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Abstract: The application of predictive and prescriptive maintenance procedures in industries is revolutionizing 

mainstream manufacturing by cutting down on time loss and waste of resources. Reactive 

maintenance and preventive strategies are some of the traditional maintenance management 

techniques that tend to cause inefficiency in the systems, high operational costs and some failures. 

This paper uses data from breakdown analysis in the development of predictive maintenance models 

and prescriptive decision systems. A methodology is used that incorporates predictive analytics based 

on individual machine learning with the knowledge of the failure patterns. The analysis of historical 

breakdown records allows predictive models to achieve higher accuracy in forecasting potential 

failures by identifying key failure trends. The prescriptive maintenance program provides information 

regarding the best course of action to be taken, minimizing operational disruptions and downtimes. 

As means of testing the efficiency of the proposed concept, experiments were conducted on real-world 

industrial datasets. The implications of this are lower number of unplanned maintenance interventions, 

increased efficiency, and reduced costs. This paper adds to the literature on predictive and prescriptive 

maintenance as it highlights how historical breakdown information can enhance the predictive 

analysis while giving suggestions concerning industrial maintenance management. Further research 

on deep learning algorithms and real-time integration of the sensors have potential to improve 

maintenance processes. 

Keywords: predictive maintenance; prescriptive maintenance; historical breakdown data; machine learning; 

failure prediction; industrial maintenance 

 

I. INTRODUCTION 

This paper aims to examine the role of equipment 

reliability in industries and how it affects the 

operation of industries, costs, and the safety of the 

workers and assets. The conventional maintenance 

techniques, such as the breakdown or remedial 

maintenance and the preventive maintenance, do not 

offer the best solution in reducing the time that an 

asset is out of service as well as enhancing its 

reliability. The type of maintenance that is reactive 

or also known as “run-to-failure,” leads to failure 

that is unexpected, costly repairs, and even 

dangerous. On the other hand, preventive 

maintenance involves servicing based on a calendar 

schedule irrespective of the real state of the 

equipment, thus leading to unrequired servicing and 

wastage of resources. These have led to the adoption 

of the prediction and prescription of maintenance 

schedules and plans that utilize big data analysis, 

such as machine learning techniques. 

Predictive maintenance (PdM) involves analyzing 

data gathered from equipment and generating an 

outlook of when it will develop a fault. PdM is 

attained by the analysis of the sensor readings, 

operational logs, and historical breakdowns, thus 

helping the organization in planning and undertaking 

maintenance ahead of time. As per Meddaoui et al. 

[1], this approach of maintenance helps in 

minimizing the time that the asset is out of service 

due to maintenance, increases the lifespan of the 

asset, and reduces the maintenance cost since the 

asset is only worked on when necessary. 

Furthermore, Selcuk [2] presents data on the average 

industrial savings achieved through predictive 

maintenance, as savings return on investment (ROI) 

10 times on Predictive Maintenance, reduction in 

maintenance costs by 25–30%, elimination of 

breakdowns by 70–75%, reduction in downtime by 
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35–45% and increase in production by 20–25%. 

According to Kalafatelis et al. [3], the effectiveness 

of PdM models significantly depends on the quality 

and quantity of the breakdown history data. The 

organization of failure records in a systematic form, 

along with operational parameters and 

environmental data, greatly improves the mechanism 

of machine learning techniques. 

Prescriptive maintenance (PsM) takes the concept 

of predictive maintenance a step further by providing 

the best course of action to undertake. It uses current 

data with the history of breakdowns to find out the 

most appropriate plan of action concerning cost, 

capacity, and vulnerability. Thus, PsM offers 

practical advice, for example, to change the 

operating conditions, to carry out maintenance when 

it is most profitable, or to replace certain 

components. This approach helps industries to 

change from the ineffective techniques used in 

maintenance and embrace a superior manner than 

that of the modern advanced system. 

Historical breakdown data is also a very important 

factor that can be used to enhance both predictive 

and prescriptive maintenance. These datasets include 

past failure history, degradation rate, and the 

previous actions that were taken to address the 

problem. By comparing the results of the failure 

modes, industries can improve PdM models and 

adjust the PsM recommendations. This is because 

failure data is structured and can be used to create 

models that are more accurate and can perform well 

in different operating conditions, on different types 

of assets, and in different failure modes. Moreover, 

integrating historical breakdown records with the 

live monitoring system makes it easy to have an 

overall picture of the health of the assets to be 

maintained, hence making better decision-making. 

The rise of Internet of Things (IoT) and smart 

sensors has led to the generation of huge amounts of 

data about breakdowns, which can be used in new 

ways in the maintenance context. To increase the 

value of historical data, additional techniques such as 

Natural Language Processing (NLP) on the 

maintenance logs and deep learning for anomaly 

detection are employed. Decision trees, random 

forest and Support Vector Machines (SVM), and 

deep neural networks can be applied to that end to 

derive failure histories and enhance maintenance 

strategy and practice. 

However, several issues have been observed in the 

use of historical breakdown data for predictive and 

prescriptive maintenance. One of the biggest issues 

is data heterogeneity, as the maintenance records are 

gathered from various sources and may differ in 

terms of structure and information richness. If the 

failure data is incomplete or inaccurate, it will lead 

to wrong predictions and unsuitable maintenance 

recommendations. 

Another challenge is the variability in the rate at 

which equipment wears out because, overtime, 

working conditions, exposure to the environment, 

and maintenance regimens can change. Sometimes, 

when training the models, data collected may be 

historical and may not be up to date; this makes the 

models trained frequently or used with adaptive 

learning.  

In this paper, incorporating Machine Learning, a 

subset of Artificial Intelligence (AI), to maintenance 

strategies provides the prospect to surmount these 

hurdles. This area benefits from the use of Machine 

Learning models, which can analyze the history of 

breakdowns as well as learn new ones with 

continuous training and feedback loop to adjust the 

predictive model. Prescriptive maintenance can also 

be enhanced by reinforcement learning algorithms 

since they can update the decision-making policies 

based on the previous maintenance results.  

The historical breakdown data for both predictive 

and prescriptive maintenance is applicable in various 

industries such as manufacturing, energy, transport, 

and healthcare. For example, in manufacturing, 

predictive analytics assist in avoiding production 

losses due to machine failures since the issues are 

foreseen. In the energy sector, it helps in increasing 

the dependability of the power generating and 

distributing systems and in minimizing the time for 

which they are out of order.  

Thus, to enhance the effectiveness of historical 

breakdown data, the organizations need to follow a 

proper procedure of data gathering, storing, and 

analyzing. This is because the use of centralized data 

repositories with standard maintenance logs 

enhances compatibility with the various predictive 

and prescriptive models. Real-time data processing 

in itself helps in improved failure predictions, but 

with the help of cloud computing and edge 

computing, the process is made much faster and 

more accurate. The use of advanced visualization 

tools assists maintenance teams in understanding the 

predictive analysis to make the right decisions. 

In addition, there should be good cooperation 

between data scientists, maintenance engineers, and 

other specialists to design the appropriate predictive 

and prescriptive maintenance models. Maintenance 

engineers contribute with the actual knowledge of 

the domain to define relevant indicators of failure, 

and data scientists carry out the actual data analysis 

with advanced machine learning algorithms. This is 

done by constant feedback between the predictive 

models and the maintenance teams to ensure that the 

recommended solutions are feasible within the 

operations environment. 

It is also important to note that ethical issues and 

data privacy are other factors that are very relevant 

when it comes to the use of predictive and 

prescriptive maintenance. It is also important for the 
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organizations to observe the rules regarding data 

protection and come up with clear guidelines on how 

the data will be used.  

This paper aims at exploring the role of historical 

breakdown data in improving the predictive and 

prescriptive maintenance plans, which in turn 

increases the reliability of the assets, decreases the 

operational costs, and optimizes the maintenance 

schedule. The results of different experiments on real 

datasets are presented to highlight the effect and 

influence of historical failure records on Boolean 

model assessment and maintenance activity 

decisions. The presented method involves using 

historical failure data in combination with analytical 

tools that will help to predict maintenance 

requirements and thus minimize downtime and 

increase asset life. 

The rest of the paper is as follows: In the Materials 

and Methods section, the data acquisition process, 

data pre-processing, and the machine learning 

approaches for predictive and prescriptive 

maintenance has been explained. The Results section 

provides evidence of the effectiveness of using the 

historical breakdown data to increase the predictive 

accuracy and enhance maintenance planning. The 

Discussion section discusses the results concerning 

industrial applications, the limitations, and further 

research opportunities. Lastly, the Conclusion 

section provides a brief of the findings and the 

implications to the maintenance strategies. 

Using the breakdown data, industries can move 

from reactive and preventive maintenance to a wiser 

maintenance approach. The implementation of both 

the predictive and prescriptive analytics in the 

maintenance process provides a competitive edge 

since it optimizes the maintenance process, reduces 

downtime, and lowers maintenance expenses. The 

information gathered from failure history enables 

organizations to make the right decisions, thus 

turning maintenance into a strategic business tool 

that can improve organizational performance. 

1. Literature review 

The concepts of predictive and prescriptive 

maintenance have undergone a great deal of changes 

in the last few years, mainly due to data revolution 

and the increasing adoption of Industrial IoT 

systems. PdM is the procedure of forecasting when a 

particular equipment is likely to fail, while PsM goes 

a notch higher by identifying the best way to 

maintain the equipment. In this section, we give a 

brief literature review on predictive and prescriptive 

maintenance, based on past breakdowns, machine 

learning, and its application in a manufacturing 

environment. 

Predictive Maintenance Techniques: PdM has 

been established as one of the most efficient ways of 

reducing the risks of unplanned downtime and 

properly scheduling maintenance. PdM is a concept 

that aims at predicting an equipment failure based on 

the breakdown history, sensor data, and analysis so 

that maintenance activities can be done right before 

the failure occurs. In the years past, several methods 

of predictive maintenance have been tried out in 

different industries. 

Machine Learning (ML) Models for Predictive 

Maintenance: Predictive maintenance also relies on 

machine learning as through it, the machine learns 

from failure history and signals from attached 

sensors. The initial studies conducted were mainly 

based on conventional statistical methods like 

regression analysis and time series analysis. These 

models worked based on present physical condition 

models and could not handle massive unformatted 

data sets and/or intricate failure profiles. More 

recently, decision trees, random forest, SVM, and 

deep neural networks (DNN) have come into 

practice due to their flexibility to identify non-

linearity in the data and flexibility for learning new 

changes. 

For example, Choi et al. [4] used random forests in 

their study conducted in 2016 to model bearing 

failures in manufacturing machines by using 

vibration data. This work highlighting the ability of 

applying machine learning techniques in the field of 

predictive maintenance also proved that the 

proposed model yielded good results in identifying 

initial stage failures. However, the study is largely 

confined to controlled experimental conditions and 

lacks generalization across diverse industrial 

scenarios.  The data collection was performed under 

laboratory conditions, limiting real-world 

applicability. It was also focused exclusively on spur 

gears, without testing across other gear types or 

machinery. Proposed Improvements can be to 

broaden experimental validation by testing across 

multiple gear types, fault modes, and operational 

conditions, and including field data from industrial 

machinery to validate robustness. 

In the same way, Zhao et al. [5] concluded through 

an application of SVM models to predict failure 

events in pumps with an impressive result suggesting 

that machine learning algorithms are more effective 

as compared to conventional techniques in terms of 

prediction accuracy and lead period. 

Kalafatelis et al. [3] discusses the scaling of a 

Modular Production System (MPS) using a 

Manufacturing Execution System (MES) and 

multiple agents, within the framework of Industry 

4.0 technologies. However, there are some 

limitations in the study. The system was tested on a 

specific modular setup (Festo MPS-500), which may 

not generalize to other production environments or 

industries. The study focused on only two types of 

cylindrical parts, which constrains the applicability 
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of the system to more complex or varied 

manufacturing tasks. 

Meddaoui et al. [1] in paper titled “The benefits of 

predictive maintenance in manufacturing excellence: 

a case study to establish reliable methods for 

predicting failures”  did PdM algorithm comparisons 

via ANN, DL, and RF, and explored the use of 

predictive maintenance (PdM) strategies in industrial 

settings, comparing algorithms like Artificial Neural 

Networks (ANN), Deep Learning (DL), and Random 

Forest (RF) for failure prediction. While the study 

offers valuable insights, there are some limitations as 

well. The research is based on a single industrial case 

study, which restricts the generalizability of findings 

across different sectors or equipment types. The 

study lacks diversity in machinery, operational 

environments, and failure modes. The paper 

emphasizes predictive capabilities but does not 

explore integration with real-time monitoring 

systems or decision-making frameworks. While 

PdM is said to reduce downtime and costs, the paper 

does not quantify these benefits or compare them 

against traditional maintenance strategies. 

Aminzadeh et al. [6] in paper ‘A Machine 

Learning Implementation to Predictive Maintenance 

and Monitoring of Industrial Compressors’ 

showcases a PdM framework combining 

temperature, pressure, and flow rate sensors with 

SQL-based data handling and ML modelling. The 

system achieved 98% accuracy in predicting 

compressor anomalies, marking a significant step 

toward proactive maintenance. However, broader 

deployment and long-term reliability require 

addressing some methodological and operational 

challenges. Some limitations are use of linear 

regression, which while interpretable, may not 

capture nonlinear relationships or complex failure 

patterns. There is an absence of comparative analysis 

with other ML models like Random Forest, SVM, or 

deep learning architectures. It also relies on a narrow 

set of sensor types; excludes vibration, acoustic, or 

electrical signals that could enrich diagnostics. 

Data Fusion and Sensor Data: It is important to 

note that the mentioned function of condition 

monitoring is achieved by the use of sensors to 

determine early signs of a failure. Wang et al. [7] also 

looked at the use of multiple sensors (vibration, 

temperature, pressure) in the models of the 

equipment; the use of multiple sensors provided a 

better view of the condition of the equipment hence 

improving the chances of accurate prediction. This 

fusion of data is useful to overcome the problem of 

using a single data source where an isolated signal 

may not have enough information to make a 

prediction. IoT technologies have also advanced the 

data collection process and offer a large amount of 

data for the support of predictive models. 

Feature Engineering in Predictive Maintenance: A 

major issue that is associated with predictive 

maintenance is data pre-processing, which involves 

extracting features from raw data to be used in the 

model. Gonçalves et al. [8] also discussed feature 

extraction in the context of predictive maintenance, 

where the authors stressed the significance of 

domain knowledge in selecting features that are 

representative of the equipment’s condition. For 

instance, vibration frequency, temperature gradients, 

or wear rates are some of the parameters that can be 

used to predict the failure, but which cannot be easily 

derived from the raw data. Lack of feature 

engineering can fail to capture the underlying 

patterns, thus making the predictive models wrong. 

Prescriptive Maintenance Techniques: 

Prescriptive maintenance is a step further from 

predictive maintenance as it not only predicts the 

failure time but also suggests the best course of 

action to take regarding the maintenance of the asset. 

While predictive maintenance tells one when it is 

probable that a failure is going to occur, prescriptive 

maintenance, on the other hand, provides one with 

what needs to be done to avoid the failure or even 

enhance equipment performance. This research has 

been aimed at developing methods of incorporating 

machine learning algorithms with optimization 

algorithms to offer maintenance suggestions. 

Optimization Techniques for Maintenance 

Scheduling: A lot of research has been conducted to 

incorporate optimization algorithms with PdM 

models for maintenance scheduling. Shang et al. [9] 

developed a model that incorporated predictive 

models and optimization models where the genetic 

algorithm was used to select the best maintenance 

schedule for machines in a manufacturing system. 

The proposed hybrid model was effective in cutting 

down downtime and optimizing the usage of 

resources because maintenance was only planned 

when it was deemed necessary based on the 

predictions made by the model. 

In the same way, Mokhtari et al. [10] employed 

both the predictive maintenance data and 

optimization techniques to determine the appropriate 

time for carrying out maintenance in a wind farm. 

The optimization model also incorporated the failure 

time prediction in addition to the cost of the 

downtime, spare parts, and manpower to determine 

the most cost-effective maintenance action. 

Decision Support Systems for Prescriptive 

Maintenance: Some of the authors have incorporated 

DSS with prescriptive maintenance models to assist 

the maintenance teams in their decision-making. Lee 

et al. [11] proposed a Decision Support System 

(DSS) that integrated predictive maintenance 

information with Multi-Criteria Decision Analysis 

(MCDA) approach to provide the best course of 

action based on risk, cost, and the criticality of the 
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machine. The system was designed to identify and 

rank maintenance activities based on their criticality 

to allow organizations to reduce their losses and 

avoid disruptions. 

In prescriptive maintenance, Model Predictive 

Control (MPC) uses mathematical models to analyze 

the condition of industrial structures and systems for 

prediction as well as for control of actions to be taken 

in the future. MPC has also been adopted in 

prescriptive maintenance to enhance the 

performance of assets in real time. Rosa et al. [12] 

used MPC for the application of predictive 

maintenance of industrial machines where the model 

forecasts the future maintenance requirements and 

modifies the operating conditions to enhance the 

useful life of the machine. MPC can check 

prescriptive maintenance advice and has the 

capability of constantly updating it according to 

ongoing equipment performance and failure 

prognostics.  

The existing work’s limitations are: 

 The cited papers were confined to narrow 

environments, equipment types, or setups. 

 Most papers relied on single or limited sensor 

types (e.g., vibration, temperature), missing 

multi-modal integration.  

 Use of basic models (e.g., linear regression, RF) 

with limited benchmarking or comparative 

analysis.  

 Laboratory or simulated conditions dominated; 

few field validations using industrial data. 

 Approaches were tested on specific fault types or 

products (e.g., cylindrical parts, spur gears), 

limiting transferability.  

 Lack of discussion on latency, deployment 

architecture, and decision feedback mechanisms. 

Compared to the identified limitations, this paper 

improves on: 

 While prior studies mentioned cost savings 

without detail, this paper outlines reduced 

downtime and waste, hinting at economic impact. 

 It enhances modelling using historical 

breakdown trends, which adds contextual 

richness. 

 Unlike controlled lab conditions in Choi et al. [4] 

or narrow equipment focus in Kalafatelis et al. 

[3], this paper uses field data from actual 

operations. 

 It introduces guidance for decision-making—not 

just predictions—which adds a valuable layer 

missing in Meddaoui et al. [1] and Aminzadeh et 

al. [6]. 

 Proactively suggests directions like deep learning 

and real-time sensor integration, addressing gaps 

in adaptability and algorithmic complexity. 

2. The role of historical breakdown data in 

maintenance strategies 

Of these, historical breakdown data is an important 

element of predictive and, especially, prescriptive 

maintenance, as such information offers information 

on previously registered failures, actions taken, and 

operational status. The historical failure records 

assist in creating models for machine learning that 

can analyze failure and be used in predicting future 

ones. Some of the previous works have used 

historical breakdown data in the development of 

maintenance models to increase the level of 

prediction and the quality of decision-making in 

prescriptive maintenance. 

How to apply breakdown data of past for failure 

prediction: Historical breakdown data is the most 

common form of data used in most of the predictive 

maintenance models. Choi et al. [4] analyzed the use 

of historical failure data in the failure of industrial 

machinery. They showed that the incorporation of 

failure histories in the model enhanced the model’s 

performance and stability since the system could 

identify repeat failure patterns. Using historical 

breakdown events, PdM models can predict future 

conditions that may lead to similar failures. 

Data-driven Insights for Prescriptive Maintenance: 

In prescriptive maintenance, historical data of failure 

is used to decide on what course of action should be 

taken in the event of a failure. Dufresne et al. [13] 

studied historical maintenance log files to develop 

recommendations for later activities to be taken. It 

was established that prescriptive maintenance 

systems could determine the best maintenance 

methods for future breakdowns by studying past 

breakdowns and the subsequent corrective actions. 

These systems can also learn from the previous 

successes and failures and, therefore, be in a better 

position to advise on what is best to do. 

Challenges in Historical Data Utilization: 

However, there are several drawbacks to using 

historical breakdown data. In their work, Zhao et al. 

[5] noted that one of the major challenges is the lack 

of consistency and the absence of some data in the 

history of maintenance. Most industrial 

organizations experience challenges in aggregating 

data from different sources, including logs, sensors, 

and previous maintenance records. In addition, data 

may be collected in various formats or may not be 

detailed enough to be used for predictive or 

prescriptive maintenance. It is, therefore, critical that 

historical breakdown data is accurate and 

comprehensive to create good maintenance models. 

3. Real world application of predictive and 

prescriptive maintenance 

Currently, predictive and prescriptive maintenance 

approaches are widely implemented in various 

industries as a part of business processes. Some 



A. Saxena – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

5 

examples of the use of these strategies in various 

fields are in manufacturing, energy, transport, and 

health. 

Manufacturing Industry: In the manufacturing 

industry, both predictive and prescriptive 

maintenance plans are now in use to eliminate 

disruption. Jardine et al. [14] study investigated the 

application of predictive maintenance in a steel 

production environment where the learning- based 

models the breakdown data to identify breakdowns 

in key machines. The models were useful in 

minimizing the time that the plant was not 

producing, hence increasing its efficiency. 

Energy Sector: Power generation equipment was 

identified to be the most common application of 

predictive maintenance in the energy domain. Tao et 

al. [15] used the predictive models to forecast 

failures in turbines and compressors in a natural gas 

power plant. This was achieved through the use of 

historical failure data in developing the models to 

predict equipment degradation and the time for 

maintenance to be done, hence enhancing 

operational efficiency and minimizing the instances 

of unplanned equipment outages. 

4. Future directions and challenges 

The use of historical breakdown data in 

conjunction with predictive and prescriptive 

maintenance models has been proven to be very 

effective, but certain issues are yet to be addressed. 

The future research areas of interest will be the ways 

to address the data quality problems, the ways to 

improve the flexibility of the models in the context 

of the changes in the operational conditions, and the 

ways to make the machine learning models more 

interpretable. However, with the integration of 

multiple sources of data and information from 

sensors, IoT devices, maintenance logs, and others, 

there is still growth in this area. 

II. METHODOLOGY 

This section describes the approach used in the 

development and testing of the framework that uses 

historical breakdown data to improve predictive and 

prescriptive maintenance analytics. The analytical 

method used can be described as the Serial method, 

which is data gathering, data cleaning, model 

building, and model checking. A statistical analysis 

is also employed to evaluate the proposed framework 

to assess its efficiency. To make the paper more 

comprehensive, diagrams and figures are included to 

show the process, while statistical methods are 

described to assess the performance of the model. 

1. Data collection 

The primary data collection involved historical 

records of industrial equipment breakdowns, 

including failure incidents, maintenance logs, sensor 

readings, and operational conditions. Data was 

gathered from three main source as shown in Fig.1: 

 Industrial IoT Sensors: These sensors monitor 

operational parameters such as temperature, 

vibration, pressure, and acoustic signals. They 

provide real-time data and are essential for 

detecting abnormal behavior that may precede 

equipment failure. 

 Public example dataset: NASA Bearing Dataset 

[16] (collected using accelerometers for PdM) 

 Historical Breakdown Data: Maintenance history 

records including failure events, repair actions, 

part replacements, and associated costs. These 

logs provide the foundation for building 

supervised machine learning models. 

 Example dataset: MIMII Dataset [17] 

(Malfunctioning Industrial Machine 

Investigation and Inspection)  

 Machine Usage Data: Operational logs that detail 

machine usage patterns, such as run-time hours, 

load profiles, and environmental conditions (e.g., 

humidity, dust, temperature). These data help 

model context-sensitive failures. 

 Public source example: SECOM Manufacturing 

Data Set [18] (includes sensor readings and 

machine conditions).  

To reduce bias and improve generalization, data 

was collected across multiple industries 

manufacturing, energy, and transportation covering 

different equipment types and failure scenarios. The 

final dataset used for model training and evaluation 

contained thousands of labelled records, capturing 

diverse breakdown events and corresponding 

maintenance actions. This diversity was key to 

improving the robustness and adaptability of both 

predictive and prescriptive maintenance models.  

The NASA Prognostics Center of Excellence 

(PCoE) Data Set contains  

simulated Turbofan Jet Engines used in aircraft 

propulsion systems. The dataset mimics real-world 

flight conditions and degradation behavior with 

seven failure modes affecting five rotating 

components: 

 Fan 

 Low-Pressure Compressor (LPC) 

 

Figure 1. Data sources and collection workflow 



A. Saxena – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

6 

 High-Pressure Compressor (HPC) 

 Low-Pressure Turbine (LPT) 

 High-Pressure Turbine (HPT) 

Failures are categorized as: 

 Efficiency degradation 

 Flow degradation 

The dataset hosted at Zenodo record 3384388 is 

the MIMII (Malfunctioning Industrial Machine 

Investigation and Inspection) Dataset designed for 

sound-based fault detection in industrial machinery. 

It includes audio recordings from four machine 

types: valves, pumps, fans, and slide rails. Each 

machine type features multiple product models and 

contains both normal and anomalous sound 

segments. 

The failure types captured in the dataset simulate 

real-world conditions such as: 

 Contamination 

 Leakage 

 Rotating imbalance 

 Clogging 

 Rail damage 

 Loose belts 

 Voltage fluctuations 

 Lack of lubrication 

The SECOM data set originates from a 

semiconductor manufacturing process, where sensor 

data was collected from various stages of production. 

Each record represents a single production unit with 

591 measured features, capturing signals from 

equipment and process monitoring points. 

The failure type is binary: a product either passes 

or fails in-house testing. A label of -1 indicates a 

pass, while 1 denotes a failure. Although the dataset 

doesn't specify exact fault categories, failures are 

linked to anomalies in sensor readings that may 

reflect issues like contamination, misalignment, or 

process deviations during wafer fabrication. 

2. Data preprocessing 

The information that is collected from various 

sources is normally in raw form and therefore 

requires to be processed before being fed to the 

machine learning models. Preprocessing steps as 

illustrated in Fig 2. included: 

 Missing Data: In this study, the missing or 

incomplete data were handled using Interpolation 

or Imputation methods, which included the K-

nearest neighbour (K-NN) imputation. In 

addition, any abnormally high or low values of 

the sensors, such as temperature or pressure, 

were also omitted. 

 Data Integration: In the training of historical 

failure records, failure occurrence was associated 

with real-time sensor data activity in which every 

phase of failure event was associated with signals 

from the sensor. 

 Feature Selection: Some of the features 

obtained from the sensor data include average 

temperature, peak frequencies, and wear profiles. 

Expert knowledge was applied to identify failure 

modes in the form of patterns in the sensor data 

that have been associated with failure. 

 Normalization: All the numerical variables were 

normalized to the same level as other equipment 

and sensors. This step was useful in preventing 

the situation where some of the features will have 

a very large value and dominate the other 

features. 

3. Model development 

Predictive Maintenance Model: The first proposed 

methodology is to develop the PdM using machine 

learning algorithms for predicting equipment 

failures. The Random Forest Classifier was chosen 

because it is one of the best algorithms for large data 

sets with numerical and categorical data. 

Model development steps include: 

 Data Split: The data was split into training and 

testing data in the ratio of 7:3. 

 Feature Selection: After the correlation analysis 

and the feature importance of the Random Forest 

model, the features that are most relevant to 

failure prediction were selected. 

 Model Training: In the Random Forest model, 

the historical breakdown data were used to train 

the model on the patterns of failures based on the 

sensor readings and the usage of the machines. 

 Hyperparameter Tuning: In this step, the 

hyperparameters, such as the number of trees and 

the maximum depth of the trees, were tuned 

using the grid search. 

This led to the development of a model that would 

be able to estimate the likelihood of equipment to fail 

at any time based on its current status. 

Prescriptive Maintenance Model: The Prescriptive 

Maintenance Model (PsM) is an advancement of the 

PdM because it outlines the action plan to be 

followed when a failure is anticipated. This paper 

 

Figure 2. Data processing pipeline 
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introduces PsM, which is the integration of the 

MCDA model and optimization algorithm that 

assists in determining the right maintenance actions 

to be taken depending on the failure times, criticality, 

and available resources. 

To provide more context, Multi-Criteria Decision 

Analysis (MCDA) constitutes a systematic approach 

for evaluating alternatives when decisions must 

consider multiple, and often conflicting, criteria. 

This methodology facilitates informed decision-

making by integrating both qualitative and 

quantitative factors in a structured evaluative 

process. Among the most extensively applied 

MCDA techniques are the Analytic Hierarchy 

Process (AHP) and the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS). 

AHP utilizes pairwise comparisons to establish the 

relative significance of decision criteria, 

incorporating consistency ratios to assess the 

reliability of evaluative judgments. In contrast, 

TOPSIS ranks alternatives by calculating their 

relative geometric proximity to an ideal solution and 

a negative-ideal counterpart, thereby supporting 

compromise solutions in complex decision 

environments. These approaches enhance clarity, 

objectivity, and transparency in decision-making 

processes across various domains, including 

manufacturing, infrastructure planning, healthcare, 

and sustainability management. 

In this model Analytic Hierarchy Process (AHP) is 

utilized to compare criteria in pairs using a scale of 

1 to 9 to derive relative weights, as it’s reliable and 

good at capturing subjective preferences. The 

criterion used in this paper for prescriptive 

maintenance are equipment downtime, equipment 

availability, equipment performance and 

maintenance cost. Weights are then derived for these 

criterions based on the following matrices.  

Equipment downtime is assigned the highest 

importance, then equipment availability, followed by 

equipment performance and maintenance cost. 

These are shown in (Table 1), (Table 2) and (Table 

3). 
 

 
 

Table 1. Pairwise comparison matrix 

Criteria Downtime Availability Performance Cost 

Downtime 1 3 5 7 

Availability 1/3 1 3 5 

Performance 1/5 1/3 1 3 

Cost 1/7 1/5 1/3 1 

Table 2. Normalizing and deriving weights 

Criteria Downtime Availability Performance Cost Weight 

Downtime 0.593 0.606 0.549 0.506 0.563 

Availability 0.198 0.202 0.329 0.361 0.273 

Performance 0.119 0.067 0.109 0.217 0.128 

Cost 0.085 0.026 0.013 0.072 0.049 

Table 3. Final criterion weights 

Criterion Weight (%) 

Downtime 56.3% 

Availability 27.3% 

Performance 12.8% 

Cost 4.9% 
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Model development steps shown in Fig. 3 include: 

 Failure Prediction Input: The prescriptive 

model takes failure prediction data from the 

PdM, such as the predicted time of failure and the 

risk level. 

 Maintenance Optimization Criteria: The 

objectives that were considered when deciding 

on the actions to be taken in the maintenance 

activities were cost, time, availability of spare 

parts, and the expertise of the technicians. 

 Optimization Model: A Genetic Algorithm 

(GA) was employed to identify the best 

maintenance actions that would reduce the 

operation time and cost at the same time, taking 

into account the resource constraints. 

 Decision Support System: A decision support 

system was adopted to provide the recommended 

actions to the maintenance personnel in a more 

understandable manner in the form of text and 

graphical representation. 

4. Model evaluation 

To compare the performance of the two models, 

namely the predictive and prescriptive maintenance 

models, several statistical and machine learning 

performance metrics were adopted as illustrated in 

Fig. 4. 

Performance Metrics for Predictive Maintenance: 

For the Predictive Maintenance Model, the 

performance in predicting failures was assessed 

using the following measures: 

Accuracy: The number of the correct predictions 

(true positive and true negative) divided by the 

number of total predictions made by the model. 

Precision: The percentage of the number of 

correctly predicted failures out of the total number of 

failures that were predicted. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives+False Positives
 (1) 

Recall (Sensitivity): The proportion of actual 

failures correctly predicted by the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives

True Positives+False Negatives
 (2) 

F1-Score: The harmonic mean of precision and 

recall, balancing both metrics. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2x
Precision X Recall

Precision+Recall
 (3) 

Statistical Tests: The chi-square test was used to 

compare the predicted failure times with the actual 

failure times. A confusion matrix was also created to 

have a better understanding of the model’s 

performance for each class. 

Performance Metrics for Prescriptive 

Maintenance: In the case of the Prescriptive 

Maintenance Model, the following were used to 

establish effectiveness: 

Cost Reduction: The decrease in the total 

maintenance costs after the prescriptive maintenance 

recommendations have been made. 

Downtime Reduction: The reduction of the time 

that is not productive because of maintenance that 

has not been planned. 

Optimality of the Actions: To what extent of the 

prescribed maintenance action meet the optimization 

goal of cost, time, and resource availability? 

Statistical Tests: To test the null hypothesis that 

there is no significant difference in downtime and 

cost before and after the recommendations of the 

PsM, a paired t-test was conducted. 

 

Figure 4. Evaluation metrics for predictive and 

prescriptive maintenance 

 

Figure 3. Prescriptive maintenance workflow 



A. Saxena – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

9 

5. Experimental setup 

The experiments were done on a real-world data 

set, which includes failure records and sensor data of 

several machines in various industries. The data set 

comprised of failure time, usage of machines, sensor 

data, and maintenance records for a few years. 

Experimental configuration includes: 

Data Splitting: The data was then divided into a 

training set, which was 70%, and a testing set which 

was 30%. 

Cross-validation: In the process of training the 

model, the cross-validation technique of 5 folds was 

applied to make the model more robust and 

generalizable. 

Prescriptive Model Validation: The PsM was then 

tested on the past maintenance decisions and 

compared with the actual results in terms of cost and 
downtime before and after the implementation of the 

PsM. 

Statistical Analysis: Finally, statistical analysis 

was performed as shown in Fig. 5, to analyze the 

results of the developed and validated models. To 

determine the statistical significance of the 

improvement made by the models, ANOVA, paired 

t-tests, and Wilcoxon signed-rank tests were 

conducted. 

III. RESULTS 

This section provides the results following the 

predictive and prescriptive maintenance approach. 

Key factors in the analysis will involve the results of 

the machine learning model, the evaluation of 

resource consumption, and the assessment before 

and after the model's deployment. The discussion 

explains these results and focuses on what operation 

advancements have been achieved and what the 

limitations are. 

Predictive maintenance model results for 

equipment failure prediction accuracy: To assess the 

performance of the predictive system, the breakdown 

data of the machines and the real-time data from the 

sensors were used to train and test the models. The 

models compared are Random Forest, SVM, and 

Logistic Regression as illustrated in Fig. 6 and 

(Table 4). Their performance was evaluated in terms 

of accuracy, precision, recall, and F1 score. 

Key Observations: 

 Random Forest gave the best result in terms of 

accuracy, which is 92.3%, with almost equal 

recall and precision. 

 SVM presented lower generalization ability; it 

often ‘memorized’ noisy readings from the 

sensors. 

 Logistic Regression was also slow in identifying 

non-linear failure patterns. 

Feature Engineering and Data Flow: The 

preprocessing phase was highly effective for model 

performance, such as the normalization of sensors 

and correlation filtering. As for feature importance, 

the results showed that the three most significant 

factors for failure were vibration amplitude, bearing 

temperature, and load current. 

Fig. 7. illustrates the stages of data pre-processing, 

feature selection or filtering, normalization, and 

training of the model. 

Prescriptive Maintenance Recommendations for 

Maintenance Actions: Since failure prediction was 

done, a decision tree was used to determine the right 

maintenance actions to be taken. Such factors as the 

equipment downtime, equipment availability, 

Table 4. Results across ML models 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Random 

Forest 
92.3 91.5 93.1 92.3 

SVM 86.7 84.2 85.6 84.9 

Logistic 

Regression 
84.1 82.9 81.7 82.3 

 

 

Figure 6. Predictive model performance metrics 

across ML algorithms 

 

Figure 1. Statistical analysis results 

 

Figure 5. Statistical analysis results 

 

 

 

 

Figure 1. Statistical analysis results 
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equipment performance and maintenance cost were 

considered as criteria. 

The Random Forest framework leverages four 

core decision criteria—component criticality, lead 

time, repair cost, and production risk—to classify 

suitable maintenance actions such as immediate 

servicing, scheduled maintenance, or continued 

monitoring. To enrich the model with contextual 

priorities, Analytic Hierarchy Process (AHP) 

weights were assigned to these criteria, emphasizing 

criticality and risk over cost factors. A composite 

weighted score was created by applying these 

weights to normalized input variables, which was 

then incorporated as an additional feature during 

model training. This hybrid approach allows the 

algorithm to account for both data-driven patterns 

and stakeholder priorities in maintenance planning. 

After preprocessing and encoding the input data, 

the Random Forest classifier was trained to learn 

from both raw features and the composite score. 

Predictions were validated using a train-test split, 

and post-modeling analysis revealed feature 

importance rankings, offering transparency into how 

maintenance decisions were prioritized. 

Feature Roles in the Tree- 

 Downtime drives the top-level split due to its 

highest assigned importance. 

 Availability and Performance influence urgency, 

low availability and poor performance trigger 

proactive action. 

 Maintenance Cost helps weigh whether the effort 

is economically justified, especially for less 

critical scenarios. 

This tree represents human-style logic that could 

emerge from a Random Forest classifier trained on 

actual operational data. 

Key Observations from the flow of information 

from the ML output to the recommended action 

based on the fault prediction decision logic is as 

follows: 

 Maintenance decisions coincided with 

technician’s suggestions in 89% of cases. 

 Early warning, therefore, helped in increasing the 

average response time by 3.7 days. 

 Recommendations reduced reactive maintenance 

by 41%. 

Resource and Cost Optimization: The 

performance of the model was evaluated for six 

months to determine its effectiveness in the 

operations of the organization. Performance 

measures were tool downtime, spare parts 

consumption, and maintenance manpower 

productivity. 

The Fig. 8 illustrates how this approach in the use 

of prediction led to prescription and the effects this 

had on operations and costs. 

Key Results: 

 This helped to reduce the maintenance costs per 

breakdown by 39%. 

 Resource utilization improved by 24%. 

 Scheduled interventions helped to decrease the 

overall number of unplanned downtimes by 35%. 

Statistical Validation of System Impact: 

Comparison of Operational Metrics Mean Time. 

Before Failure (MTBF), Mean Time to Repair 

(MTTR): The gathered pre- and post-

 

Figure 8. Maintenance efficiency improvements – 

pre vs post implementation 

 

Figure 7. Feature engineering and model 

training pipeline 

 

Figure 9. Comparative analysis of MTBF, MTTR, 

and cost 
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implementation data were analyzed using the paired 

t-tests to ensure the changes were statistically 

significant and illustrated in Fig. 9. 

Key Findings: 

 All the parameters mentioned in (Table 5) were 

found to have a statistically significant 

improvement (p < 0.05). 

 This means that a higher MTBF is an indication 

of reduced equipment failures. 

 Fewer minutes to total time to repair and less cost 

underscore more effective and timely responses. 

Practical interpretation, limitations and 

effectiveness: The identification of equipment in 

need of repair or replacement with an analysis of 

when failures are expected to occur. The findings 

reveal that it is possible to identify failure signals in 

advance using machine learning. Applying 

prescriptive logic further adds value to the generic 

predictions to ensure they are relevant in the required 

context. 

System strengths:  

 Improved decision speed and accuracy. 

 Better allocation of parts, technicians, and 

downtime windows. 

 Reduced over-maintenance from calendar-based 

strategies. 

Observations: 

 MTBF Improvement: The use of predictive 

maintenance also helped in improving the 

average time between failures. Before the 

implementation of the MTBF program, the 

MTBF was 145.2 hours, while after the 

implementation, it was 198.7 hours, thus 

implying that the reliability of the equipment had 

improved. 

 Faster Failure Repair: In maintenance, failures 

were handled and resolved in a shorter period; 

MTTR reduced from 6.4 hours to 4.8 hours. This 

is important in avoiding much disruption of 

production schedules and in the overall cutting of 

operational costs. 

 Cost Savings: Other expenses that were also 

affected include maintenance costs, which 

recorded a reduction in costs. Some preventive 

aspects include the reduction of cost per 

breakdown from $ 1470 to $ 89,5, meaning that 

flushing revenues may be gained through 

changing to these sophisticated maintenance 

strategies. This has been made possible through a 

reduction in unplanned downtime and 

optimization of resource use in the organization. 

 Increased Technician Productivity: The 

productivity of the technicians was improved 

through utilization that rose from 68.2% to 

84.6%. This implies that technicians were able to 

perform more preventive or planned maintenance 

than emergency or corrective maintenance. 

Implementation Challenges: On the same note, 

deployment brought the following challenges to the 

table: 

 Data Issues: The format and content of sensor 

logs varied a great deal, and this affected the 

creation of the model. 

 User Trust: Some technicians were initially 

reluctant to use it and needed to be trained and 

convinced. 

 New failure types appeared that were not 

presented in the training set. 

Recommended Solutions: 

 Feedback controls that include training models 

on recent data are also employed. 

 To enhance the confidence of the technicians, it 

is recommended to adopt explainable AI models. 

 Include redundancy and override controls for 

special or unique circumstances in the Reliability 

Block Diagram (RBD). 

IV. DISCUSSION 

This research evidence indicates that the 

effectiveness and applications of both predictive and 

prescriptive maintenance systems should not be 

underestimated as they hold the key to increasing 

efficiency, decreasing downtime, and decreasing 

general maintenance costs. The utilization of data 

and computer learning techniques helps 

organizations move from a reactive maintenance 

approach to a more efficient predictive routine, thus 

improving the operations of the organization. 

The results showed that there were positive 

changes in the major areas of maintenance, such as 

MTBF, MTTR, and cost of maintenance. The 

application of predictive maintenance made it easier 

to identify probabilities of equipment failures and 

make the right interventions at the right time. This 

proactive approach helped to decrease the rate of 

emergent failures and, therefore, enhance the 

reliability of the equipment. 

Prescriptive maintenance, however, was a step 

further than just predictive since it offered solutions. 

It provided the best recommendations for actions 

Table 5. Before and after values for metrics 

Metric 

 

Before 

System 

After 

System 

p-

value 

MTBF 

(hours) 
145.2 198.7 0.003 

MTTR 

(hours) 
6.4 4.8 0.012 

Cost per 

Breakdown 

($) 

1,470 895 0.005 

Technician 

Utilization 

(%) 

68.2 84.6 0.009 
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based on the failures that are expected to occur and 

enhanced the decision-making process and repair 

activities. By predicting and prescribing the 

maintenance actions, it was possible to achieve 

significant decreases in both downtime and repair 

time, thus enhancing the operation’s efficiency. 

Recommendations: There is a need to increase the 

application of predictive and prescriptive 

maintenance solutions across organizations since 

they enhance the efficiency of critical machinery and 

equipment in production. 

 Sustaining the Process: For the benefits to be 

fully attained, the performance indicators should 

be constantly checked and the models refined. 

The maintenance strategies should, therefore, be 

refined as more data is obtained to make them 

more accurate and effective. 

 Invest in Training: For the effective and 

efficient implementation of the maintenance 

strategies, the maintenance teams should be 

trained not only on the technical aspect of the 

systems but also on how to understand the results 

of the prescriptive and predictive maintenance 

tools. 

These maintenance strategies are effective when 

adopted in combination as a way of improving 

efficiency, cutting costs, and improving operational 

performance. As the industries advance, the use of 

other intelligent technologies, such as predictive and 

prescriptive maintenance, will be vital for the 

success of the companies. 

 A review of existing literature illustrated in 

(Table 6) revealed multiple studies focusing on 

predictive maintenance using similar datasets; 

however, there appears to be a notable gap in 

research related to prescriptive maintenance. This 

gap served as the impetus for the present study. One 

relevant document identified on the NASA 

website—Teubert et al. [19], An Analysis of Barriers 

Preventing the Widespread Adoption of Predictive 

and Prescriptive Maintenance in Aviation—

highlights the limited implementation of prescriptive 

maintenance within the aviation industry. 

The predictive models examined in this study, 

developed using selected datasets, exhibit improved 

statistical performance relative to the average results 

reported in earlier studies. Nevertheless, direct 

comparisons are inherently limited due to 

methodological and evaluative differences between 

this study and previous work. 

V. PRACTICAL IMPLEMENTATION STEPS 

Step 1: Historical Data Collection 

 Collect breakdown and maintenance logs from 

the history of past work orders.  

 This step is the biggest challenge in most 

industries, as the data should be reliable to train 

the models on it and it should be in a format 

which has sufficient details to be consumed by 

the models. 

Step 2: Feature Engineering & Failure Pattern 

Extraction 

 With the help of maintenance and reliability 

experts identify the key data elements which 

should be used in prediction. 

 Remove the faulty entries and fill up the blanks 

with average or any other method agreed with the 

experts. 

 Apply statistical analysis or ML feature selection 

to highlight failure precursors. 

Step 3: Predictive Model Deployment 

 Train Random Forest model using historical 

patterns. 

 Evaluate performance using metrics such as 

accuracy, precision, recall, and F1 score. 

Step 4: Real-Time Monitoring Integration 

 Ingest the live data from sensors to build the time 

series data and use in the prediction model. 

 Trigger early warnings when predicted failure 

probabilities exceed defined rules. 

Step 5: Prescriptive Logic Engine 

 Map predictive outputs to suggested actions 

depending on the predefined conditions. 

Step 6: Maintenance Decision Execution 

 Based on recommendations plan the work orders 

with prescribed activities. 

Table 6. Average performance metrics across 

datasets in existing research 

Metric Estimated 

Average 

Value 

Notes 

Accuracy ~88.8% 

Averaged from 

SECOM RF (~66.5%), 

NASA RF (~98.1%), 

CM1 SVM (~97.7%) 

Precision ~0.71 

Primarily from 

SECOM RF and 

SECOM GB; MIMII 

and NASA report 

sparsely 

Recall ~0.80 

Gradient Boosting 

(SECOM) and RF 

(NASA) emphasize 

defect sensitivity 

F1 score ~0.79 

High for NASA CM1 

RF (97.25%), moderate 

for SECOM (~0.69), 

inferred for MIMII 
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 Technicians execute the planned work generated 

from the predictive models containing prescribed 

activities. 

Step 7: Feedback & Continuous Learning 

 Technicians document post-maintenance results 

preferably using pre-defined codes and 

additional details in the text for model retraining. 

 Based on feedback, analyze false alarms and 

missed failures to refine rules and model features. 

The feedback from technicians is critical in this 

step to improve the models and increase the 

accuracy of the predictions and prescriptions. 

VI. CONCLUSION 

The findings highlight MTBF improvement, more 

efficient failure repair, increased cost saving and 

technician productivity shows that the use of 

predictive and prescriptive maintenance is very 

beneficial for asset heavy industries that use a lot of 

machinery and equipment. It involves methods that 

not only save expenditure but also give effective 

operation and reduce the dependence on worker’s 

reliability.  

The use of predictive and prescriptive maintenance 

systems also has strategic benefits for any business 

that wishes to remain relevant in the current world 

that is characterized by the use of data. They enable 

organizations to achieve the highest possible life-

cycle efficiency of the assets, to minimize the risk of 

failure, and to maintain the highest levels of 

performance at all organizational levels. 
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