
 

ACTA TECHNICA JAURINENSIS 

Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

10.14513/actatechjaur.00804 
 

 

0 

Research Article 

CSS-LSTM: An Intelligent Caching Strategy in NDN Clusters 

Ibrahim Khalil Douis1, *, Hafida Bouziane1, Abdallah Chouarfia1 

1Department of Computer Science, University of Science and Technology of Oran 

Oran, 31000, Algeria  

*e-mail: ibrahimkhalil.douis@univ-usto.dz 

Submitted: 15/06/2025  Revised: 22/07/2025 Accepted: 28/07/2025 Published online: 27/09/2025 

Abstract: In-network caching is a key aspect of Named Data Networking (NDN) due to its significant impact 

on network performance and data delivery efficiency. As content demand, particularly for 

multimedia, continues to grow, deciding what to cache, where to store it, and when to remove it has 

become increasingly complex. This complexity highlights the need for more intelligent caching 

strategies in NDN. To address this challenge, we propose an intelligent caching strategy for NDN 

clusters called CSS-LSTM. This approach introduces a new data structure within the cluster's main 

router, called the Content Store Station (CSS), it controls the caching and eviction of material 

according to its age. Furthermore, a Long Short-Term Memory (LSTM) model is trained to optimize 

caching decisions, determining whether specific content should be stored and identifying the most 

suitable location within the store station. Experimental results show that the LSTM model achieves 

90% accuracy in caching decisions. The CSS-LSTM strategy was compared with other approaches, 

specifically LCE, Random, and NECS, across two different scenarios using the cache hit ratio metric, 

demonstrating superior performance. 

Keywords: In-network caching; Named Data Networking; Intelligent caching; LSTM; Clustering 

 

I. INTRODUCTION 

In recent years, internet usage has grown 

exponentially, particularly for multimedia content. 

In November 2024, YouTube recorded 72.8 billion 

visits, Facebook had 12.7 billion visits, and TikTok 

reached 2.49 billion visits [1]. The overwhelming 

demand for such content presents significant 

challenges in ensuring efficient delivery.  

The underlying design of the current internet 

architecture, which is predicated on a host-to-host 

communication model, has difficulties.  The user 

experience has changed dramatically with the shift 

from PC-based to mobile computing. However, the 

existing network architecture struggles to keep up 

with the rapid proliferation of mobile devices, 

leading to an increasing demand for content delivery 

solutions[2]. 

A new internet architecture called Named Data 

Networking (NDN) was created to get around the 

drawbacks of the conventional host-to-host 

communication paradigm. NDN recognizes and 

retrieves content by its name instead than depending 

on the location of the data. This approach enables 

various scalable communication mechanisms, such 

as automatic caching, which enhances network 

performance [3]. 

Interest packets and data packets are the two types 

of packets used in NDN communication. To request 

specific data, a customer sends an Interest Packet 

into the network, mostly with the name of the data.  

A matching Data Packet is returned to the customer 

via the same route as the Interest Packet once the 

requested material has been located inside the 

network.  

The Data Packet primarily contains the content’s 

name, the actual data, and a digital signature [4].  

In NDN, the router consists of three main data 

structures (Fig. 1 [5]): 

 Content Storage (CS):  This part is in charge of 

data object caching within the network.  It can 

reply to Interest Packets on behalf of the original 

producer if it has already saved the necessary 

data.  In essence, the CS serves as a temporary 

cache for the data objects that the router receives 

[6]. 

 Pending Interest Table (PIT): All of the interests 

that the router has forwarded but have not yet 

been fulfilled are listed in this table.  The data 

name transmitted over the Internet and the 

https://dx.doi.org/10.14513/actatechjaur.00804


I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

1 

corresponding incoming and outgoing 

interfaces are recorded in each PIT entry.  When 

an Interest Packet comes, the NDN router first 

scans the Content Store for matching Data 

Packet.  The router returns the Data Packet via 

the interface from where the interest originated 

if the requested data is located.  If not, the FIB 

is used to forward the Interest Packet to the 

following router [7]. 

 Forwarding Information Base (FIB): Only the 

first one is sent upstream to the data producer or 

producers by the FIB. A name prefix-based 

routing protocol is used to populate it, and each 

prefix can be linked to many output interfaces 

[7]. 

The paper is organized as follows: Section 2 

presents an overview of the recently highlighted 

caching approaches used in NDN. Section 3 shows 

our proposed caching strategy for NDN clusters 

based on the CSS-LSTM model. This strategy 

involves dividing the network into multiple clusters 

and designating specific routers as caching nodes 

(store stations). A new data structure called Content 

Store Station (CSS) is implemented within the main 

router of each cluster.  

The main router leverages an LSTM model to 

decide which router will store the incoming Data 

Packets (content). 

In section 4, we evaluate the CSS-LSTM strategy 

by comparing it to the default NDN caching strategy 

LCE and Random strategy, as well as NECS, which 

employs network clustering and the cache hit ratio. 

We analyze the performance of our proposed 

approach and highlight its advantages across two 

different scenarios. Finally, the paper is summarized 

in Section 5. 

 

II. RELATED WORK 

Leave Copy Everywhere (LCE) [8] is the default 

caching policy in Named Data Networking (NDN). 

In accordance with this strategy, each router along 

the distribution path stores a copy of the material that 

the client asks (a data packet).  The goal of this 

strategy is to speed up subsequent requests for the 

same material and raise the cache hit ratio.  However, 

because it ignores the environment for storage 

limitations and the content qualities, such its 

popularity, LCE is regarded as a fundamental 

technique. 

Least Recently Used (LRU) [9] is a cache 

replacement policy that controls the removal of 

content.  While clearing out the least recently used 

content to make room for new data, it makes sure that 

recently visited content stays cached. 

A more advanced cache replacement policy in 

NDN, known as Discard of Fast Retrievable Content 

(DFRC) [10], evaluates content retrieval time using 

information from the Forwarding Information Base 

table. This policy prioritizes the eviction of content 

that can be retrieved quickly, optimizing cache 

management based on retrieval performance. 

Random Strategy [11] is designed to cache a 

single copy of content along the delivery path by 

randomly selecting one router. Its objective is to 

improve LCE's inefficient redundancy; however, it 

overlooks other important factors, such as the 

content’s popularity and whether the chosen router is 

appropriate for caching this content. 

The NECS [12] caching strategy aims to divide 

the network into multiple clusters, with each cluster 

designating a cluster head and two replacements. 

Using the Least Recently Used (LRU) policy as its 

cache replacement mechanism, the cluster head is in 

charge of caching incoming content in its Content 

Store to handle subsequent requests.  In the event of 

the cluster head's failure, the replacements' job is to 

assume its duties. 

The Efficient Content Caching and Eviction 

Priorities (CCEP) [13] strategy aims to identify the 

most suitable router for caching content along the 

transmission path, considering the content’s 

popularity.  

Once the content is cached on the selected router, 

eviction priorities are defined to manage potential 

replacements, factoring in content popularity and 

other key criteria. If the selected router lacks 

sufficient space, content with a high eviction priority 

will be removed to accommodate new data. This 

strategy modifies the standard structure of both Data 

Packet and Interest Packet by introducing additional 

fields. "Router with Maximum Caching Priority" 

and "Maximum Caching Priority for Content" are 

two new fields added to the Interest Packet.  The 

name of the assigned router for caching is included 

in the Data Packet.  By enabling content caching at a 

particular router along the download path, these 

improvements make sure that the router is ideally 

Figure 1.NDN router components 



I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

2 

situated in relation to the user and its capacity to 

manage subsequent requests. 

An efficient caching policy based on a distributed 

content store [14] operates in a decentralized 

manner. It coordinates a node’s caching system with 

those neighboring nodes. The objective is to store 

more popular content objects closer to the node. By 

maximizing the number of distinct popular content 

items saved locally and making sure that these 

objects are not duplicatedly cached on other nodes, 

each node helps to improve the overall caching 

effectiveness within its neighborhood. 

Edge Caching Based on Collaborative Filtering 

for Heterogeneous ICN-IoT Applications approach 

[15] employs k-means clustering to partition the 

network [16], with the Silhouette coefficient method 

determining the optimal number of clusters. As a 

result, G clusters (CLs) are based on content history 

data, meaning clusters are organized according to 

content type. The edge nodes caches are divided into 

two categories: the first cache stores popular content 

within the cluster, while the second cache uses 

collaborative filtering to proactively store content, 

ensuring availability for future requests.  

Mobile Edge Caching Using Deep Learning 

(DeepMEC) [17] introduces a learning-based 

caching strategy aimed at improving cache hit 

probability, reducing backhaul usage, and 

minimizing video content access delays. It uses a 

two-step prediction algorithm that anticipates the 

number of requests for each category after first 

classifying video content into four groups.  This 

technique improves accuracy and lowers 

computational costs by removing the top 20% of 

video material.  A caching strategy is also presented, 

which uses request count data and expected class 

labels to drive caching decisions at the Master Node.  

As a result, the base station will have a carefully 

selected list of content to store. 

A GNN-based Proactive Caching Strategy in 

NDN Networks [18] describes a graph neural 

network-based algorithm, known as the GNN-GM 

algorithm, for optimizing cache placement. The 

method initially predicts the ratings viewers will 

give to videos they haven't seen yet using a graph 

neural network (GNN) model.  The 'caching gain' 

related to storing is then regarded as the entire 

anticipated rating for a video. The algorithm aims to 

maximize this caching gain by proactively selecting 

which videos to cache.  

For cache replacement, the algorithm ranks videos 

based on their cache gain. With higher-ranked videos 

replacing those with lower cache gain. 

Graph Neural Network-Based Deep 

Reinforcement Learning for Intelligent Caching on 

SDN-based ICN [19] is a statistical model designed 

to analyze and generate users' content preferences. It 

represents the network into embedding vectors using 

a Graph Neural Network (GNN) and utilizes these 

vectors as a dataset (input data) to train an intelligent 

agent through the Double Deep Q-Network (DDQN) 

reinforcement-learning algorithm. This agent 

interacts with nodes and adjusts its actions based on 

the results of its interactions. 

III. PROPOSED CACHING STRATEGY 

In our strategy, the network is partitioned into 

multiple clusters, each containing a Store Station. 

Each Store Station has three routers: the main router 

and two replacement routers. To manage caching 

operations within the cluster, the Store Station 

utilizes a new data structure called Content Store 

Station (CSS), which includes the content name, 

size, age, and placement details. 

Table 1 presents a list of acronyms used in the 

caching strategy. When it comes to controlling the 

cache and eviction procedures, CSS is essential.  A 

Long Short-Term Memory (LSTM) model is used to 

make caching decisions, deciding which router in the 

store station will cache particular content. 

Additionally, an eviction algorithm is also employed 

to remove content and free up space for new data.  

Both CSS and the LSTM model are hosted on the 

main router. For our approach, we utilize the New 

Efficient Caching Strategy Based on Clustering in 

NDN (NECS) [12], [20], which employs the 

improved K-medoids cluster algorithm [21] to divide 

the network into clusters. The number of clusters, K, 

is determined using the Silhouette coefficient. 

Furthermore, the TOPSIS method [22] is applied to 

select three routers: the main router, replacement1, 

and replacement2, as illustrated in Fig. 2. 

1. LSTM Model Training 

In this section, we will discuss the caching 

decision process within the Store Station and how an 

LSTM model will be used to achieve this objective. 

The model will be trained using a dataset from 

Table 1. CSS-LSTM Acronyms 

Acronym Meaning 

CS Content Store of NDN router 

CSS Content Store Station 

Req(ci) Number of requests of content ci 

Weight(ci) 
Weight of ci based on request 

frequency 

Tot.Req 
Total number of requests of 

cached contents on the station 

Size (ci) Size of content ci in GB 

Tot.Sizes 
Total size of cached contents on 

the station in GB 

Size.Pen (ci) Size Penalty of content ci 

 



I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

3 

Kaggle [23], which includes features obtained after 

the preprocessing, such as:  

 Content name: a unique name for the requested 

content 

 Content size: the size of the content in Bytes, 

 Delay: time delay between requesting an item 

and receiving it. 

 Time slot (t): requests arrive sequentially in 

discrete time slots, where ∀tϵ[1,T], the slot 

number is calculated based on the timestamp, in 

this case, the slot size is 15 minute, which means 

the range of slots is [1, 96]. 

 Number of requests: the total number of times 

the content has been requested.  

 Content placement: the caching status of the 

content. If the placement is Miss, it means the 

content is not cached; otherwise, it is classified 

as 'Hit. 

In the preprocessing step, requests for the same 

content are aggregated to compute the total number 

of requests as a feature. For each aggregated content 

item, we determine the following: 

 Mean Latency: The average latency for all 

requests related to the content. 

 Last Request Time: The timestamp of the most 

recent request, converted into a time slot. 

 Placement: Remains the same placement as in 

the original requests. 

This transformation ensures that the dataset 

captures both temporal and performance-related 

insights, leading to more effective caching decisions. 

Recurrent Neural Networks (RNNs): are made 

especially to handle sequential data by preserving 

information from earlier inputs in a concealed state.  

An input layer, a hidden layer, and an output layer 

make up their fundamental architecture. Recurrent 

connections, as opposed to feedforward neural 

networks, allow information to be stored and cycled 

within the network.[24]  

Hochreiter and Schmidhuber [25] introduced Long 

Short Term Memory (LSTM) networks to address 

the vanishing gradient problem commonly found in 

basic standard RNNs. The gating mechanisms of 

LSTMs, which regulate the information flow 

throughout the network, are their primary 

innovation.  Furthermore, LSTMs improve their 

ability to handle complex sequential data by learning 

relationships between requests over time steps.[26]  

To train the model for caching decisions, we 

utilize the previously mentioned dataset, which 

contains over 5,000,000 examples. This dataset is 

divided into 80% for training and 20% for testing. 

Table 2 presents the architecture of the LSTM model 

used. 

Table 2. Training Hyperparameters of LSTM 

model 

Hyperparameter Value 

Embedding Dimension 50 

LSTM Units (Layer 1) 128 

LSTM Units (Layer 2) 64 

Dropout Rate 0.2 

Batch size 128 

Epochs 30 

Optimizer Adam 

Loss Function 

Sparse Categorical 

Crossentropy 

 

Activation Function Softmax 

 

 

Figure 2. NDN Network clusters 

 



I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

4 

(1) 

(2) 

(3) 

(4) 

2. Cache Management 

In the proposed strategy, all traffic within the 

cluster is routed through the main router, which 

processes both Interest Packets (content requests) 

and Data Packets (content delivery). The main router 

is responsible for making caching decisions—

determining whether to cache the content and, if so, 

selecting the optimal placement using the LSTM 

model. If caching is not required, the router simply 

forwards the Data Packet to its intended destination. 

Fig. 3 illustrates the caching management 

framework.   

This process is outlined in Algorithm 1, which 

explains the steps taken to manage the caching 

effectively. When the model decides to cache the 

content, it first calculates the content’s age using 

Equation 3. If the selected router has sufficient 

space, the content is cached immediately. However, 

if space is limited, the cache manager removes 

expired content or content with an age smaller than 

that of the new content to make room. Once the 

content is cached, its information is added to the 

Content Store Station (CSS). If any content is 

deleted, the cache manager also removes the 

corresponding information from the CSS. 

Each time new content is added to the CSS, the age 

of all stored contents is updated according to 

Algorithm 2. This ensures an efficient and up-to-date 

cache.  

If sufficient space cannot be allocated for the new 

content, it is forwarded to its destination without 

being cached. 

Weight(𝑐𝑖) =

{
 
 

 
 

𝑅𝑒𝑞𝑐𝑖
𝑇𝑜𝑡. 𝑅𝑒𝑞

, 𝑖𝑓 𝑐𝑖  𝑐𝑎𝑐ℎ𝑒𝑑

𝑅𝑒𝑞𝑐𝑖
𝑅𝑒𝑞𝑐𝑖  +  𝑇𝑜𝑡. 𝑅𝑒𝑞

, 𝑒𝑙𝑠𝑒

  

𝑆𝑖𝑧𝑒. 𝑃𝑒𝑛(𝑐𝑖)  =  
𝑆𝑖𝑧𝑒 (𝑐𝑖)

𝑇𝑜𝑡. 𝑆𝑖𝑧𝑒𝑠
× ∝      

𝐴𝑔𝑒(𝑐𝑖)  =  𝑊𝑒𝑖𝑔ℎ𝑡(𝑐𝑖)  −  𝑆𝑖𝑧𝑒. 𝑃𝑒𝑛(𝑐𝑖)  

Where Age(ci) < 0, Then Age(ci) = 0. 

 

 

Figure 3. Caching management schema 

The penalty coefficient (α) is represented as 

follows: 

 If the storage used is less than 25% of the total 

station size, α equals 0. 

 If the storage used is between 25% and 50% of 

the total station size, α is 0.75. 

 If the storage used exceeds 50% of the total 

station size, α is equal to 1. 

 

 

IV. RESULTS AND DISCUSSION 

After training the LSTM model using the 

previously discussed dataset and parameters, we 

developed a model capable of making caching 

decisions within the NDN cluster. During the testing 

phase, which utilized 20% of the dataset, we 

achieved an accuracy of approximately 90%. To 

simulate the proposed caching strategy, we utilized 

OpenAI Gym [27], a toolkit for AI development. The 

cache sizes for the store station were configured as 

follows: main router cache size = 200 GB, 

replacement cache 1 size = 180 GB, and replacement 

cache 2 size = 150 GB. The LSTM model is 

deployed in the main router to make caching 

decisions, while the Content Store Station (CSS) 

data structure is also located in the main router to 

manage the caching and eviction process.  

The proposed strategy is evaluated against other 

caching strategies, namely LCE, Random and 

NECS. To compare their performance, we used the 

cache hit ratio [28] as a metric, which effectively 



I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

5 

measures caching efficiency. Equation 4 provides 

the formula for calculating the cache hit ratio. 

𝐶𝑎𝑐ℎ𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑖𝑜 =  
∑ ℎ𝑖𝑡𝑖
𝑁
𝑛=1

∑ (ℎ𝑖𝑡𝑖 +𝑚𝑖𝑠𝑠𝑖)
𝑁
𝑛=1

   

Fig. 4 and 5 illustrate the results of four caching 

strategies: CSS-LSTM, NECS, Random, and LCE. 

These figures compare the performance of each 

strategy across two different scenarios. While a big 

number of desired contents are taken into 

consideration in the second scenario, only a small 

number are involved in the first. 

The results indicate that both CSS-LSTM and 

NECS achieve higher cache hit ratios compared to 

Randon and LCE, particularly as the number of 

requested contents increases. However, Random and 

LCE initially perform well when the number of 

requested contents is low. 

 As content requests increase, NECS displays a 

notable improvement in the cache hit ratio.  The 

network clustering and caching management, which 

is managed by the cluster head using the Least 

Recently Used (LRU) eviction strategy, are 

responsible for this improvement. 

 

Figure 4. Cache Hit Ratio vs Requested 103 

contents 

 

Figure 5. Cache Hit Ratio vs Requested 106 contents 

 

In the presented graphs, CSS-LSTM demonstrates 

the highest cache hit ratio, regardless of the number 

of requested contents. Similar to NECS, CSS-LSTM 

benefits from network clustering; however, its key 

advantage lies in intelligent caching management. It 

makes strategic decisions about which content to 

cache and where to store it. Moreover, it employs a 

storage mechanism controlled by the CSS data 

structure, ensuring that popular content is retained 

longer than less popular content.  

V. CONCLUSION 

We offer an intelligent caching technique for an 

NDN cluster in this paper.  This tactic optimizes 

caching choices by utilizing an LSTM model built 

into the cluster's primary router.  We also present a 

CSS data structure for age-based content eviction 

management. 

Experimental results demonstrate that the LSTM 

model achieves a high accuracy of approximately 

90%, allowing the caching station to handle the 

caching process both efficiently and intelligently. 

A comparative analysis of the CSS-LSTM strategy 

against three other strategies, NECS, Random, and 

LCE, across two different scenarios reveals that 

CSS-LSTM exhibits higher caching efficiency than 

Random and LCE, the default caching strategy. 

Moreover, CSS-LSTM outperforms NECS in two 

important aspects: first, in making intelligent 

caching decisions, and second, in effectively 

managing cached content using CSS. 

The CSS-LSTM is designed to adapt to high 

demand for content in Named Data Networking 

NDN, particularly for multimedia content, which 

requires more advanced and intelligent management 

for efficient caching. 

AUTHOR CONTRIBUTIONS 

I.K. Douis: Conceptualization, Experiments, 

Theoretical analysis, Writing. 

H. Bouziane: Writing, Review, and editing. 

A. Chouarfia: Supervision, Review, and editing. 

DISCLOSURE STATEMENT 

The authors declare that they have no known 

competing financial interests or personal 

relationships that could have appeared to influence 

the work reported in this paper. 

ORCID 

I.K. Douis https://orcid.org/0009-0009-7417-025X 

A. Chouarfia https://orcid.org/0000-0003-3331-

720X 

 

  

https://orcid.org/0009-0009-7417-025X
https://orcid.org/0000-0003-3331-720X
https://orcid.org/0000-0003-3331-720X


I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

6 

REFERENCES 
 

[1] T. Bianchi, “Global top websites by monthly 

visits 2024,” Statista. Accessed: Feb. 12, 2025. 

[Online]. 

https://www.statista.com/statistics/1201880/m

ost-visited-websites-worldwide/ 

[2] M. I. Victor- Ikoh and L. G. Kabari, “Internet 

Architecture: Current Limitations Leading 

Towards Future Internet Architecture,” 

IJCSMC 10 (5) (2021) pp. 102–112. 

https://doi.org/10.47760/ijcsmc.2021.v10i05.0

11 

[3] L. Zhang et al., “Named Data Networking 

(NDN) Project.” Oct. 31, 2010. Accessed: Feb. 

15, 2025. [Online]. Available: https://named-

data.net/wp-content/uploads/TR001ndn-

proj.pdf 

[4] A. Tariq, R. A. Rehman, and B.-S. Kim, 

“Forwarding Strategies in NDN-Based 

Wireless Networks: A Survey,” IEEE 

Commun. Surv. Tutorials 22 (1) (2020) pp. 68–

95. 

https://doi.org/10.1109/COMST.2019.293579

5 

[5] A. Majed, X. Wang, and B. Yi, “Name Lookup 

in Named Data Networking: A Review,” 

Information 10 (3) (2019) p. 85. 

https://doi.org/10.3390/info10030085 

[6] D. Doan Van and Q. Ai, “In-network caching 

in information-centric networks for different 

applications: A survey,” Cogent Engineering 

10 (1) (2023) p. 2210000. 

https://doi.org/10.1080/23311916.2023.22100

00 

[7] L. Zhang et al., “Named Data Networking,” 

ACM SIGCOMM Computer Communication 

Review 44 (3) (2014). 

https://doi.org/10.1145/2656877.2656887 

[8] D. Saxena, V. Raychoudhury, N. Suri, C. 

Becker, and J. Cao, “Named Data Networking: 

A survey,” Computer Science Review 19 

(2016) pp. 15–55. 

https://doi.org/10.1016/j.cosrev.2016.01.001 

[9] Y. Li, M. Yu, and R. Li, “A Cache 

Replacement Strategy Based on Hierarchical 

Popularity in NDN,” in 2018 Tenth 

International Conference on Ubiquitous and 

Future Networks (ICUFN), Prague, Czech 

Republic: IEEE, Jul. 2018, pp. 159–161. 

https://doi.org/10.1109/ICUFN.2018.8436597 

[10] M. Hosseinzadeh, N. Moghim, S. Taheri, and 

N. Gholami, “A new cache replacement policy 

in named data network based on FIB table 

information,” Telecommun Syst 86 (3) (2024) 

pp. 585–596. 

https://doi.org/10.1007/s11235-024-01140-7 

[11] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, 

and Sangheon Pack, “WAVE: Popularity-

based and collaborative in-network caching for 

content-oriented networks,” in 2012 

Proceedings IEEE INFOCOM Workshops, 

Orlando, FL, USA: IEEE, Mar. 2012, pp. 316–

321. 

https://doi.org/10.1109/INFCOMW.2012.6193

512 

[12] N. E. H. Fethellah, H. Bouziane, and A. 

Chouarfia, “NECS-based Cache Management 

in the Information Centric Networking,” Int. J. 

Interact. Mob. Technol. 15 (21) (2021) p. 172. 

https://doi.org/10.3991/ijim.v15i21.20011 

[13] M. Alkhazaleh, S. A. Aljunid, and N. Sabri, 

“An Efficacious Content Caching and Eviction 

Priorities (CCEP) for In-network Caching High 

Performance in Information-centric 

Networking,” IAENG International Journal of 

Applied Mathematics 53 (2023) pp. 169–182. 

[Online]. 

https://www.iaeng.org/IJAM/issues_v53/issue

_1/IJAM_53_1_22.pdf 

[14] N.-T. Dinh and Y. Kim, “An Efficient 

Distributed Content Store-Based Caching 

Policy for Information-Centric Networking,” 

Sensors 22 (4) (2022) p. 1577. 

https://doi.org/10.3390/s22041577 

[15] D. Gupta, S. Rani, S. H. Ahmed, S. Verma, M. 

F. Ijaz, and J. Shafi, “Edge Caching Based on 

Collaborative Filtering for Heterogeneous 

ICN-IoT Applications,” Sensors 21 (16) (2021) 

p. 5491. 

https://doi.org/10.3390/s21165491 

[16] Y. Liu, Z. Ma, Z. Yan, Z. Wang, X. Liu, and J. 

Ma, “Privacy-preserving federated k-means for 

proactive caching in next generation cellular 

networks,” Information Sciences 521 (2020) 

pp. 14–31. 

https://doi.org/10.1016/j.ins.2020.02.042 

[17] K. Thar, N. H. Tran, T. Z. Oo, and C. S. Hong, 

“DeepMEC: Mobile Edge Caching Using Deep 

Learning,” IEEE Access 6 (2018) pp. 78260–

78275. 

https://doi.org/10.1109/ACCESS.2018.288491

3 

[18] J. Hou, H. Lu, and A. Nayak, “A GNN-based 

Proactive Caching Strategy in NDN 

Networks,” Jun. 08, 2022. 

https://doi.org/10.21203/rs.3.rs-1713271/v1 

[19] J. Hou, T. Tao, H. Lu, and A. Nayak, 

“Intelligent Caching with Graph Neural 

Network-Based Deep Reinforcement Learning 

on SDN-Based ICN,” Future Internet 15 (8) 

(2023) p. 251. 

https://doi.org/10.3390/fi15080251 

[20] N. E. H. Fethellah, H. Bouziane, and A. 

Chouarfia, “New Efficient Caching Strategy 

based on Clustering in Named Data 

Networking,” Int. J. Interact. Mob. Technol. 13 

(12) (2019) p. 104. 

https://doi.org/10.3991/ijim.v13i12.11403 

https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
https://doi.org/10.47760/ijcsmc.2021.v10i05.011
https://doi.org/10.47760/ijcsmc.2021.v10i05.011
https://named-data.net/wp-content/uploads/TR001ndn-proj.pdf
https://named-data.net/wp-content/uploads/TR001ndn-proj.pdf
https://named-data.net/wp-content/uploads/TR001ndn-proj.pdf
https://doi.org/10.1109/COMST.2019.2935795
https://doi.org/10.1109/COMST.2019.2935795
https://doi.org/10.3390/info10030085
https://doi.org/10.1080/23311916.2023.2210000
https://doi.org/10.1080/23311916.2023.2210000
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1016/j.cosrev.2016.01.001
https://doi.org/10.1109/ICUFN.2018.8436597
https://doi.org/10.1007/s11235-024-01140-7
https://doi.org/10.1109/INFCOMW.2012.6193512
https://doi.org/10.1109/INFCOMW.2012.6193512
https://doi.org/10.3991/ijim.v15i21.20011
https://www.iaeng.org/IJAM/issues_v53/issue_1/IJAM_53_1_22.pdf
https://www.iaeng.org/IJAM/issues_v53/issue_1/IJAM_53_1_22.pdf
https://doi.org/10.3390/s22041577
https://doi.org/10.3390/s21165491
https://doi.org/10.1016/j.ins.2020.02.042
https://doi.org/10.1109/ACCESS.2018.2884913
https://doi.org/10.1109/ACCESS.2018.2884913
https://doi.org/10.21203/rs.3.rs-1713271/v1
https://doi.org/10.3390/fi15080251
https://doi.org/10.3991/ijim.v13i12.11403


I. K. Douis et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

7 

[21] C. Li and K. Okamura, “Cluster-based In-

networking Caching for Content-Centric 

Networking,” International Journal of 

Computer Science and Network Security 

(IJCSNS) 14 (11) (2014). 

http://paper.ijcsns.org/07_book/201411/20141

101.pdf 

[22] M. Behzadian, S. Khanmohammadi Otaghsara, 

M. Yazdani, and J. Ignatius, “A state-of the-art 

survey of TOPSIS applications,” Expert 

Systems with Applications 39 (17) (2012) pp. 

13051–13069. 

https://doi.org/10.1016/j.eswa.2012.05.056 

[23] K. L. Bảo, “Predicting the Popularity of Online 

Content.” 2022. Accessed: Jan. 05, 2025. 

[Online]. 

https://www.kaggle.com/datasets/bokhnhl/no-

package-live-streaming 

[24] C. Zhang et al., “Toward Edge-Assisted Video 

Content Intelligent Caching With Long Short-

Term Memory Learning,” IEEE Access 7 

(2019) pp. 152832–152846. 

https://doi.org/10.1109/ACCESS.2019.294706

7 

[25] S. Hochreiter and J. Schmidhuber, “Long 

Short-Term Memory,” Neural Computation 9 

(8) (1997) pp. 1735–1780. 

https://doi.org/10.1162/neco.1997.9.8.1735 

[26] Y. Wang and V. Friderikos, “A Survey of Deep 

Learning for Data Caching in Edge Network,” 

Informatics 7 (4) (2020) p. 43. 

https://doi.org/10.3390/informatics7040043 

[27] G. Brockman et al., “OpenAI Gym,” Jun. 05, 

2016, arXiv: arXiv:1606.01540, 

https://doi.org/10.48550/arXiv.1606.01540 

[28] M. A. Naeem, S. A. Nor, S. Hassan, and B.-S. 

Kim, “Compound Popular Content Caching 

Strategy in Named Data Networking,” 

Electronics 8 (7) (2019) p. 771. 

https://doi.org/10.3390/electronics8070771 

 
 

This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution NonCommercial (CC BY-NC 4.0) license. 

http://paper.ijcsns.org/07_book/201411/20141101.pdf
http://paper.ijcsns.org/07_book/201411/20141101.pdf
https://doi.org/10.1016/j.eswa.2012.05.056
https://www.kaggle.com/datasets/bokhnhl/no-package-live-streaming
https://www.kaggle.com/datasets/bokhnhl/no-package-live-streaming
https://doi.org/10.1109/ACCESS.2019.2947067
https://doi.org/10.1109/ACCESS.2019.2947067
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/informatics7040043
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.3390/electronics8070771
https://creativecommons.org/licenses/by-nc/4.0/

