach and the architectural design 

that enables explainability to be integrated into low-

code enterprise applications. First, the explanation 

techniques underpinning the solution are introduced, 

followed by the rationale for separating prediction 

and explanation logic into an external service. The 

latter part of the section presents the system 

architecture and the integration points used in the 

prototype. 

1. Methodological Foundations 

The approach presented in this study is 

based on model-agnostic, post-hoc explanation 

techniques that can operate independently of the 

underlying predictive model [9], and recent surveys 

continue to highlight the importance of emerging 

XAI techniques that prioritise interpretability, 

robustness and practical deployability in enterprise 

settings [10]. This is a practical requirement in 

enterprise low-code environments, where 

applications typically function as thin clients and 

have no direct access to model parameters or training 

data. Toolkits such as AI Explainability 360 

demonstrate how diverse explanation methods can 

be packaged as reusable services for enterprise 

applications [11]. In such settings, explanation 

methods must be capable of running outside the 

application layer and must return outputs in a 

structured form that can be consumed by 

heterogeneous frontends. For these reasons, 

techniques that produce instance-level feature 

attributions and can be exposed through standard 

service interfaces are particularly well suited. 

Explanation techniques are often grouped into 

intrinsic and post-hoc categories [12]. Intrinsic 

models, such as decision trees or linear models, are 

interpretable by design, as Illustrated in Fig. 1 Post-

hoc methods, by contrast, provide insights into a 

model’s behaviour without modifying the model 

itself. They can produce explanation formats such as 

feature-level contributions, rule-based descriptions, 

example-based reasoning or short textual statements. 

These outputs are particularly relevant in enterprise 

settings, where system recommendations must be 

traceable and aligned with established business logic 

[13]. Among post-hoc methods, SHAP and LIME 

were selected for this work due to their practical 

suitability for externalised explanation services. 

 SHAP provides additive feature attributions 

grounded in cooperative game theory. The 

resulting values can be represented as 

structured JSON objects, making them 

 

Figure 1. Intrinsic and post-hoc explanation 

methods and their role in generating model-level 

and instance-level explanations. 
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straightforward to expose through REST or 

OData services. 

 

 LIME approximates local model behaviour 

through lightweight surrogate models, 

offering a computationally efficient 

alternative when real-time responsiveness 

is required. 

Both techniques generate instance-level 

explanations aligned with typical low-code UI 

interaction patterns (cards, tables, tooltips) and 

support dynamic rendering within application 

workflows. These methodological considerations in

formed the selection of specific explanation techniq

ues, which are discussed below. While both SHAP 

and LIME are architecturally supported by the 

proposed approach, the current prototype 

implementation relies exclusively on SHAP-based 

explanations. SHAP was selected as the primary 

explanation method due to its stable, additive feature 

attributions and its suitability for generating concise, 

human-readable justification strings in an enterprise 

context. LIME is therefore discussed as a compatible 

post-hoc technique, but it is not actively used in the 

experimental evaluation presented in this paper. 

2. Rationale for an External Explanation Layer 

Low-code enterprise applications are typically 

designed around strong abstraction layers [14]. 

While this supports rapid development and shields 

users from technical complexity, it also limits access 

to the internal components of predictive models. The 

application layer usually interacts with AI through 

pre-packaged blocks or external API calls, receiving 

a prediction but not the underlying reasoning. As a 

result, explanation logic cannot be embedded 

directly into the user interface or the low-code 

workflow engine. A further constraint is that 

enterprise backends such as SAP’s CAP enforce 

strict separation of concerns. Business logic, data 

modelling and service exposure are well defined, but 

model execution is not part of the runtime 

environment. This creates a practical need to 

decouple prediction and explanation from the 

application backend and to run them in an isolated 

component. For these reasons, the proposed 

approach introduces an external explanation layer 

that encapsulates both the predictive model and the 

post-hoc explanation methods. This layer is 

responsible for generating predictions and instance-

level explanations and exposes both through uniform 

REST endpoints. The responses are returned in a 

structured JSON format, making them compatible 

with CAP service entities and consumable by low-

code frontends. Separating explanation generation 

into an independent service provides several 

benefits. First, it allows explanation methods such as 

SHAP and LIME which may require access to 

training-time artefacts or local model perturbations 

to run without constraints imposed by the enterprise 

runtime. Second, it supports scalability: resource-

intensive computations can be isolated and executed 

asynchronously if needed [15]. Third, it enables 

multi-frontend interoperability, as the same 

explanation service can support diverse applications 

through common APIs. Industry proposals such as 

AI 

FactSheets illustrate how structured documentation 

of model behaviour can support such governance-

oriented integration patterns [16]. This architectural 

rationale forms the basis of the system design 

described in the next subsection. 

3. System Architecture 

The system architecture follows the design 

principles outlined above and separates prediction 

and explanation logic into a dedicated service layer. 

The overall structure consists of three components: 

1. The explanation service hosting the 

predictive model and post-hoc 

explanation methods, 

2. the enterprise backend implemented in 

SAP’s CAP, and 

3. the low-code frontend that consumes 

predictions and explanations through 

standard service interfaces.  

The interaction between the three layers is 

organised as a simple but extensible request–

response flow. As shown in Fig. 2, the low-code 

frontend initiates the process by triggering a 

prediction or explanation request through an OData 

V4 service (a standardized REST-based data 

protocol widely used in enterprise applications) 

exposed by the CAP backend. The frontend does not 

communicate directly with the AI module; instead, 

the backend acts as an integration layer and forwards 

the request to the external AI service. On the 

backend, the request is processed by a CAP handler 

(a server-side business logic component in SAP’s 

Cloud Application Programming Model) 

implemented in Java. The handler extracts the 

relevant input fields from the OData entity, invokes 

the AI service’s REST endpoint (/predict or 

/explain), and receives the result as a JSON object. 

The response is mapped to CAP entities 

(PredictionResult and ExplanationResult), which 

ensures type safety and makes the results accessible 

to any frontend capable of consuming OData 

services. The AI service layer is responsible for 

executing the predictive model and generating 

instance-level explanations. The service loads a 

serialized model artefact (model.pkl) and a 

background dataset needed for SHAP computations. 
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For explanation requests, the service computes 

SHAP values or LIME feature weights, depending 

on the endpoint invoked. Both explanation formats 

are returned in a structured JSON schema, allowing 

seamless transformation into CAP entities. Once the 

backend receives the model outputs, it exposes them 

to the frontend using standard OData navigation 

properties. The low-code UI (Fiori Elements or SAP 

Build Apps) can retrieve the explanation results 

either by automatic metadata binding or by explicit 

API calls. Since the returned explanation objects 

follow a simple tabular structure (feature–value 

pairs), they can be rendered as analytical cards, 

tooltips, tables or side panels without custom client-

side logic. 

This architecture ensures that prediction and 

explanation logic remain completely decoupled from 

the enterprise application runtime. It also allows the 

AI component to evolve independently—for 

example, different models, updated SHAP 

background sets or alternative explanation 

algorithms can be deployed without modifying the 

backend or the frontend. The use of standard REST 

and OData interfaces further supports 

interoperability with additional applications that 

may require access to prediction or explanation data. 

III. PROTOTYPE IMPLEMENTATION 

1. Dataset and Model Training 

The prototype is based on a supervised learning 

model that predicts a personalised recommendation 

score for sport events in a Sport event registration 

scenario. The training data is stored in a CSV file 

(training.csv) and contains historical interactions 

between users and sport events. Each row represents 

an event instance with categorical and numerical 

attributes, as well as a target label indicating how 

attractive the event was to the user (label_score on a 

0–100 scale). The dataset used in the prototype 

consists of 122 historical user–event interaction 

records collected for a single representative user. 

This intentionally limited setup reflects an early-

stage enterprise scenario, where historical 

interaction data is often sparse or available only for 

a small number of users. As a result, the dataset is 

not intended to support claims about generalizable 

recommendation performance, but rather to serve as 

a functional basis for demonstrating prediction and 

explanation integration. 

Given this scope, the primary objective of model 

training is to obtain a stable and interpretable model 

suitable for explanation generation, rather than to 

maximize predictive accuracy. This design choice 

allows the behaviour of the explainability service to 

be evaluated in isolation, without confounding 

effects introduced by heterogeneous user 

populations or large-scale data distributions. 

The following input features are used: 

 sportType (categorical): sport category of 

the event (e.g. yoga, spinning); 

 area (categorical): location of the event; 

 timeOfDay (categorical): binned 

representation of the start time (e.g. 

morning, noon, afternoon, evening); 

 user_id (categorical): identifier of the user; 

 capacity (numeric): maximum number of 

participants; 

 startHour (numeric): hour of the event 

start time. 

The data is pre-processed in the training script by 

cleaning string fields, coercing numeric values, and 

clipping the target label to the [0, 100] range. 

Categorical features are encoded using a 

OneHotEncoder, combined with numeric features in 

a ColumnTransformer. The predictive model is a 

RandomForestRegressor configured with 200 trees 

and out-of-bag estimation [17]. The encoder and the 

model are wrapped in a single Pipeline object, which 

is trained on a hold-out split of the dataset and then 

persisted using joblib as model.pkl. Alongside the 

model, a columns.json file is generated to store the 

list of categorical and numerical columns. These 

artefacts are loaded by the XAI service at runtime 

and form the basis of both prediction and 

explanation. 

 

Figure 2. System architecture of the proposed 

explainability-as-a-service approach integrating an 

external XAI service with a CAP-based backend 

and low-code frontend. 

 

 



D. Banka et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2026 

4 

2. XAI Service Implementation 

The explanation logic is implemented as an 

external Flask-based microservice. The service loads 

the trained scikit-learn pipeline (model.pkl) and the 

associated metadata (columns.json) on first use. A 

TreeExplainer from the SHAP library is constructed 

on top of the random forest component of the 

pipeline. 

The service exposes three HTTP endpoints: 

 GET /health – returns a simple status 

indicator and whether the model artefact 

is available; 

 POST /predict – accepts a JSON payload 

containing a user_id and an event object, 

transforms the input into the model’s 

feature representation, and returns a 

normalised recommendation score 

between 0 and 100; 

 POST /explain – accepts the same input 

structure and returns a list of feature-level 

explanations based on SHAP values. 

Incoming event objects are converted into model 

features by the featurize function, which normalises 

string fields (sportType, area, timeOfDay) and 

derives a startHour either from the given field or 

from the event’s start time. The /predict endpoint 

constructs a pandas DataFrame, calls the pipeline’s 

predict method, and rounds the output to an integer 

score. 

For /explain, the service passes the preprocessed 

input through the pipeline’s pre step, applies the 

SHAP explainer to the transformed vector, and maps 

the resulting SHAP values back to human-readable 

feature names (one-hot encoded categories plus 

numeric fields). Features are ranked by absolute 

contribution, and the most influential ones are 

selected either by a requested topK parameter or a 

minimum percentage threshold. Each explanation 

item contains: 

 the feature name, 

 the signed SHAP impact, 

 the absolute impact, 

 the percentage contribution, and, 

 a short human-readable reason string 

generated by the humanize_reason 

helper. 

 To support enterprise usability, raw SHAP values 

are not presented directly to end users. Instead, the 

explanation service transforms feature attributions 

into short, human-readable reason strings. The most 

influential features are first identified based on their 

relative contribution to the prediction, and only a 

small subset is retained to avoid information 

overload. These features are then mapped to 

predefined, business-oriented categories such as 

sport preference, location convenience, or time-of-

day suitability. The resulting labels are combined 

into concise textual summaries that can be displayed 

directly in low-code user interfaces. This 

deterministic transformation ensures that 

explanations remain concise, consistent, and aligned 

with enterprise terminology, which is essential for 

user trust and adoption. The final JSON response 

consists of a modelVersion identifier, the 

explanation method ("shap"), and the list of 

explanation items. This structured format is designed 

to be consumed easily by both CAP services and 

low-code user interfaces. 

IV. Integration into theCAP Backend 

The enterprise integration is implemented in the 

EventServiceHandler of the Sport Events CAP 

application. The central entity is SportEvent, which 

represents individual sport events and includes two 

virtual fields for recommendations: 

 recommended : Integer – numeric score 

between 0 and 100; 

 whySummary : String(500) – short 

textual justification. 

During read operations on SportEvent, a @Before 

handler adjusts the CQN query so that all required 

fields (participants, status, virtual fields) are 

available for post-processing. The handler uses a 

configurable base URL (XAI_BASE, read from the 

XAI_URL environment variable) and an HttpClient 

to call the /predict endpoint. The returned score is 

stored in the recommended field of the SportEvent 

instance. In a second pass, the same events are sent 

to the /explain endpoint with a topK parameter (e.g. 

3). The service returns a list of explanation objects, 

from which the handler extracts the human-readable 

reason strings. These are concatenated into a single 

summary text separated by bullet characters and 

assigned to the whySummary field. If the service is 

unavailable or no explanations are returned, the 

summary remains empty. 

This integration pattern keeps the CAP backend 

agnostic of the underlying model and explanation 

method. The CAP service only needs to construct 

JSON requests and interpret JSON responses, while 

all model-specific logic is contained in the external 

Python service.  

V. Frontend Behaviour 

On the UI side, the Fiori Elements-based list report 

for SportEvent includes the recommended and 

whySummary fields in the line item annotation. As a 

result, end-users see, for each event, a numeric 

recommendation score as well as a short, natural-
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language justification (e.g. “Matches your preferred 

sport · Convenient location · Preferred time of day”). 

These fields behave like any other OData 

properties from the perspective of the UI framework. 

The underlying explainability logic remains 

invisible to the application developer using SAP 

Fiori Elements or, in a future extension, SAP Build 

Apps. This demonstrates that explainability can be 

integrated as a reusable service without modifying 

the low-code frontend itself. 

VI. RESULTS 

This section summarises the main results of the 

experimental prototype, focusing on the 

performance of the model, the behaviour of the 

explainability service, and the integration outcomes 

observed in the CAP-based enterprise application. 

All quantitative results, latency measurements, and 

example explanations reported in this section are 

based exclusively on SHAP-based explanations. 

Although LIME is supported by the proposed 

architecture, its runtime behaviour and explanation 

quality were not evaluated in the current prototype 

and are left for future work. 

1. Model Performance 

The predictive model was trained on the Sport 

Events dataset using an 80/20 train–validation split. 

The RandomForestRegressor, combined with the 

preprocessing pipeline described earlier, produced 

consistently high accuracy across both subsets: 

 Training set: 

o MAE = 1.12 

o R² = 0.998 

 Validation set: 

o MAE = 1.93 

o R² = 0.990 

Although these values are close to the upper 

performance bound, they do not indicate overfitting. 

Instead, they reflect the characteristics of the dataset 

used in this prototype. The number of samples is 

limited, the feature space is relatively low-

dimensional, and the target behaviour is highly 

regular, resulting in low intrinsic variance. 

Consequently, the model is able to approximate the 

underlying patterns almost perfectly on both the 

training and validation sets. 

These observations imply that the goal of the 

prototype is not to maximise predictive accuracy, but 

to provide a stable basis for generating meaningful 

explanations. The model serves as a functional 

component within the explainability-as-a-service 

architecture, ensuring that SHAP-based attributions 

reflect genuine patterns present in the data rather 

than noise. Further evaluation with larger and more 

diverse datasets would be required to assess 

generalisation performance in real-world enterprise 

environments. 

2. Response Time and Service Behaviour 

The runtime characteristics of the external XAI 

service were assessed using direct HTTP calls, 

where response times were captured with the 

time_total metric of curl. All measurements were 

performed on a development laptop equipped with 

an Intel Ultra 5 CPU and 32 GB RAM, without any 

caching or precomputation layers enabled. 

As visible in Table 1. , for the /predict endpoint, 

a typical request completed in approximately 0.058 

seconds, and repeated runs showed only minor 

variation around this value. This latency is well 

below the threshold considered acceptable for 

interactive enterprise applications, where sub-100 

ms responses are generally sufficient for seamless 

user experience. 

The /explain endpoint, which performs SHAP-

based feature attribution, completed significantly 

faster than expected. In repeated measurements, the 

total execution time was around 0.0056 seconds, 

indicating that the explanation logic remains 

lightweight for the current model size and input 

structure. Even though SHAP computations can 

become expensive in larger deployments, the 

prototype showed no signs of bottlenecks under 

typical runtime conditions. 

Both endpoints consistently returned well-formed 

JSON responses, and no service interruptions or 

request failures were observed during the evaluation 

period. These results confirm that the externalised 

XAI layer is fast enough to support synchronous 

invocation from CAP-based enterprise applications. 

acceptable.  

3. Integration Results in the CAP Application 

The CAP backend successfully integrated both the 

prediction and explanation services using 

synchronous HTTP requests. 

After enriching the SportEvent entity with the 

virtual fields recommended and whySummary, the 

Sport Events Fiori User Interface automatically 

displayed the additional columns without 

modifications to the frontend code. 

Table 1. Mean response latency of the external 

XAI service endpoints measured during prototype 

evaluation 

Endpoint Mean latency Scenario 

/predict 0.058 Single instance 

/explain 0.0056 Top-3 features 
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Fig. 3 shows the output of the prototype as displayed 

in a Fiori Elements List Report. 

 

Figure 3. Output of the prototype in the Fiori 

Elements UI 

To assess explanation quality at a minimal level, 

we qualitatively inspected the generated 

explanations for plausibility and domain 

consistency. Table 2. presents a representative 

example of a SHAP-based explanation for a single 

recommendation instance. In this example, sport 

type preference is identified as the most influential 

factor, followed by location and time-of-day 

suitability. This ordering aligns with intuitive 

expectations in a sport event registration context, 

where users typically prioritise the type of activity 

first, and then consider practical constraints such as 

location and schedule. While this evaluation does not 

constitute a formal user study or quantitative 

faithfulness assessment, it provides initial evidence 

that the explanation service highlights meaningful 

input factors rather than spurious correlations. This 

qualitative validation is sufficient for the scope of the 

present work, which focuses on architectural 

feasibility and enterprise integration rather than on 

comparative evaluation of explanation methods. 

The application automatically binds both the 

recommendation score and the generated 

explanation text to UI fields, without requiring any 

custom front-end logic. The explanation text is 

composed from the top SHAP-based feature 

contributions and provides short, human-readable 

reasons such as the preferred sport type, the time-of-

day preference, or the convenience of the location. 

This demonstrates that the proposed approach can 

surface XAI outputs directly in low-code enterprise 

user interfaces. 

A typical example shown to end users: 

 Recommended: 87 

 Why?: “Matches your preferred sport · 

Convenient location · Preferred time of 

day” 

The explanations updated dynamically for each 

record during list retrieval, confirming that: 

 the CAP - XAI request construction 

works reliably, 

 the XAI service responds with consistent 

JSON, 

 the Fiori UI can consume the enriched 

entity structure directly. 

4. Observed Limitations 

Testing identified three current limitations: 

 Small training dataset: 

The model generalises sufficiently for prototyping 

but could be improved with more diverse user–event 

interaction data. 

 SHAP performance on large batches: 

While individual explanation calls are fast, 

computing explanations for dozens of events in 

parallel may require asynchronous processing or 

caching. 

 No frontend-level ranking or UI 

components: 

In this prototype, the frontend only displays the 

scores and explanations. Interactive drill-down (bar 

charts, visual SHAP plots) is technically feasible 

but not implemented. 

5. Summary of Results 

Overall, the prototype demonstrates that: 

 model training and SHAP-based 

explanations work reliably in an 

externalised Python service; 

 CAP can integrate prediction + 

explanation services without modifying 

its internal logic; 

 low-code UIs (Fiori Elements) can 

display XAI outputs with minimal 

configuration; 

 the explanation service remains 

responsive enough for interactive usage. 

The results validate the feasibility of the proposed 

“explainability-as-a-service” architecture in a 

realistic enterprise setting. 

VII. DISCUSSION 

The results of the prototype demonstrate that 

explainability can be operationalised as a separate 

service layer in enterprise environments, but they 

Table 2. Example ranking of feature categories for 

a single sport event recommendation. 

Feature 

category Contribution Explanation 

Sport Type High Preferred Sport 

Location Medium  Location fit 

Time of day Medium  Preferred time  
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also highlight important considerations for 

robustness, scalability, and organisational fit. This 

section discusses the broader implications of the 

findings, the architectural trade-offs, and the 

alignment of the approach with current enterprise 

development practices. Separating prediction and 

explanation logic into an external service proved to 

be an effective strategy for low-code and model-

driven environments. The architecture allowed 

SHAP- and LIME-based reasoning to operate 

independently of the enterprise backend while 

maintaining standardised integration points through 

REST interfaces. 

This reinforces the assumption underlying the 

methodology: explainability must not depend on 

access to model internals inside the enterprise 

runtime, particularly in settings where: 

 the backend provides only data modelling 

and business logic (e.g., CAP), 

 the frontend is low-code and cannot 

perform computationally heavy 

reasoning, 

 model execution must remain isolated for 

maintainability or security reasons. 

The successful integration within CAP also 

shows that enterprise runtime environments are 

sufficiently flexible to incorporate external AI logic 

without breaking their internal separation-of-

concerns principles. However, the architecture also 

relies heavily on synchronous HTTP 

communication. While this was acceptable for the 

Sport Events scenario, larger-scale enterprise 

systems may require asynchronous processing, 

caching, or message-based pipelines (e.g., event-

driven architectures) to prevent throughput 

bottlenecks. The prototype confirmed that low-code 

frontends can directly consume explanation outputs 

if they are presented in a structured and lightweight 

form. The simple text-based summaries generated by 

the backend were easily incorporated into the Fiori 

Elements UI. This demonstrates that explainability 

can be embedded into low-code user interfaces 

without requiring custom components. These 

findings align with recent research emphasising that 

explanations must be tuned to user roles rather than 

to data scientists, and that information overload can 

reduce, rather than improve the user trust. Large 

research programs such as DARPA XAI have 

similarly stressed the importance of user-tailored 

explanations [18]. In the Sport Events context, 

concise explanations were sufficient for decision-

making, but regulated or safety-critical domains may 

require more detailed, auditable output formats. 

Although the prototype validates the feasibility of 

the architecture, multiple limitations must be 

acknowledged.  

 The model was trained on a limited dataset, 

constraining both predictive validity and 

explanation fidelity. More varied user–

event interaction data would allow stronger 

conclusions about explanation quality. 

 Even though single-instance explanations 

were fast, scaling to larger batch processing 

would require optimisation. Techniques 

such as kernel SHAP, background dataset 

reduction, or explanation caching may be 

necessary for high-load scenarios. 

 The current work does not examine how 

different user groups interpret or value 

explanations. For enterprise adoption, 

empirical evidence on user comprehension, 

trust improvement, or perceived usefulness 

would be highly relevant. 

These limitations represent natural next steps for 

future work and do not undermine the core 

architectural findings. 

VIII. CONCLUSION 

This paper presented an explainability-as-a-service 

architecture designed to integrate post-hoc XAI 

techniques into enterprise low-code and model-

driven environments. The motivation for the work 

stemmed from two parallel developments: the 

increased reliance on AI-driven decision support in 

enterprise applications and the rapid adoption of 

low-code tools that abstract away technical details 

but consequently limit access to model internals. 

These factors make it difficult to deliver transparent, 

auditable and user-oriented explanations within 

typical enterprise system landscapes. 

The study demonstrated that separating prediction 

and explanation logic into an external service layer 

provides a practical and flexible way to embed 

explainability into heterogeneous enterprise 

frontends. Using a prototype implementation built 

with SAP’s CAP and a Python-based service 

exposing SHAP and LIME explanations, we showed 

that instance-level justifications can be generated on 

demand and consumed by low-code user interfaces 

without modifying the underlying application 

runtime. The results confirm the feasibility of this 

architectural pattern and highlight its suitability for 

environments with strict separation-of-concerns 

principles. At the same time, the findings reveal 

areas requiring further investigation. Explanation 

quality and predictive performance depend heavily 

on training data volume, and the computational cost 

of SHAP-based reasoning poses scalability 

challenges for real-time scenarios. Additionally, 

although the prototype provides functional 

explanations in a live enterprise context, user-

centred evaluation is still needed to assess how 
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different stakeholder groups interpret and value the 

explanations produced. 

Overall, the proposed approach contributes to the 

emerging design space of transparent enterprise AI 

by demonstrating how model-agnostic explanation 

techniques can be operationalised within low-code 

and model-driven platforms. Future work will focus 

on expanding the evaluation with larger datasets, 

assessing user comprehension, and extending the 

architecture with monitoring, caching and 

governance capabilities to support regulated and 

large-scale deployments. 
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