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The application of predictive and prescriptive maintenance procedures in industries is revolutionizing
mainstream manufacturing by cutting down on time loss and waste of resources. Reactive
maintenance and preventive strategies are some of the traditional maintenance management
techniques that tend to cause inefficiency in the systems, high operational costs and some failures.
This paper uses data from breakdown analysis in the development of predictive maintenance models
and prescriptive decision systems. A methodology is used that incorporates predictive analytics based
on individual machine learning with the knowledge of the failure patterns. The analysis of historical
breakdown records allows predictive models to achieve higher accuracy in forecasting potential
failures by identifying key failure trends. The prescriptive maintenance program provides information
regarding the best course of action to be taken, minimizing operational disruptions and downtimes.
As means of testing the efficiency of the proposed concept, experiments were conducted on real-world
industrial datasets. The implications of this are lower number of unplanned maintenance interventions,
increased efficiency, and reduced costs. This paper adds to the literature on predictive and prescriptive
maintenance as it highlights how historical breakdown information can enhance the predictive
analysis while giving suggestions concerning industrial maintenance management. Further research
on deep learning algorithms and real-time integration of the sensors have potential to improve

maintenance processes.

predictive maintenance; prescriptive maintenance; historical breakdown data; machine learning;
failure prediction; industrial maintenance

schedules and plans that utilize big data analysis,

I. INTRODUCTION such as machine learning techniques.

Predictive maintenance (PdM) involves analyzing

reliability in industries and how it affects the
operation of industries, costs, and the safety of the
workers and assets. The conventional maintenance
techniques, such as the breakdown or remedial
maintenance and the preventive maintenance, do not
offer the best solution in reducing the time that an
asset is out of service as well as enhancing its
reliability. The type of maintenance that is reactive
or also known as “run-to-failure,” leads to failure
that is unexpected, costly repairs, and even
dangerous. On the other hand, preventive
maintenance involves servicing based on a calendar
schedule irrespective of the real state of the
equipment, thus leading to unrequired servicing and
wastage of resources. These have led to the adoption
of the prediction and prescription of maintenance
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data gathered from equipment and generating an
outlook of when it will develop a fault. PdM is
attained by the analysis of the sensor readings,
operational logs, and historical breakdowns, thus
helping the organization in planning and undertaking
maintenance ahead of time. As per Meddaoui et al.
[1], this approach of maintenance helps in
minimizing the time that the asset is out of service
due to maintenance, increases the lifespan of the
asset, and reduces the maintenance cost since the
asset is only worked on when necessary.
Furthermore, Selcuk [2] presents data on the average
industrial savings achieved through predictive
maintenance, as savings return on investment (ROI)
10 times on Predictive Maintenance, reduction in
maintenance costs by 25-30%, elimination of
breakdowns by 70-75%, reduction in downtime by
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35-45% and increase in production by 20-25%.
According to Kalafatelis et al. [3], the effectiveness
of PdM models significantly depends on the quality
and quantity of the breakdown history data. The
organization of failure records in a systematic form,
along  with  operational  parameters  and
environmental data, greatly improves the mechanism
of machine learning techniques.

Prescriptive maintenance (PsM) takes the concept
of predictive maintenance a step further by providing
the best course of action to undertake. It uses current
data with the history of breakdowns to find out the
most appropriate plan of action concerning cost,
capacity, and vwvulnerability. Thus, PsM offers
practical advice, for example, to change the
operating conditions, to carry out maintenance when
it is most profitable, or to replace -certain
components. This approach helps industries to
change from the ineffective techniques used in
maintenance and embrace a superior manner than
that of the modern advanced system.

Historical breakdown data is also a very important
factor that can be used to enhance both predictive
and prescriptive maintenance. These datasets include
past failure history, degradation rate, and the
previous actions that were taken to address the
problem. By comparing the results of the failure
modes, industries can improve PdM models and
adjust the PsM recommendations. This is because
failure data is structured and can be used to create
models that are more accurate and can perform well
in different operating conditions, on different types
of assets, and in different failure modes. Moreover,
integrating historical breakdown records with the
live monitoring system makes it easy to have an
overall picture of the health of the assets to be
maintained, hence making better decision-making.

The rise of Internet of Things (loT) and smart
sensors has led to the generation of huge amounts of
data about breakdowns, which can be used in new
ways in the maintenance context. To increase the
value of historical data, additional techniques such as
Natural Language Processing (NLP) on the
maintenance logs and deep learning for anomaly
detection are employed. Decision trees, random
forest and Support Vector Machines (SVM), and
deep neural networks can be applied to that end to
derive failure histories and enhance maintenance
strategy and practice.

However, several issues have been observed in the
use of historical breakdown data for predictive and
prescriptive maintenance. One of the biggest issues
is data heterogeneity, as the maintenance records are
gathered from various sources and may differ in
terms of structure and information richness. If the
failure data is incomplete or inaccurate, it will lead
to wrong predictions and unsuitable maintenance
recommendations.
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Another challenge is the variability in the rate at
which equipment wears out because, overtime,
working conditions, exposure to the environment,
and maintenance regimens can change. Sometimes,
when training the models, data collected may be
historical and may not be up to date; this makes the
models trained frequently or used with adaptive
learning.

In this paper, incorporating Machine Learning, a
subset of Artificial Intelligence (Al), to maintenance
strategies provides the prospect to surmount these
hurdles. This area benefits from the use of Machine
Learning models, which can analyze the history of
breakdowns as well as learn new ones with
continuous training and feedback loop to adjust the
predictive model. Prescriptive maintenance can also
be enhanced by reinforcement learning algorithms
since they can update the decision-making policies
based on the previous maintenance results.

The historical breakdown data for both predictive
and prescriptive maintenance is applicable in various
industries such as manufacturing, energy, transport,
and healthcare. For example, in manufacturing,
predictive analytics assist in avoiding production
losses due to machine failures since the issues are
foreseen. In the energy sector, it helps in increasing
the dependability of the power generating and
distributing systems and in minimizing the time for
which they are out of order.

Thus, to enhance the effectiveness of historical
breakdown data, the organizations need to follow a
proper procedure of data gathering, storing, and
analyzing. This is because the use of centralized data
repositories with standard maintenance logs
enhances compatibility with the various predictive
and prescriptive models. Real-time data processing
in itself helps in improved failure predictions, but
with the help of cloud computing and edge
computing, the process is made much faster and
more accurate. The use of advanced visualization
tools assists maintenance teams in understanding the
predictive analysis to make the right decisions.

In addition, there should be good cooperation
between data scientists, maintenance engineers, and
other specialists to design the appropriate predictive
and prescriptive maintenance models. Maintenance
engineers contribute with the actual knowledge of
the domain to define relevant indicators of failure,
and data scientists carry out the actual data analysis
with advanced machine learning algorithms. This is
done by constant feedback between the predictive
models and the maintenance teams to ensure that the
recommended solutions are feasible within the
operations environment.

It is also important to note that ethical issues and
data privacy are other factors that are very relevant
when it comes to the use of predictive and
prescriptive maintenance. It is also important for the
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organizations to observe the rules regarding data
protection and come up with clear guidelines on how
the data will be used.

This paper aims at exploring the role of historical
breakdown data in improving the predictive and
prescriptive maintenance plans, which in turn
increases the reliability of the assets, decreases the
operational costs, and optimizes the maintenance
schedule. The results of different experiments on real
datasets are presented to highlight the effect and
influence of historical failure records on Boolean
model assessment and maintenance activity
decisions. The presented method involves using
historical failure data in combination with analytical
tools that will help to predict maintenance
requirements and thus minimize downtime and
increase asset life.

The rest of the paper is as follows: In the Materials
and Methods section, the data acquisition process,
data pre-processing, and the machine learning
approaches for predictive and prescriptive
maintenance has been explained. The Results section
provides evidence of the effectiveness of using the
historical breakdown data to increase the predictive
accuracy and enhance maintenance planning. The
Discussion section discusses the results concerning
industrial applications, the limitations, and further
research opportunities. Lastly, the Conclusion
section provides a brief of the findings and the
implications to the maintenance strategies.

Using the breakdown data, industries can move
from reactive and preventive maintenance to a wiser
maintenance approach. The implementation of both
the predictive and prescriptive analytics in the
maintenance process provides a competitive edge
since it optimizes the maintenance process, reduces
downtime, and lowers maintenance expenses. The
information gathered from failure history enables
organizations to make the right decisions, thus
turning maintenance into a strategic business tool
that can improve organizational performance.

1. Literature review

The concepts of predictive and prescriptive
maintenance have undergone a great deal of changes
in the last few years, mainly due to data revolution
and the increasing adoption of Industrial loT
systems. PdM is the procedure of forecasting when a
particular equipment is likely to fail, while PsM goes
a notch higher by identifying the best way to
maintain the equipment. In this section, we give a
brief literature review on predictive and prescriptive
maintenance, based on past breakdowns, machine
learning, and its application in a manufacturing
environment.

Predictive Maintenance Techniques: PdM has
been established as one of the most efficient ways of
reducing the risks of unplanned downtime and
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properly scheduling maintenance. PdM is a concept
that aims at predicting an equipment failure based on
the breakdown history, sensor data, and analysis so
that maintenance activities can be done right before
the failure occurs. In the years past, several methods
of predictive maintenance have been tried out in
different industries.

Machine Learning (ML) Models for Predictive
Maintenance: Predictive maintenance also relies on
machine learning as through it, the machine learns
from failure history and signals from attached
sensors. The initial studies conducted were mainly
based on conventional statistical methods like
regression analysis and time series analysis. These
models worked based on present physical condition
models and could not handle massive unformatted
data sets and/or intricate failure profiles. More
recently, decision trees, random forest, SVM, and
deep neural networks (DNN) have come into
practice due to their flexibility to identify non-
linearity in the data and flexibility for learning new
changes.

For example, Choi et al. [4] used random forests in
their study conducted in 2016 to model bearing
failures in manufacturing machines by using
vibration data. This work highlighting the ability of
applying machine learning techniques in the field of
predictive maintenance also proved that the
proposed model yielded good results in identifying
initial stage failures. However, the study is largely
confined to controlled experimental conditions and
lacks generalization across diverse industrial
scenarios. The data collection was performed under
laboratory  conditions, limiting  real-world
applicability. It was also focused exclusively on spur
gears, without testing across other gear types or
machinery. Proposed Improvements can be to
broaden experimental validation by testing across
multiple gear types, fault modes, and operational
conditions, and including field data from industrial
machinery to validate robustness.

In the same way, Zhao et al. [5] concluded through
an application of SVM models to predict failure
events in pumps with an impressive result suggesting
that machine learning algorithms are more effective
as compared to conventional techniques in terms of
prediction accuracy and lead period.

Kalafatelis et al. [3] discusses the scaling of a
Modular Production System (MPS) using a
Manufacturing Execution System (MES) and
multiple agents, within the framework of Industry
4.0 technologies. However, there are some
limitations in the study. The system was tested on a
specific modular setup (Festo MPS-500), which may
not generalize to other production environments or
industries. The study focused on only two types of
cylindrical parts, which constrains the applicability
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of the system to more complex or varied

manufacturing tasks.

Meddaoui et al. [1] in paper titled “The benefits of
predictive maintenance in manufacturing excellence:
a case study to establish reliable methods for
predicting failures” did PdM algorithm comparisons
via ANN, DL, and RF, and explored the use of
predictive maintenance (PdM) strategies in industrial
settings, comparing algorithms like Artificial Neural
Networks (ANN), Deep Learning (DL), and Random
Forest (RF) for failure prediction. While the study
offers valuable insights, there are some limitations as
well. The research is based on a single industrial case
study, which restricts the generalizability of findings
across different sectors or equipment types. The
study lacks diversity in machinery, operational
environments, and failure modes. The paper
emphasizes predictive capabilities but does not
explore integration with real-time monitoring
systems or decision-making frameworks. While
PdM is said to reduce downtime and costs, the paper
does not quantify these benefits or compare them
against traditional maintenance strategies.

Aminzadeh et al. [6] in paper ‘A Machine
Learning Implementation to Predictive Maintenance
and Monitoring of Industrial Compressors’
showcases a PdM  framework combining
temperature, pressure, and flow rate sensors with
SQL-based data handling and ML modelling. The
system achieved 98% accuracy in predicting
compressor anomalies, marking a significant step
toward proactive maintenance. However, broader
deployment and long-term reliability require
addressing some methodological and operational
challenges. Some limitations are use of linear
regression, which while interpretable, may not
capture nonlinear relationships or complex failure
patterns. There is an absence of comparative analysis
with other ML models like Random Forest, SVM, or
deep learning architectures. It also relies on a narrow
set of sensor types; excludes vibration, acoustic, or
electrical signals that could enrich diagnostics.

Data Fusion and Sensor Data: It is important to
note that the mentioned function of condition
monitoring is achieved by the use of sensors to
determine early signs of a failure. Wang et al. [7] also
looked at the use of multiple sensors (vibration,
temperature, pressure) in the models of the
equipment; the use of multiple sensors provided a
better view of the condition of the equipment hence
improving the chances of accurate prediction. This
fusion of data is useful to overcome the problem of
using a single data source where an isolated signal
may not have enough information to make a
prediction. 10T technologies have also advanced the
data collection process and offer a large amount of
data for the support of predictive models.
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Feature Engineering in Predictive Maintenance: A
major issue that is associated with predictive
maintenance is data pre-processing, which involves
extracting features from raw data to be used in the
model. Gongalves et al. [8] also discussed feature
extraction in the context of predictive maintenance,
where the authors stressed the significance of
domain knowledge in selecting features that are
representative of the equipment’s condition. For
instance, vibration frequency, temperature gradients,
or wear rates are some of the parameters that can be
used to predict the failure, but which cannot be easily
derived from the raw data. Lack of feature
engineering can fail to capture the underlying
patterns, thus making the predictive models wrong.

Prescriptive Maintenance Techniques:
Prescriptive maintenance is a step further from
predictive maintenance as it not only predicts the
failure time but also suggests the best course of
action to take regarding the maintenance of the asset.
While predictive maintenance tells one when it is
probable that a failure is going to occur, prescriptive
maintenance, on the other hand, provides one with
what needs to be done to avoid the failure or even
enhance equipment performance. This research has
been aimed at developing methods of incorporating
machine learning algorithms with optimization
algorithms to offer maintenance suggestions.

Optimization  Techniques for Maintenance
Scheduling: A lot of research has been conducted to
incorporate optimization algorithms with PdM
models for maintenance scheduling. Shang et al. [9]
developed a model that incorporated predictive
models and optimization models where the genetic
algorithm was used to select the best maintenance
schedule for machines in a manufacturing system.
The proposed hybrid model was effective in cutting
down downtime and optimizing the usage of
resources because maintenance was only planned
when it was deemed necessary based on the
predictions made by the model.

In the same way, Mokhtari et al. [10] employed
both the predictive maintenance data and
optimization techniques to determine the appropriate
time for carrying out maintenance in a wind farm.
The optimization model also incorporated the failure
time prediction in addition to the cost of the
downtime, spare parts, and manpower to determine
the most cost-effective maintenance action.

Decision Support Systems for Prescriptive
Maintenance: Some of the authors have incorporated
DSS with prescriptive maintenance models to assist
the maintenance teams in their decision-making. Lee
et al. [11] proposed a Decision Support System
(DSS) that integrated predictive maintenance
information with Multi-Criteria Decision Analysis
(MCDA) approach to provide the best course of
action based on risk, cost, and the criticality of the



A. Saxena — Acta Technica Jaurinensis, Vol. 18, No. 4, pp. 210-224, 2025

machine. The system was designed to identify and
rank maintenance activities based on their criticality
to allow organizations to reduce their losses and
avoid disruptions.

In prescriptive maintenance, Model Predictive
Control (MPC) uses mathematical models to analyze
the condition of industrial structures and systems for
prediction as well as for control of actions to be taken
in the future. MPC has also been adopted in
prescriptive  maintenance to  enhance the
performance of assets in real time. Rosa et al. [12]
used MPC for the application of predictive
maintenance of industrial machines where the model
forecasts the future maintenance requirements and
modifies the operating conditions to enhance the
useful life of the machine. MPC can check
prescriptive maintenance advice and has the
capability of constantly updating it according to
ongoing equipment performance and failure
prognostics.

The existing work’s limitations are:

e The cited papers were confined to narrow
environments, equipment types, or setups.

e Most papers relied on single or limited sensor
types (e.g., vibration, temperature), missing
multi-modal integration.

e Use of basic models (e.g., linear regression, RF)
with limited benchmarking or comparative
analysis.

e Laboratory or simulated conditions dominated,;
few field validations using industrial data.

o Approaches were tested on specific fault types or
products (e.g., cylindrical parts, spur gears),
limiting transferability.

e Lack of discussion on latency, deployment
architecture, and decision feedback mechanisms.

Compared to the identified limitations, this paper
improves on:
e While prior studies mentioned cost savings
without detail, this paper outlines reduced
downtime and waste, hinting at economic impact.

e It enhances modelling wusing historical
breakdown trends, which adds contextual
richness.

e Unlike controlled lab conditions in Choi et al. [4]
or narrow equipment focus in Kalafatelis et al.
[3], this paper uses field data from actual
operations.

¢ It introduces guidance for decision-making—not
just predictions—which adds a valuable layer
missing in Meddaoui et al. [1] and Aminzadeh et
al. [6].

o Proactively suggests directions like deep learning
and real-time sensor integration, addressing gaps
in adaptability and algorithmic complexity.
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2. The role of historical breakdown data in
maintenance strategies

Of these, historical breakdown data is an important
element of predictive and, especially, prescriptive
maintenance, as such information offers information
on previously registered failures, actions taken, and
operational status. The historical failure records
assist in creating models for machine learning that
can analyze failure and be used in predicting future
ones. Some of the previous works have used
historical breakdown data in the development of
maintenance models to increase the level of
prediction and the quality of decision-making in
prescriptive maintenance.

How to apply breakdown data of past for failure
prediction: Historical breakdown data is the most
common form of data used in most of the predictive
maintenance models. Choi et al. [4] analyzed the use
of historical failure data in the failure of industrial
machinery. They showed that the incorporation of
failure histories in the model enhanced the model’s
performance and stability since the system could
identify repeat failure patterns. Using historical
breakdown events, PAM models can predict future
conditions that may lead to similar failures.

Data-driven Insights for Prescriptive Maintenance:
In prescriptive maintenance, historical data of failure
is used to decide on what course of action should be
taken in the event of a failure. Dufresne et al. [13]
studied historical maintenance log files to develop
recommendations for later activities to be taken. It
was established that prescriptive maintenance
systems could determine the best maintenance
methods for future breakdowns by studying past
breakdowns and the subsequent corrective actions.
These systems can also learn from the previous
successes and failures and, therefore, be in a better
position to advise on what is best to do.

Challenges in Historical Data Utilization:
However, there are several drawbacks to using
historical breakdown data. In their work, Zhao et al.
[5] noted that one of the major challenges is the lack
of consistency and the absence of some data in the
history = of maintenance.  Most industrial
organizations experience challenges in aggregating
data from different sources, including logs, sensors,
and previous maintenance records. In addition, data
may be collected in various formats or may not be
detailed enough to be used for predictive or
prescriptive maintenance. It is, therefore, critical that
historical breakdown data is accurate and
comprehensive to create good maintenance models.

3. Real world application of predictive and
prescriptive maintenance

Currently, predictive and prescriptive maintenance
approaches are widely implemented in various
industries as a part of business processes. Some
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examples of the use of these strategies in various
fields are in manufacturing, energy, transport, and
health.

Manufacturing Industry: In the manufacturing
industry, both  predictive and prescriptive
maintenance plans are now in use to eliminate
disruption. Jardine et al. [14] study investigated the
application of predictive maintenance in a steel
production environment where the learning- based
models the breakdown data to identify breakdowns
in key machines. The models were useful in
minimizing the time that the plant was not
producing, hence increasing its efficiency.

Energy Sector: Power generation equipment was
identified to be the most common application of
predictive maintenance in the energy domain. Tao et
al. [15] used the predictive models to forecast
failures in turbines and compressors in a natural gas
power plant. This was achieved through the use of
historical failure data in developing the models to
predict equipment degradation and the time for
maintenance to be done, hence enhancing
operational efficiency and minimizing the instances
of unplanned equipment outages.

4. Future directions and challenges

The wuse of historical breakdown data in
conjunction with predictive and prescriptive
maintenance models has been proven to be very
effective, but certain issues are yet to be addressed.
The future research areas of interest will be the ways
to address the data quality problems, the ways to
improve the flexibility of the models in the context
of the changes in the operational conditions, and the
ways to make the machine learning models more
interpretable. However, with the integration of
multiple sources of data and information from
sensors, 10T devices, maintenance logs, and others,
there is still growth in this area.

Il. METHODOLOGY

This section describes the approach used in the
development and testing of the framework that uses
historical breakdown data to improve predictive and
prescriptive maintenance analytics. The analytical
method used can be described as the Serial method,
which is data gathering, data cleaning, model
building, and model checking. A statistical analysis
is also employed to evaluate the proposed framework
to assess its efficiency. To make the paper more
comprehensive, diagrams and figures are included to
show the process, while statistical methods are
described to assess the performance of the model.

1. Data collection

The primary data collection involved historical
records of industrial equipment breakdowns,
including failure incidents, maintenance logs, sensor
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readings, and operational conditions. Data was

gathered from three main source as shown in Fig.1:

e Industrial 10T Sensors: These sensors monitor
operational parameters such as temperature,
vibration, pressure, and acoustic signals. They
provide real-time data and are essential for
detecting abnormal behavior that may precede
equipment failure.

o Public example dataset: NASA Bearing Dataset
[16] (collected using accelerometers for PdM)

e Historical Breakdown Data: Maintenance history
records including failure events, repair actions,
part replacements, and associated costs. These
logs provide the foundation for building
supervised machine learning models.

e Example dataset: MIMII Dataset [17]
(Malfunctioning Industrial Machine
Investigation and Inspection)

e Machine Usage Data: Operational logs that detail
machine usage patterns, such as run-time hours,
load profiles, and environmental conditions (e.g.,
humidity, dust, temperature). These data help
model context-sensitive failures.

e Public source example: SECOM Manufacturing
Data Set [18] (includes sensor readings and
machine conditions).

To reduce bias and improve generalization, data
was collected across multiple industries
manufacturing, energy, and transportation covering
different equipment types and failure scenarios. The
final dataset used for model training and evaluation
contained thousands of labelled records, capturing
diverse breakdown events and corresponding
maintenance actions. This diversity was key to
improving the robustness and adaptability of both
predictive and prescriptive maintenance models.

The NASA Prognostics Center of Excellence
(PCoE) Data Set contains
simulated Turbofan Jet Engines used in aircraft

Industrial Historical Machine
loT Sensors Breakdown Data Usage Data

| |

Central
Database

Data Collection

Data Collection

Figure 1. Data sources and collection workflow

propulsion systems. The dataset mimics real-world
flight conditions and degradation behavior with
seven failure modes affecting five rotating
components:

e Fan

o Low-Pressure Compressor (LPC)
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e High-Pressure Compressor (HPC)
e Low-Pressure Turbine (LPT)

e High-Pressure Turbine (HPT)
Failures are categorized as:

o Efficiency degradation

e Flow degradation

The dataset hosted at Zenodo record 3384388 is
the MIMII (Malfunctioning Industrial Machine
Investigation and Inspection) Dataset designed for
sound-based fault detection in industrial machinery.
It includes audio recordings from four machine
types: valves, pumps, fans, and slide rails. Each
machine type features multiple product models and
contains both normal and anomalous sound
segments.

The failure types captured in the dataset simulate
real-world conditions such as:
e Contamination
o |Leakage
¢ Rotating imbalance
e Clogging
¢ Rail damage
e Loose belts
e Voltage fluctuations
e Lack of lubrication

The SECOM data set originates from a
semiconductor manufacturing process, where sensor
data was collected from various stages of production.
Each record represents a single production unit with
591 measured features, capturing signals from
equipment and process monitoring points.

The failure type is binary: a product either passes
or fails in-house testing. A label of -1 indicates a
pass, while 1 denotes a failure. Although the dataset
doesn't specify exact fault categories, failures are
linked to anomalies in sensor readings that may
reflect issues like contamination, misalignment, or
process deviations during wafer fabrication.

2. Data preprocessing

The information that is collected from various
sources is normally in raw form and therefore
requires to be processed before being fed to the
machine learning models. Preprocessing steps as
illustrated in Fig 2. included:

e Missing Data: In this study, the missing or
incomplete data were handled using Interpolation
or Imputation methods, which included the K-
nearest neighbour (K-NN) imputation. In
addition, any abnormally high or low values of
the sensors, such as temperature or pressure,
were also omitted.

e Data Integration: In the training of historical
failure records, failure occurrence was associated
with real-time sensor data activity in which every
phase of failure event was associated with signals
from the sensor.

216

e Feature Selection: Some of the features
obtained from the sensor data include average
temperature, peak frequencies, and wear profiles.
Expert knowledge was applied to identify failure
modes in the form of patterns in the sensor data
that have been associated with failure.

o Normalization: All the numerical variables were
normalized to the same level as other equipment
and sensors. This step was useful in preventing
the situation where some of the features will have
a very large value and dominate the other
features.

Equipment Real-Time
Sensors Sensor
\_..B.e_aefngs .....

i Failure Logs, !
! Maintenance !
Records

................

Data
Integration

Preprocessed
Data

Historical
Breakdown
Data

Figure 2. Data processing pipeline

3. Model development

Predictive Maintenance Model: The first proposed
methodology is to develop the PdM using machine
learning algorithms for predicting equipment
failures. The Random Forest Classifier was chosen
because it is one of the best algorithms for large data
sets with numerical and categorical data.

Model development steps include:

o Data Split: The data was split into training and
testing data in the ratio of 7:3.

o Feature Selection: After the correlation analysis
and the feature importance of the Random Forest
model, the features that are most relevant to
failure prediction were selected.

e Model Training: In the Random Forest model,
the historical breakdown data were used to train
the model on the patterns of failures based on the
sensor readings and the usage of the machines.

e Hyperparameter Tuning: In this step, the
hyperparameters, such as the number of trees and
the maximum depth of the trees, were tuned
using the grid search.

This led to the development of a model that would
be able to estimate the likelihood of equipment to fail
at any time based on its current status.

Prescriptive Maintenance Model: The Prescriptive
Maintenance Model (PsM) is an advancement of the
PdM because it outlines the action plan to be
followed when a failure is anticipated. This paper



A. Saxena — Acta Technica Jaurinensis, Vol. 18, No. 4, pp. 210-224, 2025

introduces PsM, which is the integration of the
MCDA model and optimization algorithm that
assists in determining the right maintenance actions
to be taken depending on the failure times, criticality,
and available resources.

To provide more context, Multi-Criteria Decision
Analysis (MCDA) constitutes a systematic approach
for evaluating alternatives when decisions must
consider multiple, and often conflicting, criteria.
This methodology facilitates informed decision-
making by integrating both qualitative and
quantitative factors in a structured evaluative
process. Among the most extensively applied
MCDA techniques are the Analytic Hierarchy
Process (AHP) and the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS).
AHP utilizes pairwise comparisons to establish the
relative  significance of  decision criteria,
incorporating consistency ratios to assess the
reliability of evaluative judgments. In contrast,
TOPSIS ranks alternatives by calculating their
relative geometric proximity to an ideal solution and

a negative-ideal counterpart, thereby supporting
compromise solutions in complex decision
environments. These approaches enhance clarity,
objectivity, and transparency in decision-making
processes across various domains, including
manufacturing, infrastructure planning, healthcare,
and sustainability management.

In this model Analytic Hierarchy Process (AHP) is
utilized to compare criteria in pairs using a scale of
1 to 9 to derive relative weights, as it’s reliable and
good at capturing subjective preferences. The
criterion used in this paper for prescriptive
maintenance are equipment downtime, equipment
availability, equipment performance and
maintenance cost. Weights are then derived for these
criterions based on the following matrices.

Equipment downtime is assigned the highest
importance, then equipment availability, followed by
equipment performance and maintenance cost.
These are shown in (Table 1), (Table 2) and (Table
3).

Table 1. Pairwise comparison matrix

Criteria Downtime Availability Performance Cost
Downtime 1 3 5 7
Availability 1/3 1 3 5
Performance 1/5 1/3 1 3
Cost 7 1/5 1/3 1
Table 2. Normalizing and deriving weights
Criteria Downtime Availability Performance Cost Weight
Downtime 0.593 0.606 0.549 0.506 0.563
Auvailability 0.198 0.202 0.329 0.361 0.273
Performance 0.119 0.067 0.109 0.217 0.128
Cost 0.085 0.026 0.013 0.072 0.049
Table 3. Final criterion weights
Criterion Weight (%)
Downtime 56.3%
Availability 27.3%
Performance 12.8%
Cost 4.9%
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Model development steps shown in Fig. 3 include:

e Failure Prediction Input: The prescriptive
model takes failure prediction data from the
PdM, such as the predicted time of failure and the
risk level.

e Maintenance Optimization Criteria: The
objectives that were considered when deciding
on the actions to be taken in the maintenance
activities were cost, time, availability of spare
parts, and the expertise of the technicians.

e Optimization Model: A Genetic Algorithm
(GA) was employed to identify the best
maintenance actions that would reduce the
operation time and cost at the same time, taking
into account the resource constraints.

Predicted Failure Data (Pdwv)

'

Decision-making Steps

!

Optimization Criteria

|

Optimization Process

!

Recommended Maintenance
Actions (Pswm)

Figure 3. Prescriptive maintenance workflow

e Decision Support System: A decision support
system was adopted to provide the recommended
actions to the maintenance personnel in a more
understandable manner in the form of text and
graphical representation.

4. Model evaluation

To compare the performance of the two models,
namely the predictive and prescriptive maintenance
models, several statistical and machine learning
performance metrics were adopted as illustrated in
Fig. 4.

Performance Metrics for Predictive Maintenance:
For the Predictive Maintenance Model, the
performance in predicting failures was assessed
using the following measures:

Accuracy: The number of the correct predictions
(true positive and true negative) divided by the
number of total predictions made by the model.

Precision: The percentage of the number of
correctly predicted failures out of the total number of
failures that were predicted.

.. True Positives
Precision = — — 1)
True Positives+False Positives

Recall (Sensitivity): The proportion of actual
failures correctly predicted by the model.

True Positives
Recall =

O]

F1-Score: The harmonic mean of precision and
recall, balancing both metrics.

True Positives+False Negatives

Precision X Recall
F1 — Score = 2x ——20 "2 3)

Precision+Recall

Statistical Tests: The chi-square test was used to
compare the predicted failure times with the actual
failure times. A confusion matrix was also created to
have a better understanding of the model’s
performance for each class.

Performance Metrics for Prescriptive
Maintenance: In the case of the Prescriptive
Maintenance Model, the following were used to
establish effectiveness:

Cost Reduction: The decrease in the total
maintenance costs after the prescriptive maintenance
recommendations have been made.

Downtime Reduction: The reduction of the time
that is not productive because of maintenance that
has not been planned.

Optimality of the Actions: To what extent of the
prescribed maintenance action meet the optimization
goal of cost, time, and resource availability?

Statistical Tests: To test the null hypothesis that
there is no significant difference in downtime and
cost before and after the recommendations of the
PsM, a paired t-test was conducted.

-
Evaluation Metrics for Predictive
and Prescriptive Maintenance

. 4

& = N
Predictive Prescriptive
Maintenance Maintenance
Model Model
. - 4 - >y
D A
Performance Operational
Metrics Cost Difference

\ 4 J

1 l

[ Accuracy ] Paired t-test
Accuracy p <0,01
F1-score

Figure 4. Evaluation metrics for predictive and
prescriptive maintenance
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5. Experimental setup

The experiments were done on a real-world data
set, which includes failure records and sensor data of
several machines in various industries. The data set
comprised of failure time, usage of machines, sensor
data, and maintenance records for a few years.
Experimental configuration includes:

Data Splitting: The data was then divided into a
training set, which was 70%, and a testing set which
was 30%.

Cross-validation: In the process of training the
model, the cross-validation technique of 5 folds was
applied to make the model more robust and
generalizable.

Prescriptive Model Validation: The PsM was then
tested on the past maintenance decisions and
compared with the actual results in terms of cost and
downtime before and after the implementation of the
PsM.

Statistical Analysis: Finally, statistical analysis
was performed as shown in Fig. 5, to analyze the
results of the developed and validated models. To
determine the statistical significance of the
improvement made by the models, ANOVA, paired

t-tests, and Wilcoxon signed-rank tests were
conducted.
25
095
z, 20
&8 090
g 0,85 :Ej *®
’ g0
0,70}
5
Pre-Impleme- Post-
entation Implementation P;e— Poét—
$500 Implementa Implementaton
b7
Sgisk p <0,01
"g$20k
g
S o

Post-
entation Implementation

Pre-Impleme-

Figure 5. Statistical analysis results

I1l. RESULTS

This section provides the results following the
predictive and prescriptive maintenance approach.
Key factors in the analysis will involve the results of
the machine learning model, the evaluation of
resource consumption, and the assessment before
and after the model's deployment. The discussion
explains these results and focuses on what operation
advancements have been achieved and what the
limitations are.

Predictive maintenance model results for
equipment failure prediction accuracy: To assess the
performance of the predictive system, the breakdown
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data of the machines and the real-time data from the
sensors were used to train and test the models. The
models compared are Random Forest, SVM, and
Logistic Regression as illustrated in Fig. 6 and
(Table 4). Their performance was evaluated in terms
of accuracy, precision, recall, and F1 score.

W Accuracy (%) ®Precision (%) ®Recall(%) = F1-Score (%)

76 II|| IIII
M

Random Forest SVi

Percentage
o ® o ® ® O © O
o N & O ®@ ©O N &

~
©

Logistic Regression

Model

Figure 6. Predictive model performance metrics
across ML algorithms

Table 4. Results across ML models

Model  Accuracy Precision Recall F1-

(%) (%) (%) Score

(%)

Random g3 915 931 923
Forest

SVM 86.7 842 856 849
Logistic

Regression 84.1 82.9 81.7 823

Key Observations:

¢ Random Forest gave the best result in terms of
accuracy, which is 92.3%, with almost equal
recall and precision.

e SVM presented lower generalization ability; it
often ‘memorized’ noisy readings from the
Sensors.

e Logistic Regression was also slow in identifying
non-linear failure patterns.

Feature Engineering and Data Flow: The
preprocessing phase was highly effective for model
performance, such as the normalization of sensors
and correlation filtering. As for feature importance,
the results showed that the three most significant
factors for failure were vibration amplitude, bearing
temperature, and load current.

Fig. 7. illustrates the stages of data pre-processing,
feature selection or filtering, normalization, and
training of the model.

Prescriptive Maintenance Recommendations for
Maintenance Actions: Since failure prediction was
done, a decision tree was used to determine the right
maintenance actions to be taken. Such factors as the
equipment downtime, equipment availability,
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equipment performance and maintenance cost were
considered as criteria.

m Precision mRecall

g 3 & B
=1 & 5 =] =

Model
Evaluation

W Accuracy

i ~
S

Feature Data
Extraction  Preprocessing

0.75

Cross
Validayion

Model Training

Figure 7. Feature engineering and model
training pipeline

The Random Forest framework leverages four
core decision criteria—component criticality, lead
time, repair cost, and production risk—to classify
suitable maintenance actions such as immediate
servicing, scheduled maintenance, or continued
monitoring. To enrich the model with contextual
priorities, Analytic Hierarchy Process (AHP)
weights were assigned to these criteria, emphasizing
criticality and risk over cost factors. A composite
weighted score was created by applying these
weights to normalized input variables, which was
then incorporated as an additional feature during
model training. This hybrid approach allows the
algorithm to account for both data-driven patterns
and stakeholder priorities in maintenance planning.

After preprocessing and encoding the input data,
the Random Forest classifier was trained to learn
from both raw features and the composite score.
Predictions were validated using a train-test split,
and post-modeling analysis revealed feature
importance rankings, offering transparency into how
maintenance decisions were prioritized.

Feature Roles in the Tree-

e Downtime drives the top-level split due to its
highest assigned importance.

o Auvailability and Performance influence urgency,
low availability and poor performance trigger
proactive action.

¢ Maintenance Cost helps weigh whether the effort
is economically justified, especially for less
critical scenarios.

This tree represents human-style logic that could
emerge from a Random Forest classifier trained on
actual operational data.

Key Observations from the flow of information
from the ML output to the recommended action
based on the fault prediction decision logic is as
follows:
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e Maintenance  decisions  coincided  with
technician’s suggestions in 89% of cases.

e Early warning, therefore, helped in increasing the
average response time by 3.7 days.

e Recommendations reduced reactive maintenance

by 41%.

Resource and Cost  Optimization: The
performance of the model was evaluated for six
months to determine its effectiveness in the
operations of the organization. Performance
measures were tool downtime, spare parts
consumption, and  maintenance = manpower
productivity.

m Pre-Implementation  m Post-Implementation

100

60
40
20

0

Downtime Maintenance Cost Equipment Avialbility Performance

Figure 8. Maintenance efficiency improvements —
pre vs post implementation

The Fig. 8 illustrates how this approach in the use
of prediction led to prescription and the effects this
had on operations and costs.

Key Results:
e This helped to reduce the maintenance costs per
breakdown by 39%.
¢ Resource utilization improved by 24%.
e Scheduled interventions helped to decrease the
overall number of unplanned downtimes by 35%.
W Before System W After System

Cost per Breakdown Technician Utilization
(8} (%)

1000

100
10
<
I
1

MTBF (hours) MTTR (hours)

9

145

Figure 9. Comparative analysis of MTBF, MTTR,
and cost

Statistical ~ Validation of System Impact:
Comparison of Operational Metrics Mean Time.
Before Failure (MTBF), Mean Time to Repair
(MTTR): The gathered pre- and post-



A. Saxena — Acta Technica Jaurinensis, Vol. 18, No. 4, pp. 210-224, 2025

implementation data were analyzed using the paired
t-tests to ensure the changes were statistically
significant and illustrated in Fig. 9.

Table 5. Before and after values for metrics

Metric Before After p-
System System  value
MTBF 145.2 198.7 0.003
(hours)
MTTR 6.4 4.8 0.012
(hours)
Cost per
Breakdown 1,470 895 0.005
%)
Technician
Utilization 68.2 84.6 0.009
(%)
Key Findings:
o All the parameters mentioned in (Table 5) were
found to have a statistically significant

improvement (p < 0.05).

e This means that a higher MTBF is an indication
of reduced equipment failures.

o Fewer minutes to total time to repair and less cost
underscore more effective and timely responses.

Practical interpretation, limitations  and
effectiveness: The identification of equipment in
need of repair or replacement with an analysis of
when failures are expected to occur. The findings
reveal that it is possible to identify failure signals in
advance using machine learning. Applying
prescriptive logic further adds value to the generic
predictions to ensure they are relevant in the required
context.

System strengths:
o Improved decision speed and accuracy.
o Better allocation of parts, technicians, and
downtime windows.
e Reduced over-maintenance from calendar-based
strategies.

Observations:

e MTBF Improvement: The use of predictive
maintenance also helped in improving the
average time between failures. Before the
implementation of the MTBF program, the
MTBF was 145.2 hours, while after the
implementation, it was 198.7 hours, thus
implying that the reliability of the equipment had
improved.

e Faster Failure Repair: In maintenance, failures
were handled and resolved in a shorter period;
MTTR reduced from 6.4 hours to 4.8 hours. This
is important in avoiding much disruption of
production schedules and in the overall cutting of
operational costs.

e Cost Savings: Other expenses that were also
affected include maintenance costs, which
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recorded a reduction in costs. Some preventive
aspects include the reduction of cost per
breakdown from $ 1470 to $ 89,5, meaning that
flushing revenues may be gained through
changing to these sophisticated maintenance
strategies. This has been made possible through a
reduction in  unplanned downtime and
optimization of resource use in the organization.

e Increased Technician Productivity: The
productivity of the technicians was improved
through utilization that rose from 68.2% to
84.6%. This implies that technicians were able to
perform more preventive or planned maintenance
than emergency or corrective maintenance.

Implementation Challenges: On the same note,
deployment brought the following challenges to the
table:

e Data Issues: The format and content of sensor
logs varied a great deal, and this affected the
creation of the model.

e User Trust: Some technicians were initially
reluctant to use it and needed to be trained and
convinced.

e New failure types appeared that were not
presented in the training set.

Recommended Solutions:

e Feedback controls that include training models
on recent data are also employed.

e To enhance the confidence of the technicians, it
is recommended to adopt explainable Al models.

e Include redundancy and override controls for
special or unique circumstances in the Reliability
Block Diagram (RBD).

1V. DISCUSSION

This research evidence indicates that the
effectiveness and applications of both predictive and
prescriptive maintenance systems should not be
underestimated as they hold the key to increasing
efficiency, decreasing downtime, and decreasing
general maintenance costs. The utilization of data
and computer learning techniques  helps
organizations move from a reactive maintenance
approach to a more efficient predictive routine, thus
improving the operations of the organization.

The results showed that there were positive
changes in the major areas of maintenance, such as
MTBF, MTTR, and cost of maintenance. The
application of predictive maintenance made it easier
to identify probabilities of equipment failures and
make the right interventions at the right time. This
proactive approach helped to decrease the rate of
emergent failures and, therefore, enhance the
reliability of the equipment.

Prescriptive maintenance, however, was a step
further than just predictive since it offered solutions.
It provided the best recommendations for actions
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based on the failures that are expected to occur and
enhanced the decision-making process and repair
activities. By predicting and prescribing the
maintenance actions, it was possible to achieve
significant decreases in both downtime and repair
time, thus enhancing the operation’s efficiency.

Recommendations: There is a need to increase the
application of predictive and prescriptive
maintenance solutions across organizations since
they enhance the efficiency of critical machinery and
equipment in production.

e Sustaining the Process: For the benefits to be
fully attained, the performance indicators should
be constantly checked and the models refined.
The maintenance strategies should, therefore, be
refined as more data is obtained to make them
more accurate and effective.

e Invest in Training: For the effective and
efficient implementation of the maintenance
strategies, the maintenance teams should be
trained not only on the technical aspect of the
systems but also on how to understand the results
of the prescriptive and predictive maintenance
tools.

These maintenance strategies are effective when
adopted in combination as a way of improving
efficiency, cutting costs, and improving operational
performance. As the industries advance, the use of
other intelligent technologies, such as predictive and
prescriptive maintenance, will be vital for the
success of the companies.

Table 6. Average performance metrics across
datasets in existing research

Estimated  Notes
Average

Value

Metric

Averaged from
SECOM RF (~66.5%),
NASA RF (~98.1%),
CM1 SVM (~97.7%)

Primarily from
SECOM RF and
SECOM GB; MIMII
and NASA report
sparsely

Accuracy ~88.8%

Precision ~0.71

Gradient Boosting
(SECOM) and RF
(NASA) emphasize

defect sensitivity

High for NASA CM1
RF (97.25%), moderate
for SECOM (~0.69),
inferred for MIMII

Recall ~0.80

F1score ~0.79
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A review of existing literature illustrated in
(Table 6) revealed multiple studies focusing on
predictive maintenance using similar datasets;
however, there appears to be a notable gap in
research related to prescriptive maintenance. This
gap served as the impetus for the present study. One
relevant document identified on the NASA
website—Teubert et al. [19], An Analysis of Barriers
Preventing the Widespread Adoption of Predictive
and Prescriptive Maintenance in Aviation—
highlights the limited implementation of prescriptive
maintenance within the aviation industry.

The predictive models examined in this study,
developed using selected datasets, exhibit improved
statistical performance relative to the average results
reported in earlier studies. Nevertheless, direct
comparisons are inherently limited due to
methodological and evaluative differences between
this study and previous work.

V. PRACTICAL IMPLEMENTATION STEPS

Step 1: Historical Data Collection

e Collect breakdown and maintenance logs from
the history of past work orders.

e This step is the biggest challenge in most
industries, as the data should be reliable to train
the models on it and it should be in a format
which has sufficient details to be consumed by
the models.

Step 2: Feature Engineering & Failure Pattern

Extraction

e With the help of maintenance and reliability
experts identify the key data elements which
should be used in prediction.

¢ Remove the faulty entries and fill up the blanks
with average or any other method agreed with the
experts.

o Apply statistical analysis or ML feature selection
to highlight failure precursors.

Step 3: Predictive Model Deployment
e Train Random Forest model using historical
patterns.
e Evaluate performance using metrics such as
accuracy, precision, recall, and F1 score.

Step 4: Real-Time Monitoring Integration
¢ Ingest the live data from sensors to build the time
series data and use in the prediction model.
e Trigger early warnings when predicted failure
probabilities exceed defined rules.

Step 5: Prescriptive Logic Engine
e Map predictive outputs to suggested actions
depending on the predefined conditions.

Step 6: Maintenance Decision Execution
e Based on recommendations plan the work orders
with prescribed activities.
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e Technicians execute the planned work generated
from the predictive models containing prescribed
activities.

Step 7: Feedback & Continuous Learning

e Technicians document post-maintenance results
preferably using pre-defined codes and
additional details in the text for model retraining.

e Based on feedback, analyze false alarms and
missed failures to refine rules and model features.
The feedback from technicians is critical in this
step to improve the models and increase the
accuracy of the predictions and prescriptions.

V1. CONCLUSION

The findings highlight MTBF improvement, more
efficient failure repair, increased cost saving and
technician productivity shows that the use of
predictive and prescriptive maintenance is very
beneficial for asset heavy industries that use a lot of
machinery and equipment. It involves methods that
not only save expenditure but also give effective
operation and reduce the dependence on worker’s
reliability.
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