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Abstract: To manufacture useful products with good surface quality from the sustainable Mg-4Zn/Si3N4 

nanocomposites strengthened by Si3N4 nanoparticles, machining after stir casting is needed, and it 

has to be done economically. The Si3N4 nanoparticles could influence the machining behavior due to 

their abrasive properties and their ability to strengthen the alloy matrix. Multi-objective optimization 

of material removal rate (MRR) (a good indicator of economic production) and surface roughness (Ra) 

(a good indicator of quality of surface) are necessary to identify the optimal settings. This research 

reports the dry turning studies of vacuum stir cast Mg-4Zn/Si3N4 nanocomposites with a 

polycrystalline diamond turning tool. Response surface methodology (RSM)-based Box-Behnken 

design was used. The reinforcement (nanometre-sized silicon nitride) weight percentage, cutting 

speed, feed rate, and depth of cut were the input factors. Regression models for prediction of material 

removal rate (MRR) and surface roughness (Ra) were obtained and validated. Multi-objective 

optimization of MRR and Ra using Design-Expert software identified a reinforcement of 0.44 wt.% 

and a cutting speed of 110 m/min, a feed rate of 0.09 mm/rev, and a depth of cut of 0.16 mm as the 

optimal settings. The effects of the input process parameters on the MRR and Ra are also studied. 
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I. INTRODUCTION 

The development and production of magnesium 

(Mg)-based products have become extremely 

important in various areas of application in the 

present era. In the automobile and aerospace sectors, 

they are preferred because of low density (1.74 

g/cm3), higher specific stiffness, and specific 

strength. The use of such lightweight materials and 

products enhances sustainability [1] and helps to 

minimize the emission of greenhouse gases and is 

also cost-effective [2]. Mg-based materials are also 

promising candidates for hydrogen storage 

applications due to their abundance, low cost, and 

good capacity to store hydrogen [3]. Their 

uniqueness comes in combining these properties 

with good biocompatibility, biodegradability, and 

bioresorbability [4], which makes them good 

candidates as biomedical materials too. They are also 

preferred for some electronic applications [3]. In 

spite of the various advantages, further 

improvements of their properties are mostly 

necessary to enhance their application potential. This 

is possible by the use of ceramics as reinforcements 

in Mg-based matrices to form metal matrix 

composites (MMCs) [5], which possess improved 

strength, wear resistance, dimensional stability, and 

also properties at high temperatures [6]. It is 

therefore important to produce functional 
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components from MMCs for use in many 

applications. 

Stir casting is a simple and flexible method to 

produce components from the MMCs [7]. However, 

to achieve dimensional accuracy and surface finish 

specifications, these components need subsequent 

machining. But since the reinforcements have an 

abrasive nature, and they also increase the hardness 

of the MMCs [8], turning MMC becomes 

challenging. It is important to study the effects of the 

reinforcements in the turning of Mg-based MMCs. 

Moreover, optimizing the machining parameters is 

critical to save energy and ensure sustainability [9] 

in the manufacturing of Mg MMCs. Crucial 

indicators of the machining process and product 

quality are chosen as the responses for optimization. 

Surface roughness is one such indicator of product 

quality that influences the frictional and tribological 

characteristics of the product and also influences its 

life and efficiency. A high material removal rate 

(another crucial indicator of machining) is necessary 

for economically viable large-scale production [10]. 

Various aspects of machining Mg-based materials 

have been investigated by researchers. Abbas et al. 

[11] investigated the turning of AZ61 Mg alloy with 

depth of cut, cutting speed, and feed rate as input 

factors and optimized the surface roughness. Kumar 

et al. [12] utilized MRR and surface roughness to 

optimize the thermoelectric machining of Mg 

composite reinforced with Al and SiC. Sudhagar et 

al. [13] performed multi-objective optimization of 

surface roughness and kerf width in the wire electric 

discharge machining of magnesium composite 

reinforced with BN and Si3N4.   

Among the various Mg-based materials, the Mg 

alloy with 4 wt.% Zn (Mg-4Zn) possesses a good 

combination of low degradation rate, 

biocompatibility, and moderate mechanical 

properties, [14], [15], [16]. It has research scope for 

property improvement by the addition of Si3N4 

ceramic particles. Silicon nitride (Si3N4) possesses 

good wear resistance, thermal stability, and 

mechanical properties and is used in rollers, rotors, 

and ball bearings [17] and has been used to improve 

properties of various materials [18].  

This research hypothesizes that the addition of 

Si3N4 nanoparticles to improve the properties of Mg-

4Zn alloy will also influence its machining behavior. 

Fig. 1 shows the highlights of this research. This 

research deals with manufacturing of sustainable 

lightweight Mg-4Zn nanocomposites reinforced 

with small fractions of nano-Si3N4 (a biocompatible 

bioceramic [19]). Machining experiments are 

conducted based on response surface methodology-

based Box-Behnken design with a polycrystalline 

diamond (PCD) turning tool, which produces high-

quality surfaces in the machining of difficult-to-

machine materials, has low friction properties, and 

has high hardness [20]. Regression models are 

developed and validated for MRR and Ra. Multi-

objective optimization of MRR and Ra is performed 

to arrive at the optimal setting.  

Figure 1. Highlights of this research 

II.   MATERIALS AND METHODS  

Vacuum stir cast Mg-4Zn/Si3N4 nanocomposites 

(Fig. 2) are used for the machining studies. A 

bottom-pouring stir casting machine (SwamEquip 

make) under argon gas protection was used for the 

vacuum stir casting. Mg and Zn ingots were melted 

in the desired proportion in the furnace at 750 °C. 

 

Figure 2.  Vacuum stir casting of Mg-4Zn/Si3N4 

nanocomposites 

Nanoshel-made Si3N4 nanoparticles (rein-

forcement) of 15-30 nm average particle size were 

then added to the melt in the desired proportion by 
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wrapping in Al foil. The melt was stirred at 500 rpm 

for 10 minutes for uniformly distributing the 

constituents. The melt was poured into a preheated 

steel mold under vacuum and removed after 

solidification. This procedure was followed with 

0.23, 0.45, and 0.67 wt.% Si3N4 reinforcements to 

produce Mg-4Zn nanocomposites. Specimens 

extracted from the castings after surface preparation 

were observed under an optical microscope 

(Dewinter-made) and a ZEISS-made scanning 

electron microscope (SEM). Fig. 3 shows the SEM 

elemental maps and optical micrographs of the 

nanocomposites. 

 

Figure 3. SEM elemental maps of Mg, Z, Si, and N, 

optical micrographs of the nanocomposites 

The surface preparation was done by polishing 

with emery sheets and then with alumina powder and 

then etching with acetic picral obtained by mixing 10 

ml acetic acid, 10 ml water, 70 ml ethanol, and 4.2 g 

picric acid. The optical micrographs were utilized to 

measure the average grain size of 50 grains of each 

nanocomposite using ImageJ software. Unetched 

surfaces of the specimens were polished with 

diamond paste (0.5-1 microns) and subjected to 

wavelength dispersive X-ray fluorescence 

spectroscopic (XRF) studies in a Bruker S8 Tiger 

Series II 4kW machine. Microhardness of these 

specimens (average of five readings) was measured 

under a load of 500 g applied for 15 seconds in FIE 

made microhardness tester. The density was 

obtained from their weight (measured by a Mettler 

Toledo weighing balance capable of measuring 

±0.0001 g) using equation (1). 

ρspecimen = (
Win air

Win air − Win water

) × ρ of water  (1) 

where ρ indicates the density, and W indicates the 

weight. Porosity was calculated from the density 

using equation (2).  

Porosity (%) = (1 −
ρActual

ρTheoretical

) × 100        (2) 

Table 1 shows the Mg and Zn wt.% obtained by 

XRF analysis, density, and porosity. Table 2 shows 

the microhardness and grain size of the 

nanocomposites.   

Table 1. XRF analysis, density and porosity of the 

nanocomposites 

wt.% 

Si3N4 

XRF analysis 

(wt.%) 

Density 

(g/cc) 

Porosity 

(%) 

Mg Zn 

0.23  95.8 3.56 1.753 2.18 

0.45 94 3.86 1.737 3.26 

0.67 94.5 3.66 1.769 1.55 

The porosity levels in all the nanocomposite castings 

were indicative of good-quality castings.  

Table 2. Microhardness and grain size of the 

nanocomposites 
wt.% 

Si3N4 

Microhardness 

(HV0.5) 

Grain size (µm) 

0.23  52.0 185.8 

0.45 57.5 135.8 

0.67 66.7 74.5 

It is observed from the SEM elemental maps (Fig. 3) 

that there is homogeneous distribution of the 

elements Mg, Zn, Si, and N, which means the alloy 

and Si3N4 reinforcement have been homogeneously 

distributed in the nanocomposites.  

Machining experiments were carried out using a 

Schaublin 180 CCN R-TM A 2-5 high-precision 

CNC lathe. The dry machining experiments of the 

nanocomposites were designed by following the 

Box-Behnken design, which is an efficient design 

based on the response surface methodology (RSM). 

0.45 wt.% Si3N4 

Mg 

Mg 

Mg 

Zn 

Zn 

Zn 

Si 

Si 

Si 

N 

N 

N 

Elemental maps 

0.23 wt.% Si3N4 0.23 wt.% Si3N4 

0.23 wt.% Si3N4 0.23 wt.% Si3N4 

0.45 wt.% Si3N4 0.45 wt.% Si3N4 

0.45 wt.% Si3N4 0.45 wt.% Si3N4 

0.67 wt.% Si3N4 

0.67 wt.% Si3N4 

0.67 wt.% Si3N4 

0.67 wt.% Si3N4 

0.45 wt.% Si3N4 

(a) (b) 

(c) 

0.23 wt.% Si3N4 

0.67 wt.% Si3N4 

Optical Micrographs 

Scanned area 

023 wt.% Si3N4 0.67 wt.% Si3N4 
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Table 3 shows the input factors (coded and actual 

values) along with their levels. The principle of RSM 

is based on equation (3), where y indicates the 

response, 𝜙0 is a constant, 𝜙i‘s are the coefficients of 

the linear terms, and 𝜙ii’ s and 𝜙ij’s are the 

coefficients of the square and interaction terms, 

respectively. ε is the error in observations. RSM fits 

a second-order model to the response values (Fig. 1) 

based on the minimizing least squares to develop a 

mathematical model that connects the responses and 

the input factors, which are provided in Table 3. 

𝑦 = 𝜙0 + ∑ 𝜙𝑖𝑋𝑖 + ∑ 𝜙𝑖𝑖𝑋𝑖
2 + ∑ ∑ 𝜙𝑖𝑗𝑋𝑖𝑗+∈  (3)

4

𝑖=1

3

𝑖=1

4

𝑖=1

4

𝑖=1

 

Table 3. Input factors and their levels 

Input factors Units 
Level 

1 

Level 

2 

Level 

3 

Coded value - -1 0 1 

(r) 

Reinforcement  
(wt.%) 0.23 0.45 0.67 

(v) Cutting 

speed 
m/min 80 95 110 

(f) Feed rate mm/rev 0.04 0.1 0.16 

 

(a) Depth of 

cut 

mm 0.04 0.1 0.16 

Material removal rate (MRR) and surface roughness 

(Ra) were the responses. A Mitsubishi-made PCD 

cutting tool (CCGW09T304-PCD010) was used for 

machining the nanocomposites in a dry environment. 

MRR was calculated using Eqn. (4), 

𝑀𝑅𝑅 = 𝜋 (
𝐷𝑖 − 𝐷𝑓

2
) × (

𝐷𝑖 + 𝐷𝑓

2
) 𝑓𝑁        (4) 

where Di and Df  are diameters in mm of the 

specimen before and after the machining, 

respectively. f is the feed rate (mm/rev), and N is the 

rotational speed (rpm) [10]. 

Surface roughness, Ra was measured by using a 

Talysurf 200 machine with 0.8 mm as cutoff length 

and 4 mm as evaluation length, according to ISO 

4287:1997 standards. Ra is the average roughness 

from the mean line taken within sampling length [21] 

and is represented in equation (5) and as a schematic 

in Fig. 1. 

𝑅𝑎 =
1

𝑠
∫ |𝑓(𝑥)|

𝑠

0

                        (5) 

The f(x) is the distribution of the height over a length 

s of the profile [22]. An average value obtained from 

three trials at each experimental setting is reported as 

the response values. Multi-objective optimization 

available in Design-Expert software was used to 

optimize the surface roughness (Ra) and material 

removal rate (MRR). This is based on the desirability 

index. Let X be the set of input process parameters 

and Y be the fitted response, which is a function of 

X. YH and YL are the highest and lowest values of Y. 

Likewise, there are n responses. Numerical 

optimization helps to optimize a combination of one 

or many goals on the responses. To minimize the 

goal, the individual desirability L is calculated as in 

Eqn. (6). 

L = {

1, Y ≤ YL

[
YH − Y

YH−YL

] , YL < Y < YH
  

0, Y ≥ YH  

}            (6) 

To maximize the goal the individual desirability L is 

calculated as in Eqn. (7). 

L = {

0, Y ≤ YL

[
Y − YL

YH−YL

] , YL < Y < YH
  

1, Y ≥ YH  

}           (7) 

A weight also has to be assigned to each goal varying 

from 0.1 to 10. Every goal can be assigned an 

importance varying from + (a value of 1) to +++++ 

(a value of 5). When there are n responses, to convert 

this response to a single one, we use the function, F 

as shown by equation (8) [23]. The shape of 

desirability function changes with weight as shown 

in Fig. 4. 

 

 

 

 

 

Figure 4. Individual desirability function in 

minimizing and maximizing the goals 

F = (∏ 𝐿𝑖

𝑛

𝑖=1

)

1
𝑛

                               (8) 

III.  RESULTS AND DISCUSSION 

The average values of MRR and Ra for each setting 

of the input factors based on the Box-Behnken 

design are presented in Table 4. These values were 

analyzed using Design-Expert software. Statistical 

validation of the models of MRR and Ra is presented 
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in Fig. 5. It is evident that the data points are 

normally distributed (Fig. 5 (a), Fig. 5 (b)) and that 

the predicted and actual values fall along the 

straight-line (Fig. 5 (c), Fig. 5 (d)), thus ensuring 

statistical validation of the models of MRR and Ra. 

For MRR, a model including the individual terms, 

interaction terms, and square terms of all the input 

factors was found to be significant by ANOVA 

analysis. The R² and adjusted R² of the model were 

0.9917 and 0.9821, respectively. The predicted R² 

(of 0.9537) agrees with the adjusted R², since their 

difference is lesser than 0.2, the model can be used 

for prediction [24].  

Table 4. Input factor settings and the average MRR 

and Ra values 

Adeq Precision is an indicator of signal-to-noise 

ratio. A value of 39.615 (>4) is an adequate signal 

which also indicates that the model can be used for 

prediction. The F-value of model is 102.64 which 

ensures the significance of the model. There is only 

a chance of 0.01 % that the F-value was caused by 

the noise. Equation (9) is the coded regression 

equation developed for predicting the MRR. The 

model for Ra including the individual terms of 

reinforcement wt.% (r), feed rate (f) and depth of cut 

(a), and interaction term of feed rate and depth of cut, 

and square term of reinforcement wt.%, r, and depth 

of cut, a was found to be significant by ANOVA 

analysis. The R² and adjusted R² of the model for Ra 

were 0.8804 and 0.8445, respectively. 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑅𝑎𝑡𝑒, 𝑀𝑅𝑅 = 857.69 − 39.81𝑟 +
141.53𝑣 +

535.74𝑓 + 541.97𝑎
−12.34rv − 37.46𝑟𝑓 + 5.26𝑟𝑎 +

133.18𝑣𝑓 +

89.34𝑣𝑎 + 270.53𝑓𝑎 + 67.84𝑟2 + 5.6𝑣2 +

13.66𝑓2 + 9.85𝑎2 (9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Statistical validation plots (a) Normal 

Probability of MRR (b) Predicted vs. Actual of 

MRR (c) Normal Probability of Ra (b) Predicted vs. 

Actual of Ra 

Run 

order 

Reinf

orce

ment 

(r) 

wt.% 

Cutti

ng 

speed 

(v) 

Feed 

rate 

(f) 

mm/r

ev 

Depth 

of cut 

(a) 

mm 

MRR 

(mm3/m

in) 

Ra (µm) 

1 0.45 95 0.10 0.10 899.95 0.7095 

2 0.45 95 0.10 0.10 852.41 0.7104 

3 0.45 95 0.10 0.10 820.7 0.6843 

4 0.45 80 0.16 0.10 1148.83 1.1511 

5 0.67 95 0.04 0.10 353.95 0.1912 

6 0.67 110 0.10 0.10 1006.05 0.6977 

7 0.67 80 0.10 0.10 736.47 0.6965 

8 0.67 95 0.16 0.10 1331.3 1.1452 

9 0.67 95 0.10 0.16 1538.75 0.7102 

10 0.23 95 0.10 0.04 405.97 0.7071 

11 0.23 110 0.10 0.10 1138.35 0.7053 

12 0.23 95 0.16 0.10 1522.64 1.1528 

13 0.23 95 0.04 0.10 395.44 0.1851 

14 0.23 80 0.10 0.10 819.4 0.7101 

15 0.23 95 0.10 0.16 1543.08 0.701 

16 0.23 95 0.10 0.04 431.33 0.6962 

17 0.45 80 0.10 0.16 1215.36 0.3067 

18 0.45 95 0.04 0.16 564.9 0.1495 

19 0.45 110 0.10 0.16 1585.67 0.3116 

20 0.45 95 0.16 0.16 2183.51 0.3052 

21 0.45 110 0.16 0.10 1778.5 1.0967 

22 0.45 80 0.04 0.10 330.57 0.1903 

23 0.45 110 0.04 0.10 427.51 0.214 

24 0.45 95 0.16 0.04 644.33 1.0948 

25 0.45 80 0.10 0.04 262.59 0.7232 

26 0.45 95 0.04 0.04 107.85 0.2095 

27 0.45 110 0.10 0.04 275.54 0.7404 

(a) 

(b) 

(d) 

(c) 
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The predicted R² (of 0.6641) agrees with the 

adjusted R², since their difference is lesser than 0.2, 

the model can be used for prediction [24]. An Adeq 

Precision value of 17.696 (>4) is an adequate signal 

which also indicates that the model for Ra can be 

used for prediction. The F-value of the model is 

24.53 ensuring the significance of the model. There 

is only a 0.01% chance that that the F-value was 

caused by the noise. Equation (10) is the coded 

regression equation for Ra.  

 
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑅𝑎 = 0.6311 − 0.00022𝑟 +

0.4005𝑓 − 0.1406𝑎

−0.1824𝑓𝑎 + 0.9664𝑟2 − 0.109𝑎2 (10)
 

A perturbation plot shows the changes in the values 

of the response when each factor is moved from the 

reference value when all the other factors are 

maintained at their reference value. The steeper the 

slope is, or the more the curvature is, the more 

sensitive the response is to the factor. Fig. 6 (a) and 

Fig. 6 (b) shows the perturbation plots of MRR and 

Ra.  It is evident that the MRR is more sensitive to 

feed rate (C) and depth of cut (D) than to the cutting 

speed (B) and the reinforcement wt.% (A). Ra is 

more sensitive to feed rate (C) than the depth of cut 

(D) and reinforcement wt.% (A) since the slopes are 

higher for the feed rate (C) compared to the slopes of 

the reinforcement wt.% (A) and depth of cut (D). Ra 

is not sensitive to changes in cutting speed (B). The 

regression models obtained for MRR and Ra were 

validated experimentally. Error % was less than 10 

% for MRR and Ra as presented in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Perturbation plots of (a) MRR and (b) Ra 

Table 5. Experimental validation of the models of 

MRR and Ra 

1. Individual effects of reinforcement wt.% (r) 

on nanocomposite properties, MRR and Ra 

Fig. 7(a)-(c) shows the variation in grain size, 

microhardness, porosity, and density with Si3N4 

wt.% obtained from the data in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Grain size (b) Microhardness and 

(c) Porosity and density vs. Si3N4 wt.% 

The addition of Si3N4 reinforcement has influenced 

the grain size, microhardness, porosity and density. 

Fig. 8 shows the main effects of the Si3N4 

reinforcement wt.% on MRR and Ra and the 

reasoning for the variation as inset. 

Reinfor

cement 

(r) 

(wt.%)  

Cutting 

speed 

(v) 

(m/min) 

Feed 

rate (f) 

(mm/re

v)  

Depth 

of cut 

(a) 

(mm) 

MRR 

Error 

% 

Ra    

Error % 

0.67 80 0.16 0.08 6.75 3.57 

0.67 100 0.08 0.16 0.81 6.02 

(a) 

(a) 

(b) 

(a) 

(c) 

(b) 
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Figure 8. Individual effects of Si3N4 wt.% on (a) 

MRR and (b) Ra and reasoning (inset) 

A. Increase of Si3N4 (r) from 0.23 to 0.45 wt.% 

From Fig. 7 (a) and the optical micrographs (Fig. 

3), it is evident that as the Si3N4 reinforcement wt.% 

(r) is increased from 0.23 to 0.45 wt.%, the grain size 

decreased. This is attributed to the Si3N4 particles 

acting as heterogeneous nucleating sites within the 

Mg grains and restricting the growth of grains as 

observed by Viswanath et al. [25]. This has also 

increased vickers microhardness (Fig. 7 (b)) due to 

the increased resistance to deformation caused by the 

restriction of the dislocation movement by the Si3N4 

nanoparticles [26] and agrees with the findings of 

Mistry et al. [26]. The porosity has also increased 

(Fig. 7 (c)) due to the increased number of particles 

increasing the viscosity of the melt, which prevents 

the air/gas trapped from escaping the melt and results 

in increased porosity as observed by Aravindan et al. 

[27] which has decreased the actual density (Fig. 7 

(c)). The increase in porosity softens the material.  

Therefore, as r is increased from 0.23 to 0.45 wt.%, 

there are two possible effects:  

(i) Hardening effect on material characterized by 

increase in microhardness caused by 

reduction in grain size.  

(ii) Softening effect of material due to increase in 

porosity. 

Among these two effects, any one can predominate 

over the other, which would impact the MRR and Ra. 

From Fig. 8 (a) and Fig. 8 (b) respectively, it is 

evident that as r is increased from 0.23 to 0.45 wt.%, 

MRR decreased and Ra also decreased. This is 

because the hardening effect has predominantly 

influenced the MRR over the softening effect, due to 

which material removal became difficult which 

reduced MRR. Since less material was removed by 

the tool, the nanoparticles remained intact in the 

matrix. This prevented the formation of voids, 

fracture of particles, dragging of particles over the 

surface etc. thereby reducing the surface roughness, 

Ra [21], [28] (Fig. 8 (inset)). 

Figure 9. Individual effects of cutting speed, v, feed 

rate, f, and depth of cut, a, on MRR 

B. Increase of Si3N4 (r) from 0.45 to 0.67 wt.% 

From Fig. 7 (a), it is evident that as the Si3N4 

reinforcement wt.% (r) is increased from 0.45 to 

0.67 wt.%, the grain size decreased further and 

increased the microhardness (Fig. 7 (b)) due to the 

increased heterogeneous nucleation and hence 

increased deformation resistance. Fig. 7 (c) shows 

that as the Si3N4 reinforcement wt.% (r) is increased 

from 0.45 to 0.67 wt.%, the porosity has decreased 

due to the effects of increased wetting between the 

nanoparticles and the matrix which predominated the 

effects of viscosity, and hence decreased the 

porosity, as observed by Tosun et al. [29], thereby 

increasing the actual density (Table 1). However, as 

r is increased from 0.45 to 0.67 wt.%, MRR and Ra 

increase (Fig. 8 (a) and Fig. 8 (b)) which means 

more material has been removed and surface quality 

has decreased. This could be explained as below:  

In the range of 0.45 to 0.67 reinforcement wt.%, 

the below effects are operating  

(i) Hardening effect on material characterized by 

increase in microhardness caused by reduction 

in grain size. 

(ii) Hardening effect of material due to decrease in 

porosity.  

Particle  

pullout 

Particle  

fracture 

Matrix 

Void 

Crack 
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(iii) Softening effect caused by increased 

dislodging of reinforcement particles from the 

matrix. 

Any of these three effects could predominantly 

influence MRR and Ra over the other two. With the 

increase in reinforcement wt.% (r) from 0.45 to 0.67 

wt.% i.e. the no: of reinforcement particles have 

increased, which also increases the probability of 

particle dislodging. This results in increased 

dislodging of particles, which could soften the 

material and increase the voids, particle pullout [28], 

particle fracture, dragging of particles over the 

surface [21] [28] as shown in Fig. 8 (inset) which 

softened the material and increased the ease of 

material removal (hence MRR), decreased surface 

quality, and hence increase in the surface roughness, 

Ra.  Similar phenomenon was observed by Sikder et 

al. [28] and Anandan et al.  [21].  

Fig. 9 shows the individual effects of the cutting 

speed, v, feed rate, f, and depth of cut, a, on MRR. It 

is evident that as v, f, and a are increased, MRR 

increases. This is due to the enhanced amount of 

material removed in less time in the directions of v, 

f, and a. Fig. 10 shows the main (individual) effects 

of the cutting speed, v, feed rate, f, and depth of cut, 

a, on Ra. As f is increased from 0.04 to 0.16 mm/rev, 

Ra increases. 

Figure 10. Individual effects of cutting speed, v, 

feed rate, f, and depth of cut, a, on Ra 

This is due to one or more of these reasons: (i) feed 

marks, (ii) surface defects like voids (because of 

particle pullout), (iii) cracking of the metal matrix 

(due to low ductility), and (iv) hard reinforcement 

[21]. As the depth of cut (a) increases from 0.04 mm, 

Ra first slightly increases due to the effects of heavy 

pressure and abrasion around the cutting edge and 

extrusion below the cutting edge which caused the 

roughness of the surface to increase, and increases 

the Ra. After this initial rise, Ra decreases steeply 

with depth of cut, a because the area of contact 

between the work and the cutting edge increases the 

components of the forces as observed by Shoba et al. 

[30]. This could have caused more cutting resistance, 

causing the cutting tool to make fewer 

impressions/undulations over the work surface 

resulting in lesser Ra.  

2. Interactive effects of input factors on MRR 

and Ra 

Fig. 11 and Fig. 12 show the interactive effects of 

input factors on MRR. A, B, C, and D represent the 

corners of the response surfaces. The reasoning for 

variations in MRR and Ra, with changes in the input 

factors discussed in the individual effects, are 

applicable here too. The reinforcement wt.% is 

abbreviated as r, cutting speed as v, feed rate as f, and 

depth of cut as a.  

Fig. 11 (a) shows the 3D plot of interactive effects 

of r and v on the MRR when f and a are held at their 

mid-levels. At low v (along AB) and high v (along 

DC), MRR decreases, reaches a minimum value, and 

then increases with r non-linearly. At low r (along 

AD) and high r (along BC), MRR increases with v. 

Higher MRR is obtained at lower r and higher v. Fig. 

11 (b) shows the 3D plot of interactive effects of r 

and f, on the MRR when v, and a are held at their 

mid-levels. At a low f (along AB), MRR decreases 

and reaches a minimum value, and then it increases 

curvilinearly with r. At high f (along DC), MRR 

decreases curvilinearly with r. At low r (along AD) 

and high r (along BC), MRR increases with f. Higher 

MRR is obtained towards lower r and higher f.   Fig. 

11 (c) shows the 3D plot of interactive effects of r, 

and a, on the MRR when f, and v, are held at their 

mid-levels. At low a (along AB) and high a (along 

DC), MRR decreases first and then increases 

curvilinearly with r. At low r (along AD) and high r 

(along BC), the MRR increases with a linearly. 

Higher MRR is obtained at low r and high and a.  

Fig. 12 (a) shows the 3D plot of interactive effects 

of f and v on the MRR when r, and a, are held at their 

mid-levels. At low f (along AB), MRR shows a very 

slight increase when v is increased. At high f (along 

DC), MRR increases with v, almost linearly. At low 

v (along AD), MRR increases with f. At high v (along 

BC), the MRR increases with f. Higher MRR is 

obtained at higher v and higher f. Fig. 12 (b) shows 

the 3D plot of interactive effects of f, and a, on the 

MRR when r, and v, are held at their mid-levels. At 

low a (along AB), MRR increases (almost linearly) 

with f. At high a (along DC), the MRR increases 

more steeply with f. At a low f (along AD), the MRR 

increases (almost linearly) with a. At high f (along 

BC), the MRR increases more steeply with a. Higher 

MRR is obtained towards higher f and higher a. Fig. 

12 (c) shows the 3D plot of interactive effects of a, 

and v, on the MRR when r and f, are held at their mid-
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levels. At low a (along AB), MRR increases slightly 

almost linearly with v. 

 

 

 

 

 

 

 

 

Figure 11. Interactive effects of (a) v and r (b) f 

and r (c) a and r on MRR 

At high a (along DC), the MRR increases almost 

linearly with v. At low v (along AD), MRR increases 

almost linearly with a. At high v (along BC), MRR 

increases almost linearly with a. Higher MRR is 

achieved with higher a and higher v. Fig. 13 shows 

the interactive effects of f and a on Ra. The model for 

Ra indicates that only the interaction between the 

feed rate (f) and depth of cut (a) is significant. Ra 

increases with f for lower a (along AB) and higher a 

(along DC). 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Interactive effects of (a) v and f (b) f and 

a (c) a and v on MRR 

At low f, (along AD), as a increases, Ra first slightly 

increases and then decreases. At higher f (along BC), 

Ra decreases non-linearly with a. Lower Ra is 

obtained at lower f and also lower a. 
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Multi-objective optimization using Design-Expert 

software was done with the input factors (in range), 

MRR (Weight: 4 Importance: ++) and Ra (Weight: 7 

Importance: +++) to maximize MRR and minimize 

Ra. Fig. 14 shows the optimization ramp. Si3N4 

nanoparticle addition of 0.44 wt.%, cutting speed of 

110 m/min, feed rate of 0.09 mm/rev, and depth of 

cut of 0.16 mm were suitable in the sustainable, 

economical machining of Mg-4Zn/Si3N4 

nanocomposites with good surface quality. 

Figure 13. Interactive effects of f and a on Ra 

The optimal MRR is 1446.29 mm³/min and optimal 

Ra is 0.3351 µm. Confirmation experiments of MRR 

and Ra at the optimal parameter setting yielded an 

error of 9.64 % and 7.01% respectively.  

Figure 14. Optimization ramps showing the 

optimized MRR, Ra, and the input process 

parameters 

IV. CONCLUSIONS 

The improvement in microhardness and variation 

in porosity levels caused by the Si3N4 nanoparticle 

additions, and also the dry turning parameters 

influenced the material removal rate (MRR) and 

surface roughness (Ra). Regression models for 

prediction of MRR and Ra were obtained.  

The models were studied using ANOVA and 

validated statistically and experimentally (with error 

less than 10%). This showed that the Si3N4 

reinforcement wt.% and machining parameters and 

their interactions significantly affected the MRR. 

The model for MRR of linear, square, and interaction 

terms of the reinforcement wt.%, cutting speed, feed 

rate, and depth of cut. Ra was influenced by the feed 

rate and depth of cut and their interaction also by the 

Si3N4 reinforcement wt.% (square term) as 

confirmed by the regression model. Higher MRR was 

obtained at a lower level of Si3N4 additions and 

higher levels of v, f, and a. Lower Ra is obtained at 

lower feed rates and lower depths of cut (from 

interactive plots).  

Multi-objective optimization of MRR and Ra 

revealed that for obtaining a higher material removal 

rate and good surface quality, medium reinforcement 

(0.44 wt.%), higher cutting speed (110 m/min), 

medium feed rate (0.09 mm/rev), and higher depth 

of cut (0.16) are preferred to obtain a material 

removal rate of 1446.29 mm³/min and surface 

roughness Ra of 0.3351 µm.  

ACKNOWLEDGEMENT 

The authors duly acknowledge APJ Abdul Kalam 

Technological University (APJAKTU), 

Thiruvananthapuram, Kerala, Center for 

Engineering Research and Development (CERD), 

(APJAKTU), Thiruvananthapuram, College of 

Engineering Trivandrum, Nanoshel UK Limited, 

Intelligent Materials Pvt Ltd, Punjab (for 

nanomaterials), SwamEquip, Chennai and Mr. 

Venkat Raghavan of SwamEquip (for stir casting), 

Central Instrumentation Facility (CIF), Indian 

Institute of Technology (IIT) Palakkad, and its staff, 

Mr. Mejo A. J, Central Laboratory for 

Instrumentation and Facilitation (CLIF), University 

of Kerala, Thiruvananthapuram, Sophisticated Test 

and Instrumentation Center (STIC India, CUSAT, 

Cochin) and its scientist Dr. Shibu M Eappen, Agro 

Met Lab, Coimbatore and its technical manager, Mr. 

R. Arunkumar and Chennai Metco, Chennai for 

materials studies, Zenith Industrial Solutions, 

Chennai and its staff Mr. Sivakumar K, Mitsubishi 

Materials Corporation, ISRO Inertial Systems Unit 

(IISU), Thiruvananthapuram, Mr. Joji J Chaman and 

Precision Instrumentation Laboratory (PIL), IISU 

(for machining and materials studies), Stat-Ease, Inc, 

Systech Technocraft Services Pvt. Ltd., Mumbai for 

Design-Expert software, OriginLab Corporation, 

Konark Solutions Bangalore Pvt Ltd. for OriginLab 

and ImageJ for supporting this research.  



Anand N. et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

10 

AUTHOR CONTRIBUTIONS 

N Anand: Conceptualization, Experiments, 

Theoretical analysis, Writing, Review and Editing. 

K Jayprakash Reddy: Experiments, Theoretical 

Analysis, Review and editing. 

D Bijulal: Supervision, Theoretical Analysis, 

Review and editing. 

K Vijayan: Supervision, Theoretical Analysis, 

Review and editing. 

P Prasanth: Experiments, Theoretical Analysis, 

Review and editing. 

DISCLOSURE STATEMENT 

The authors declare that they have no known 

competing financial interests or personal 

relationships that could have appeared to influence 

the work reported in this paper. 

ORCID 

N Anand https://orcid.org/0009-0004-3356-9946 

K Jayaprakash Reddy https://orcid.org/0000-0001-

6540-141X 

D Bijulal  https://orcid.org/0000-0003-2712-3097 

K Vijayan https://orcid.org/0009-0001-2037-2720  

P Prasanth https://orcid.org/0009-0004-0940-595X 
 

REFERENCES 
 

[1] P. Nyamekye, R. Lakshmanan, V. 

Tepponen, and S. Westman, “Sustainability 

aspects of additive manufacturing: 

Leveraging resource efficiency via product 

design optimization and laser powder bed 

fusion,” Heliyon 10 (1) (2024) e23152. 

https://doi.org/10.1016/j.heliyon.2023.e231

52 

[2] G. Parande, V. Manakari, S. D. Sharma 

Kopparthy, and M. Gupta, “A study on the 

effect of low-cost eggshell reinforcement on 

the immersion, damping and mechanical 

properties of magnesium–zinc alloy,” 

Compos B Eng 182 (2020) 107650. 

https://doi.org/10.1016/j.compositesb.2019.

107650 

[3] J. Song, J. She, D. Chen, and F. Pan, “Latest 

research advances on magnesium and 

magnesium alloys worldwide,” Journal of 

Magnesium and Alloys 8 (1) (2020) pp. 1-41. 

https://doi.org/10.1016/j.jma.2020.02.003 

[4] R. Radha and D. Sreekanth, “Insight of 

magnesium alloys and composites for 

orthopedic implant applications – a review,” 

Journal of Magnesium and Alloys 5 (3) 

(2017) pp. 286–312. 

https://doi.org/10.1016/j.jma.2017.08.003 

[5] S. García-Rodríguez, B. Torres, A. Maroto, 

A. J. López, E. Otero, and J. Rams, “Dry 

sliding wear behavior of globular AZ91 

magnesium alloy and AZ91/SiCp 

composites,” Wear 390–391 (2017) pp. 1-

10. 

https://doi.org/10.1016/j.wear.2017.06.010 

[6] N. M. Chelliah, H. Singh, and M. K. 

Surappa, “Correlation between 

microstructure and wear behavior of 

AZX915 Mg-alloy reinforced with 12 wt% 

TiC particles by stir-casting process,” 

Journal of Magnesium and Alloys 4 (4) 

(2016) pp. 306-313. 

https://doi.org/10.1016/j.jma.2016.09.002 

[7] J. Hashim, L. Looney, and M. S. J. Hashmi, 

“Metal matrix composites: production by the 

stir casting method,” J Mater Process 

Technol 92–93 (1999) pp. 1–7. 

https://doi.org/10.1016/S0924-

136(99)00118-1 

[8] Y. Qiao, N. Fan, P. Guo, Y. Bai, and S. 

Wang, “Surface integrity analysis in turning 

A03190/304 composites with network 

reinforcement,” Engineering Science and 

Technology, an International Journal 19 (4) 

(2016) pp. 1960-1970. 

https://doi.org/10.1016/j.jestch.2016.07.017 

[9] S. A. Bagaber and A. R. Yusoff, “Energy 

and cost integration for multi-objective 

optimisation in a sustainable turning 

process,” Measurement (Lond) 136 (2019) 

pp. 795-810. 

https://doi.org/10.1016/j.measurement.2018

.12.096 

[10] G. C. Manjunath Patel, D. Lokare, G. R. 

Chate, M. B. Parappagoudar, R. Nikhil, and 

K. Gupta, “Analysis and optimization of 

surface quality while machining high 

strength aluminium alloy,” Measurement 

(Lond) 152 (2020) 107337. 

https://doi.org/10.1016/j.measurement.2019

.107337 

[11] A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, 

M. A. Taha, M. S. Soliman, and M. M. El 

Rayes, “ANN Surface Roughness 

Optimization of AZ61 Magnesium Alloy 

Finish Turning: Minimum Machining Times 

at Prime Machining Costs,” Materials 11 (5) 

(2018) 808. 

https://doi.org/10.3390/ma11050808 

[12] D. Kumar and R. K. Porwal, “Parametric 

Optimization of Thermoelectric Machining 

of Stir-Cast Hybrid Magnesium Metal 

Matrix Composite with Alumina and Silicon 

https://orcid.org/0009-0004-3356-9946
https://orcid.org/0000-0001-6540-141X
https://orcid.org/0000-0001-6540-141X
https://orcid.org/0000-0003-2712-3097
https://doi.org/10.1016/j.heliyon.2023.e23152
https://doi.org/10.1016/j.heliyon.2023.e23152
https://doi.org/10.1016/j.compositesb.2019.107650
https://doi.org/10.1016/j.compositesb.2019.107650
https://doi.org/10.1016/j.jma.2020.02.003
https://doi.org/10.1016/j.jma.2017.08.003
https://doi.org/10.1016/j.wear.2017.06.010
https://doi.org/10.1016/j.jma.2016.09.002
https://doi.org/10.1016/S0924-136(99)00118-1
https://doi.org/10.1016/S0924-136(99)00118-1
https://doi.org/10.1016/j.jestch.2016.07.017
https://doi.org/10.1016/j.measurement.2018.12.096
https://doi.org/10.1016/j.measurement.2018.12.096
https://doi.org/10.1016/j.measurement.2019.107337
https://doi.org/10.1016/j.measurement.2019.107337
https://doi.org/10.3390/ma11050808


Anand N. et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

11 

Carbide as Reinforcement,” Journal of The 

Institution of Engineers (India): Series D 

105 (3) (2024) pp. 1927–1943. 

https://doi.org/10.1007/s40033-023-00628-

x 

[13] S. Sudhagar, P. M. Gopal, M. Maniyarasan, 

S. Suresh, and V. Kavimani, “Multi-

objective optimization of machining 

parameters for Si3N4–BN reinforced 

magnesium composite in wire electrical 

discharge machining,” International Journal 

on Interactive Design and Manufacturing 

(IJIDeM) 18 (7) (2024) pp. 4787–4802. 

https://doi.org/10.1007/s12008-024-01777-

3 

[14] S. Zhang et al., “Research on an Mg–Zn 

alloy as a degradable biomaterial,” Acta 

Biomater 6 (2) (2010) pp. 626–640. 

https://doi.org/10.1016/j.actbio.2009.06.028 

[15] J. Wang, Y. Ma, S. Guo, W. Jiang, and Q. 

Liu, “Effect of Sr on the microstructure and 

biodegradable behavior of Mg–Zn–Ca-Mn 

alloys for implant application,” Mater Des 

153 (2018) pp. 308–316. 

https://doi.org/10.1016/J.MATDES.2018.04

.062 

[16] B. P. Zhang, Y. Wang, and L. Geng, 

“Research on Mg-Zn-Ca Alloy as 

Degradable Biomaterial,” in Biomaterials, 

R. Pignatello, Ed., Rijeka: IntechOpen, 

2011, ch. 9. 

https://doi.org/10.5772/23929 

[17] F. L. Riley, “Silicon Nitride and Related 

Materials,” Journal of the American 

Ceramic Society 83 (2) (2000) pp. 245–265. 

https://doi.org/10.1111/j.1151-

2916.2000.tb01182.x 

[18] M. Paramsothy, J.Chan, R.Kwok, and 

M.Gupta, “Enhanced mechanical response 

of hybrid alloy \emph{AZ31/AZ91} based 

on the addition of Si3N4 nanoparticles,” 

Materials Science and Engineering: A 528 

(21) (2011) pp. 6545-6551. 

https://doi.org/10.1016/j.msea.2011.05.003 

[19] L. Fu et al., “Biodegradable Si3N4 

bioceramic sintered with Sr, Mg and Si for 

spinal fusion: Surface characterization and 

biological evaluation,” Appl Mater Today 12 

(2018) pp. 260–275. 

https://doi.org/10.1016/J.APMT.2018.06.00

2 

[20] K. H. Park, A. Beal, D. D. W. Kim, P. Kwon, 

and J. Lantrip, “Tool wear in drilling of 

composite/titanium stacks using carbide and 

polycrystalline diamond tools,” Wear 271 

(11–12) (2011) pp. 2826–2835. 

 

 

 

https://doi.org/10.1016/J.WEAR.2011.05.0

38 

[21] N. Anandan and M. Ramulu, “Study of 

machining induced surface defects and its 

effect on fatigue performance of 

AZ91/15\%SiCp metal matrix composite,” 

Journal of Magnesium and Alloys 8 (2) 

(2020) pp. 387–395. 

https://doi.org/10.1016/j.jma.2020.01.001 

[22] B. Ozcelik, H. Oktem, and H. Kurtaran, 

“Optimum surface roughness in end milling 

Inconel 718 by coupling neural network 

model and genetic algorithm,” The 

International Journal of Advanced 

Manufacturing Technology 27 (3) (2005) pp. 

234–241. 

https://doi.org/10.1007/s00170-004-2175-7 

[23] Statease, “DesignExpert optimization.” 

Accessed: May 19, 2025. [Online]. 

Available: 

https://www.statease.com/docs/v23.1/conte

nts/optimization/desirability-details/ 

[24] R. Mehra, H. Singh, and S. K. Chaubey, 

“Evaluating Surface Roughness of Ductile 

Cast Iron Machined by EDM Using Solid 

and Hollow Cylindrical Copper Electrodes,” 

Periodica Polytechnica Mechanical 

Engineering 69 (1) (2025) pp. 46–54. 

https://doi.org/10.3311/PPme.38763 

[25] A. Viswanath, H. Dieringa, K. K. Ajith 

Kumar, U. T. S. Pillai, and B. C. Pai, 

“Investigation on mechanical properties and 

creep behavior of stir cast AZ91-SiCp 

composites,” Journal of Magnesium and 

Alloys 3 (1) (2015) pp. 16-22. 

https://doi.org/10.1016/j.jma.2015.01.001 

[26] J. M. Mistry and P. P. Gohil, “Experimental 

investigations on wear and friction 

behaviour of Si3N4p reinforced heat-treated 

aluminium matrix composites produced 

using electromagnetic stir casting process,” 

Compos B Eng 161 (2019) pp. 190–204. 

https://doi.org/10.1016/J.COMPOSITESB.

2018.10.074 

[27] S. Aravindan, P. V. Rao, and K. Ponappa, 

“Evaluation of physical and mechanical 

properties of AZ91D/SiC composites by two 

step stir casting process,” Journal of 

Magnesium and Alloys 3 (1) (2015) pp. 52-

62. 

https://doi.org/10.1016/j.jma.2014.12.008 

[28] S. Sikder and H. A. Kishawy, “Analytical 

model for force prediction when machining 

metal matrix composite,” Int J Mech Sci 59 

(1) (2012) pp. 95-103. 

https://doi.org/10.1016/j.ijmecsci.2012.03.0

10 

 

 

 

https://doi.org/10.1007/s40033-023-00628-x
https://doi.org/10.1007/s40033-023-00628-x
https://doi.org/10.1007/s12008-024-01777-3
https://doi.org/10.1007/s12008-024-01777-3
https://doi.org/10.1016/j.actbio.2009.06.028
https://doi.org/10.1016/J.MATDES.2018.04.062
https://doi.org/10.1016/J.MATDES.2018.04.062
https://doi.org/10.5772/23929
https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
https://doi.org/10.1016/j.msea.2011.05.003
https://doi.org/10.1016/J.APMT.2018.06.002
https://doi.org/10.1016/J.APMT.2018.06.002
https://doi.org/10.1016/J.WEAR.2011.05.038
https://doi.org/10.1016/J.WEAR.2011.05.038
https://doi.org/10.1016/j.jma.2020.01.001
https://doi.org/10.1007/s00170-004-2175-7
https://www.statease.com/docs/v23.1/contents/optimization/desirability-details/
https://www.statease.com/docs/v23.1/contents/optimization/desirability-details/
https://doi.org/10.3311/PPme.38763
https://doi.org/10.1016/j.jma.2015.01.001
https://doi.org/10.1016/J.COMPOSITESB.2018.10.074
https://doi.org/10.1016/J.COMPOSITESB.2018.10.074
https://doi.org/10.1016/j.jma.2014.12.008
https://doi.org/10.1016/j.ijmecsci.2012.03.010
https://doi.org/10.1016/j.ijmecsci.2012.03.010


Anand N. et al. – Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2025 

12 

[29] G. Tosun and M. Kurt, “The porosity, 

microstructure, and hardness of Al-Mg 

composites reinforced with micro particle 

SiC/Al2O3 produced using powder 

metallurgy,” Compos B Eng 174 (2019) 

106965. 

https://doi.org/10.1016/j.compositesb.2019.

106965 

[30] C. Shoba, N. Ramanaiah, and D. Nageswara 

Rao, “Effect of reinforcement on the cutting 

forces while machining metal matrix 

composites–An experimental approach,” 

Engineering Science and Technology, an 

International Journal 18 (4) (2015) pp. 658–

663. 

https://doi.org/10.1016/J.JESTCH.2015.03.

013 
 

 

This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution NonCommercial (CC BY-NC 4.0) license. 

https://doi.org/10.1016/j.compositesb.2019.106965
https://doi.org/10.1016/j.compositesb.2019.106965
https://doi.org/10.1016/J.JESTCH.2015.03.013
https://doi.org/10.1016/J.JESTCH.2015.03.013

