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Explainable artificial intelligence has become increasingly important in enterprise settings, as
organisations require transparent and trustworthy decision-support tools. At the same time, low-code
and model-driven platforms are widely adopted for building business applications, yet their high level
of abstraction often hides the reasoning behind automated recommendations. This study examines
how explainability can be systematically incorporated into such environments by introducing a
modular approach that separates predictive functions from the generation of human-interpretable
explanations. The proposed concept builds on an external reasoning layer that provides both
predictive outputs and concise, user-oriented justifications through a unified interface, allowing
enterprise systems to present explanations without modifying existing development workflows. To
demonstrate the feasibility of the approach, the study applies it to a representative enterprise scenario
involving personalised recommendations. The proof-of-concept implementation shows that
explanations can be delivered in real time and integrated seamlessly into standard business user
interfaces. The results highlight that the proposed solution can enhance transparency, support user
trust, and increase the adoption of data-driven features in low-code and model-driven applications.
The study contributes a practical architectural pattern that can serve as a foundation for future
explainable enterprise systems and provides initial evidence that explanation services can operate
effectively alongside contemporary development paradigms.

Explainability; Low-code; Model-driven; Integration; Transparency, Enterprise applications
XAl field is reflected in several comprehensive

reviews that consolidate explanation methods,
application domains, and open challenges [4].

l. INTRODUCTION

enterprise systems, offering predictive insights that
enhance automation and decision-making across
industries. Yet, the opacity of many machine
learning models creates barriers to adoption:

business  users often  struggle to  trust
recommendations they cannot interpret, while
regulatory  frameworks increasingly demand

transparency and accountability [1]. Explainable
Artificial Intelligence (XAl) addresses this challenge
by making model reasoning accessible through
techniques such as LIME (Local Interpretable
Model-Agnostic Explanations) and SHAP (SHapley
Additive exPlanations) [2]. In enterprise contexts,
explainability is not only a technical feature but also
a prerequisite for trust, compliance, and effective
human-Al collaboration [3]. The maturity of the

Recent systematic reviews indicate that XAl
evaluation is still predominantly conducted in
isolated, method-centric settings and often relies on
anecdotal evidence, with limited insight into how
explanations function within integrated, real-world
systems [5]. However, despite the growing interest
in explainability, little attention has been given to its
practical integration into low-code enterprise
environments, where the abstraction layers often
prevent access to the information required for
generating explanations, even though recent research
highlights that XAl should span the entire software
development lifecycle, from design to deployment
[6]. Parallel to these developments, low-code
platforms have gained prominence for rapidly
building enterprise applications with minimal coding
effort. Solutions such as SAP Build or Microsoft
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Power Apps empower both developers and business
users to assemble applications quickly, often with
embedded Al services. These can be complemented
by model-driven frameworks such as SAP’s Cloud
Application Programming Model (CAP), which
generates standardized data models and backend
services for enterprise applications. However, these
integrations generally expose Al as a black-box
service, providing limited insight into how
predictions are generated and making it difficult for
users to rely on the results in practice [7]. This
agenda is further accelerated by emerging regulatory
expectations (e.g., risk-based governance and
transparency duties) and enterprise demands for
audit-ready Al [8]. This paper examines how
explanation techniques can be embedded into
enterprise low-code and model-driven applications
in a way that is technically feasible and usable for
different organisational roles. The work focuses on a
concrete enterprise scenario using SAP’s CAP and
demonstrates how explanations can be exposed
through APIs and consumed in a low-code user
interface.

The contributions of this paper are threefold:

. Identify the technical and architectural
challenges that arise when integrating XAl methods
into low-code and model-driven enterprise
platforms.

. Propose a practical architecture that
operationalises explainability as a service, enabling
predictions and explanations to be retrieved through
a unified interface.

. Demonstrating the feasibility of the
approach through a prototype built with SAP’s CAP
and provide initial empirical observations regarding
performance and usability.

The remainder of this paper presents the proposed
architecture, the prototype implementation, and the
results of the initial evaluation.

Il. METHODOLOGY AND SYSTEM
ARCHITECTURE

This section outlines the methodological basis of
the proposed approach and the architectural design
that enables explainability to be integrated into low-
code enterprise applications. First, the explanation
techniques underpinning the solution are introduced,
followed by the rationale for separating prediction
and explanation logic into an external service. The
latter part of the section presents the system
architecture and the integration points used in the
prototype.

1. Methodological Foundations

The approach presented in this study is
based on model-agnostic, post-hoc explanation

techniques that can operate independently of the
underlying predictive model [9], and recent surveys
continue to highlight the importance of emerging
XAl techniques that prioritise interpretability,
robustness and practical deployability in enterprise
settings [10]. This is a practical requirement in
enterprise  low-code  environments,  where
applications typically function as thin clients and
have no direct access to model parameters or training
data. Toolkits such as Al Explainability 360
demonstrate how diverse explanation methods can
be packaged as reusable services for enterprise
applications [11]. In such settings, explanation
methods must be capable of running outside the
application layer and must return outputs in a
structured form that can be consumed by
heterogeneous frontends. For these reasons,
techniques that produce instance-level feature
attributions and can be exposed through standard

Explainable Al (XAl) methods and explanation formats

|
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Intrinsic/Transparent model examples

Post-hoc explanation methods
+  Linear/Logistic Regression
. Decision Trees

. K-nearest neighbours

. Rule-based learners

‘. LIME (local surrogate models)
+ SHAP (Shapley-based feature aftribution)
+  Saliency maps (visual explanations)

Explanation formats

+ Feature importance
+  Decision rules
+  Example-based
+  Natural language

Figure 1. Intrinsic and post-hoc explanation
methods and their role in generating model-level
and instance-level explanations.

service interfaces are particularly well suited.
Explanation techniques are often grouped into
intrinsic and post-hoc categories [12]. Intrinsic
models, such as decision trees or linear models, are
interpretable by design, as Ilustrated in Fig. 1 Post-
hoc methods, by contrast, provide insights into a
model’s behaviour without modifying the model
itself. They can produce explanation formats such as
feature-level contributions, rule-based descriptions,
example-based reasoning or short textual statements.
These outputs are particularly relevant in enterprise
settings, where system recommendations must be
traceable and aligned with established business logic
[13]. Among post-hoc methods, SHAP and LIME
were selected for this work due to their practical
suitability for externalised explanation services.

e SHAP provides additive feature attributions
grounded in cooperative game theory. The
resulting values can be represented as
structured JSON objects, making them
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straightforward to expose through REST or
OData services.

e LIME approximates local model behaviour
through lightweight surrogate models,
offering a computationally efficient
alternative when real-time responsiveness
is required.

Both techniques generate instance-level
explanations aligned with typical low-code Ul
interaction patterns (cards, tables, tooltips) and
support dynamic rendering within application
workflows. These methodological considerations in
formed the selection of specific explanation techniq
ues, which are discussed below. While both SHAP
and LIME are architecturally supported by the
proposed approach, the current prototype
implementation relies exclusively on SHAP-based
explanations. SHAP was selected as the primary
explanation method due to its stable, additive feature
attributions and its suitability for generating concise,
human-readable justification strings in an enterprise
context. LIME is therefore discussed as a compatible
post-hoc technique, but it is not actively used in the
experimental evaluation presented in this paper.

2. Rationale for an External Explanation Layer

Low-code enterprise applications are typically
designed around strong abstraction layers [14].
While this supports rapid development and shields
users from technical complexity, it also limits access
to the internal components of predictive models. The
application layer usually interacts with Al through
pre-packaged blocks or external API calls, receiving
a prediction but not the underlying reasoning. As a
result, explanation logic cannot be embedded
directly into the user interface or the low-code
workflow engine. A further constraint is that
enterprise backends such as SAP’s CAP enforce
strict separation of concerns. Business logic, data
modelling and service exposure are well defined, but
model execution is not part of the runtime
environment. This creates a practical need to
decouple prediction and explanation from the
application backend and to run them in an isolated
component. For these reasons, the proposed
approach introduces an external explanation layer
that encapsulates both the predictive model and the
post-hoc explanation methods. This layer is
responsible for generating predictions and instance-
level explanations and exposes both through uniform
REST endpoints. The responses are returned in a
structured JSON format, making them compatible
with CAP service entities and consumable by low-
code frontends. Separating explanation generation
into an independent service provides several
benefits. First, it allows explanation methods such as
SHAP and LIME which may require access to
training-time artefacts or local model perturbations
to run without constraints imposed by the enterprise

runtime. Second, it supports scalability: resource-
intensive computations can be isolated and executed
asynchronously if needed [15]. Third, it enables
multi-frontend interoperability, as the same
explanation service can support diverse applications
through common APIs. Industry proposals such as
Al

FactSheets illustrate how structured documentation
of model behaviour can support such governance-
oriented integration patterns [16]. This architectural
rationale forms the basis of the system design
described in the next subsection.

3. System Architecture

The system architecture follows the design
principles outlined above and separates prediction
and explanation logic into a dedicated service layer.
The overall structure consists of three components:

1. The explanation service hosting the
predictive  model and  post-hoc
explanation methods,

2. the enterprise backend implemented in
SAP’s CAP, and

3. the low-code frontend that consumes
predictions and explanations through
standard service interfaces.

The interaction between the three layers is
organised as a simple but extensible request—
response flow. As shown in Fig. 2, the low-code
frontend initiates the process by triggering a
prediction or explanation request through an OData
V4 service (a standardized REST-based data
protocol widely used in enterprise applications)
exposed by the CAP backend. The frontend does not
communicate directly with the Al module; instead,
the backend acts as an integration layer and forwards
the request to the external Al service. On the
backend, the request is processed by a CAP handler
(a server-side business logic component in SAP’s
Cloud Application Programming Model)
implemented in Java. The handler extracts the
relevant input fields from the OData entity, invokes
the Al service’s REST endpoint (/predict or
/explain), and receives the result as a JSON object.
The response is mapped to CAP entities
(PredictionResult and ExplanationResult), which
ensures type safety and makes the results accessible
to any frontend capable of consuming OData
services. The Al service layer is responsible for
executing the predictive model and generating
instance-level explanations. The service loads a
serialized model artefact (model.pkl) and a
background dataset needed for SHAP computations.
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For explanation requests, the service computes
SHAP values or LIME feature weights, depending
on the endpoint invoked. Both explanation formats
are returned in a structured JSON schema, allowing
seamless transformation into CAP entities. Once the
backend receives the model outputs, it exposes them
to the frontend using standard OData navigation
properties. The low-code Ul (Fiori Elements or SAP
Build Apps) can retrieve the explanation results
either by automatic metadata binding or by explicit
API calls. Since the returned explanation objects
follow a simple tabular structure (feature—value
pairs), they can be rendered as analytical cards,
tooltips, tables or side panels without custom client-
side logic.

This architecture ensures that prediction and
explanation logic remain completely decoupled from
the enterprise application runtime. It also allows the
Al component to evolve independently—for
example, different models, updated SHAP
background sets or alternative explanation
algorithms can be deployed without modifying the
backend or the frontend. The use of standard REST
and OData interfaces  further  supports
interoperability with additional applications that
may require access to prediction or explanation data.

11l. PROTOTYPE IMPLEMENTATION

1. Dataset and Model Training

The prototype is based on a supervised learning
model that predicts a personalised recommendation
score for sport events in a Sport event registration
scenario. The training data is stored in a CSV file
(training.csv) and contains historical interactions
between users and sport events. Each row represents
an event instance with categorical and numerical
attributes, as well as a target label indicating how
attractive the event was to the user (label_score on a
0-100 scale). The dataset used in the prototype
consists of 122 historical user—event interaction
records collected for a single representative user.
This intentionally limited setup reflects an early-
stage enterprise  scenario, where historical
interaction data is often sparse or available only for
a small number of users. As a result, the dataset is
not intended to support claims about generalizable
recommendation performance, but rather to serve as
a functional basis for demonstrating prediction and
explanation integration.

Given this scope, the primary objective of model
training is to obtain a stable and interpretable model
suitable for explanation generation, rather than to
maximize predictive accuracy. This design choice
allows the behaviour of the explainability service to
be evaluated in isolation, without confounding
effects introduced by heterogeneous user
populations or large-scale data distributions.

User Interaction Layer

Fiori Elements application
SAP Build Apps

Ent ise Backend
SAP CAP Service Layer: l DOTRISO/2ICKON

prediction-service.cds
explanation-service.cds

SAP CAP Handler:
calls external Al service via REST
maps JSON - CAP entities

CAP Data Model
PredictionResult
ExplanationResult (SHAP values)

Al Service Layer]

Prediction Engine
« Trained model (RandomForestRegressor)

XAl Module
* SHAP explainer
* LIME explainer

Model Artifacts
« model.pkl
» background dataset for SHAP

Figure 2. System architecture of the proposed
explainability-as-a-service approach integrating an
external XAl service with a CAP-based backend

The following input features are used:

e sportType (categorical): sport category of
the event (e.g. yoga, spinning);

e area (categorical): location of the event;

o timeOfDay (categorical): binned
representation of the start time (e.g.
morning, noon, afternoon, evening);

e user_id (categorical): identifier of the user;

e capacity (numeric): maximum number of
participants;

e startHour (numeric): hour of the event
start time.

The data is pre-processed in the training script by
cleaning string fields, coercing numeric values, and
clipping the target label to the [0, 100] range.
Categorical features are encoded wusing a
OneHotEncoder, combined with numeric features in
a ColumnTransformer. The predictive model is a
RandomForestRegressor configured with 200 trees
and out-of-bag estimation [17]. The encoder and the
model are wrapped in a single Pipeline object, which
is trained on a hold-out split of the dataset and then
persisted using joblib as model.pkl. Alongside the
model, a columns.json file is generated to store the
list of categorical and numerical columns. These
artefacts are loaded by the XAl service at runtime
and form the basis of both prediction and
explanation.



D. Banka et al. — Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-72Z, 2026

2. XAl Service Implementation

The explanation logic is implemented as an
external Flask-based microservice. The service loads
the trained scikit-learn pipeline (model.pkl) and the
associated metadata (columns.json) on first use. A
TreeExplainer from the SHAP library is constructed
on top of the random forest component of the
pipeline.

The service exposes three HTTP endpoints:

e GET /health — returns a simple status
indicator and whether the model artefact
is available;

e POST /predict — accepts a JSON payload
containing a user_id and an event object,
transforms the input into the model’s
feature representation, and returns a
normalised  recommendation  score
between 0 and 100;

e POST /explain — accepts the same input
structure and returns a list of feature-level
explanations based on SHAP values.

Incoming event objects are converted into model
features by the featurize function, which normalises
string fields (sportType, area, timeOfDay) and
derives a startHour either from the given field or
from the event’s start time. The /predict endpoint
constructs a pandas DataFrame, calls the pipeline’s
predict method, and rounds the output to an integer
score.

For /explain, the service passes the preprocessed
input through the pipeline’s pre step, applies the
SHAP explainer to the transformed vector, and maps
the resulting SHAP values back to human-readable
feature names (one-hot encoded categories plus
numeric fields). Features are ranked by absolute
contribution, and the most influential ones are
selected either by a requested topK parameter or a
minimum percentage threshold. Each explanation
item contains:

e the feature name,

e the signed SHAP impact,

e the absolute impact,

o the percentage contribution, and,

e a short human-readable reason string
generated by the humanize reason
helper.

To support enterprise usability, raw SHAP values
are not presented directly to end users. Instead, the
explanation service transforms feature attributions
into short, human-readable reason strings. The most
influential features are first identified based on their
relative contribution to the prediction, and only a
small subset is retained to avoid information

overload. These features are then mapped to
predefined, business-oriented categories such as
sport preference, location convenience, or time-of-
day suitability. The resulting labels are combined
into concise textual summaries that can be displayed
directly in low-code user interfaces. This
deterministic ~ transformation  ensures  that
explanations remain concise, consistent, and aligned
with enterprise terminology, which is essential for
user trust and adoption. The final JSON response
consists of a modelVersion identifier, the
explanation method (“shap"), and the list of
explanation items. This structured format is designed
to be consumed easily by both CAP services and
low-code user interfaces.

IV. Integration into theCAP Backend

The enterprise integration is implemented in the
EventServiceHandler of the Sport Events CAP
application. The central entity is SportEvent, which
represents individual sport events and includes two
virtual fields for recommendations:

e recommended : Integer — numeric score
between 0 and 100;

e whySummary String(500) — short
textual justification.

During read operations on SportEvent, a @Before
handler adjusts the CQN query so that all required
fields (participants, status, virtual fields) are
available for post-processing. The handler uses a
configurable base URL (XAI_BASE, read from the
XAI_URL environment variable) and an HttpClient
to call the /predict endpoint. The returned score is
stored in the recommended field of the SportEvent
instance. In a second pass, the same events are sent
to the /explain endpoint with a topK parameter (e.g.
3). The service returns a list of explanation objects,
from which the handler extracts the human-readable
reason strings. These are concatenated into a single
summary text separated by bullet characters and
assigned to the whySummary field. If the service is
unavailable or no explanations are returned, the
summary remains empty.

This integration pattern keeps the CAP backend
agnostic of the underlying model and explanation
method. The CAP service only needs to construct
JSON requests and interpret JSON responses, while
all model-specific logic is contained in the external
Python service.

V. Frontend Behaviour

On the Ul side, the Fiori Elements-based list report
for SportEvent includes the recommended and
whySummary fields in the line item annotation. As a
result, end-users see, for each event, a numeric
recommendation score as well as a short, natural-



D. Banka et al. — Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-72Z, 2026

language justification (e.g. “Matches your preferred
sport - Convenient location - Preferred time of day”).

These fields behave like any other OData
properties from the perspective of the Ul framework.
The underlying explainability logic remains
invisible to the application developer using SAP
Fiori Elements or, in a future extension, SAP Build
Apps. This demonstrates that explainability can be
integrated as a reusable service without modifying
the low-code frontend itself.

V1. RESULTS

This section summarises the main results of the
experimental ~ prototype, focusing on the
performance of the model, the behaviour of the
explainability service, and the integration outcomes
observed in the CAP-based enterprise application.
All guantitative results, latency measurements, and
example explanations reported in this section are
based exclusively on SHAP-based explanations.
Although LIME is supported by the proposed
architecture, its runtime behaviour and explanation
quality were not evaluated in the current prototype
and are left for future work.

1. Model Performance

The predictive model was trained on the Sport
Events dataset using an 80/20 train—validation split.
The RandomForestRegressor, combined with the
preprocessing pipeline described earlier, produced
consistently high accuracy across both subsets:

e  Training set:

o MAE=112

o R2=0.998
e Validation set:

o MAE=1093

o R2=0.990

Although these values are close to the upper
performance bound, they do not indicate overfitting.
Instead, they reflect the characteristics of the dataset
used in this prototype. The number of samples is
limited, the feature space is relatively low-
dimensional, and the target behaviour is highly
regular, resulting in low intrinsic variance.
Consequently, the model is able to approximate the
underlying patterns almost perfectly on both the
training and validation sets.

These observations imply that the goal of the
prototype is not to maximise predictive accuracy, but
to provide a stable basis for generating meaningful
explanations. The model serves as a functional
component within the explainability-as-a-service
architecture, ensuring that SHAP-based attributions
reflect genuine patterns present in the data rather
than noise. Further evaluation with larger and more

diverse datasets would be required to assess
generalisation performance in real-world enterprise
environments.

2. Response Time and Service Behaviour

The runtime characteristics of the external XAl
service were assessed using direct HTTP calls,
where response times were captured with the
time_total metric of curl. All measurements were
performed on a development laptop equipped with
an Intel Ultra 5 CPU and 32 GB RAM, without any
caching or precomputation layers enabled.

Table 1. Mean response latency of the external
XAl service endpoints measured during prototype

evaluation
Endpoint Mean latency Scenario
/predict 0.058 Single instance
/explain 0.0056 Top-3 features

As visible in Table 1. , for the /predict endpoint,
a typical request completed in approximately 0.058
seconds, and repeated runs showed only minor
variation around this value. This latency is well
below the threshold considered acceptable for
interactive enterprise applications, where sub-100
ms responses are generally sufficient for seamless
user experience.

The /explain endpoint, which performs SHAP-
based feature attribution, completed significantly
faster than expected. In repeated measurements, the
total execution time was around 0.0056 seconds,
indicating that the explanation logic remains
lightweight for the current model size and input
structure. Even though SHAP computations can
become expensive in larger deployments, the
prototype showed no signs of bottlenecks under
typical runtime conditions.

Both endpoints consistently returned well-formed
JSON responses, and no service interruptions or
request failures were observed during the evaluation
period. These results confirm that the externalised
XAl layer is fast enough to support synchronous
invocation from CAP-based enterprise applications.
acceptable.

3. Integration Results in the CAP Application

The CAP backend successfully integrated both the
prediction and explanation services using
synchronous HTTP requests.

After enriching the SportEvent entity with the
virtual fields recommended and whySummary, the
Sport Events Fiori User Interface automatically
displayed the additional columns without
modifications to the frontend code.
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Fig. 3 shows the output of the prototype as displayed
in a Fiori Elements List Report.

Recommended Why?

Matches your preferred sport (Crossfit) -
78 Convenient location (Location-namel) - Preferred
time of day (Morning)

Figure 3. Output of the prototype in the Fiori
Elements Ul

To assess explanation quality at a minimal level,
we qualitatively  inspected the generated
explanations  for  plausibility and domain
consistency. Table 2. presents a representative
example of a SHAP-based explanation for a single
recommendation instance. In this example, sport
type preference is identified as the most influential
factor, followed by location and time-of-day
suitability. This ordering aligns with intuitive
expectations in a sport event registration context,
where users typically prioritise the type of activity
first, and then consider practical constraints such as
location and schedule. While this evaluation does not
constitute a formal user study or quantitative
faithfulness assessment, it provides initial evidence
that the explanation service highlights meaningful
input factors rather than spurious correlations. This
qualitative validation is sufficient for the scope of the
present work, which focuses on architectural
feasibility and enterprise integration rather than on
comparative evaluation of explanation methods.

Table 2. Example ranking of feature categories for
a single sport event recommendation.

Feature

category Contribution Explanation
Sport Type High Preferred Sport

Location Medium Location fit
Time of day Medium Preferred time

The application automatically binds both the
recommendation score and the generated
explanation text to Ul fields, without requiring any
custom front-end logic. The explanation text is
composed from the top SHAP-based feature
contributions and provides short, human-readable
reasons such as the preferred sport type, the time-of-
day preference, or the convenience of the location.
This demonstrates that the proposed approach can
surface XAl outputs directly in low-code enterprise
user interfaces.

A typical example shown to end users:

e Recommended: 87

e  Why?: “Matches your preferred sport -
Convenient location - Preferred time of
day5,

The explanations updated dynamically for each
record during list retrieval, confirming that:

e the CAP - XAl request construction
works reliably,

e the XAl service responds with consistent
JSON,

e the Fiori Ul can consume the enriched
entity structure directly.

4. Observed Limitations
Testing identified three current limitations:
e  Small training dataset:

The model generalises sufficiently for prototyping
but could be improved with more diverse user—event
interaction data.

e  SHAP performance on large batches:

While individual explanation calls are fast,
computing explanations for dozens of events in
parallel may require asynchronous processing or
caching.

e No frontend-level ranking or Ul
components:

In this prototype, the frontend only displays the
scores and explanations. Interactive drill-down (bar
charts, visual SHAP plots) is technically feasible
but not implemented.

5. Summary of Results
Overall, the prototype demonstrates that:

e model training and SHAP-based
explanations work reliably in an
externalised Python service;

e CAP can integrate prediction +
explanation services without modifying
its internal logic;

e low-code Uls (Fiori Elements) can
display XAl outputs with minimal
configuration;

e the explanation service remains
responsive enough for interactive usage.

The results validate the feasibility of the proposed
“explainability-as-a-service” architecture in a
realistic enterprise setting.

VI1I. DISCUSSION

The results of the prototype demonstrate that
explainability can be operationalised as a separate
service layer in enterprise environments, but they
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also highlight important considerations for
robustness, scalability, and organisational fit. This
section discusses the broader implications of the
findings, the architectural trade-offs, and the
alignment of the approach with current enterprise
development practices. Separating prediction and
explanation logic into an external service proved to
be an effective strategy for low-code and model-
driven environments. The architecture allowed
SHAP- and LIME-based reasoning to operate
independently of the enterprise backend while
maintaining standardised integration points through
REST interfaces.

This reinforces the assumption underlying the
methodology: explainability must not depend on
access to model internals inside the enterprise
runtime, particularly in settings where:

o the backend provides only data modelling
and business logic (e.g., CAP),

e the frontend is low-code and cannot
perform computationally heavy
reasoning,

e model execution must remain isolated for
maintainability or security reasons.

The successful integration within CAP also
shows that enterprise runtime environments are
sufficiently flexible to incorporate external Al logic
without breaking their internal separation-of-
concerns principles. However, the architecture also
relies heavily on synchronous HTTP
communication. While this was acceptable for the
Sport Events scenario, larger-scale enterprise
systems may require asynchronous processing,
caching, or message-based pipelines (e.g., event-
driven architectures) to prevent throughput
bottlenecks. The prototype confirmed that low-code
frontends can directly consume explanation outputs
if they are presented in a structured and lightweight
form. The simple text-based summaries generated by
the backend were easily incorporated into the Fiori
Elements Ul. This demonstrates that explainability
can be embedded into low-code user interfaces
without requiring custom components. These
findings align with recent research emphasising that
explanations must be tuned to user roles rather than
to data scientists, and that information overload can
reduce, rather than improve the user trust. Large
research programs such as DARPA XAl have
similarly stressed the importance of user-tailored
explanations [18]. In the Sport Events context,
concise explanations were sufficient for decision-
making, but regulated or safety-critical domains may
require more detailed, auditable output formats.

Although the prototype validates the feasibility of
the architecture, multiple limitations must be
acknowledged.

e  The model was trained on a limited dataset,
constraining both predictive validity and
explanation fidelity. More varied user—
event interaction data would allow stronger
conclusions about explanation quality.

e Even though single-instance explanations
were fast, scaling to larger batch processing
would require optimisation. Techniques
such as kernel SHAP, background dataset
reduction, or explanation caching may be
necessary for high-load scenarios.

e The current work does not examine how
different user groups interpret or value
explanations. For enterprise adoption,
empirical evidence on user comprehension,
trust improvement, or perceived usefulness
would be highly relevant.

These limitations represent natural next steps for
future work and do not undermine the core
architectural findings.

VIIIl. CONCLUSION

This paper presented an explainability-as-a-service
architecture designed to integrate post-hoc XAl
techniques into enterprise low-code and model-
driven environments. The motivation for the work
stemmed from two parallel developments: the
increased reliance on Al-driven decision support in
enterprise applications and the rapid adoption of
low-code tools that abstract away technical details
but consequently limit access to model internals.
These factors make it difficult to deliver transparent,
auditable and user-oriented explanations within
typical enterprise system landscapes.

The study demonstrated that separating prediction
and explanation logic into an external service layer
provides a practical and flexible way to embed
explainability into  heterogeneous enterprise
frontends. Using a prototype implementation built
with SAP’s CAP and a Python-based service
exposing SHAP and LIME explanations, we showed
that instance-level justifications can be generated on
demand and consumed by low-code user interfaces
without modifying the underlying application
runtime. The results confirm the feasibility of this
architectural pattern and highlight its suitability for
environments with strict separation-of-concerns
principles. At the same time, the findings reveal
areas requiring further investigation. Explanation
quality and predictive performance depend heavily
on training data volume, and the computational cost
of SHAP-based reasoning poses scalability
challenges for real-time scenarios. Additionally,
although the prototype provides functional
explanations in a live enterprise context, user-
centred evaluation is still needed to assess how
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different stakeholder groups interpret and value the
explanations produced.

Overall, the proposed approach contributes to the
emerging design space of transparent enterprise Al
by demonstrating how model-agnostic explanation
techniques can be operationalised within low-code
and model-driven platforms. Future work will focus
on expanding the evaluation with larger datasets,
assessing user comprehension, and extending the
architecture  with  monitoring, caching and
governance capabilities to support regulated and
large-scale deployments.
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