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To manufacture useful products with good surface quality from the sustainable Mg-4Zn/SizN4
nanocomposites strengthened by SisN4 nanoparticles, machining after stir casting is needed, and it
has to be done economically. The SisN4 nanoparticles could influence the machining behavior due to
their abrasive properties and their ability to strengthen the alloy matrix. Multi-objective optimization
of material removal rate (MRR) (a good indicator of economic production) and surface roughness (Ra)
(a good indicator of quality of surface) are necessary to identify the optimal settings. This research
reports the dry turning studies of vacuum stir cast Mg-4Zn/SizN. nanocomposites with a
polycrystalline diamond turning tool. Response surface methodology (RSM)-based Box-Behnken
design was used. The reinforcement (nanometre-sized silicon nitride) weight percentage, cutting
speed, feed rate, and depth of cut were the input factors. Regression models for prediction of material
removal rate (MRR) and surface roughness (R.) were obtained and validated. Multi-objective
optimization of MRR and R, using Design-Expert software identified a reinforcement of 0.44 wt.%
and a cutting speed of 110 m/min, a feed rate of 0.09 mm/rev, and a depth of cut of 0.16 mm as the
optimal settings. The effects of the input process parameters on the MRR and R, are also studied.

Keywords: Mg-4Zn; SisN4; Nanocomposite; Machining; Optimization

uniqueness comes in combining these properties

I. INTRODUCTION with good biocompatibility, biodegradability, and

The development and production of magnesium
(Mg)-based products have become extremely
important in various areas of application in the
present era. In the automobile and aerospace sectors,
they are preferred because of low density (1.74
g/cm®), higher specific stiffness, and specific
strength. The use of such lightweight materials and
products enhances sustainability [1] and helps to
minimize the emission of greenhouse gases and is
also cost-effective [2]. Mg-based materials are also
promising candidates for hydrogen storage
applications due to their abundance, low cost, and
good capacity to store hydrogen [3]. Their
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bioresorbability [4], which makes them good
candidates as biomedical materials too. They are also
preferred for some electronic applications [3]. In
spite of the wvarious advantages, further
improvements of their properties are mostly
necessary to enhance their application potential. This
is possible by the use of ceramics as reinforcements
in Mg-based matrices to form metal matrix
composites (MMCs) [5], which possess improved
strength, wear resistance, dimensional stability, and
also properties at high temperatures [6]. It is
therefore  important to produce functional
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components from MMCs for use in many
applications.

Stir casting is a simple and flexible method to
produce components from the MMCs [7]. However,
to achieve dimensional accuracy and surface finish
specifications, these components need subsequent
machining. But since the reinforcements have an
abrasive nature, and they also increase the hardness
of the MMCs [8], turning MMC becomes
challenging. It is important to study the effects of the
reinforcements in the turning of Mg-based MMCs.
Moreover, optimizing the machining parameters is
critical to save energy and ensure sustainability [9]
in the manufacturing of Mg MMCs. Crucial
indicators of the machining process and product
quality are chosen as the responses for optimization.
Surface roughness is one such indicator of product
quality that influences the frictional and tribological
characteristics of the product and also influences its
life and efficiency. A high material removal rate
(another crucial indicator of machining) is necessary
for economically viable large-scale production [10].
Various aspects of machining Mg-based materials
have been investigated by researchers. Abbas et al.
[11] investigated the turning of AZ61 Mg alloy with
depth of cut, cutting speed, and feed rate as input
factors and optimized the surface roughness. Kumar
et al. [12] utilized MRR and surface roughness to
optimize the thermoelectric machining of Mg
composite reinforced with Al and SiC. Sudhagar et
al. [13] performed multi-objective optimization of
surface roughness and kerf width in the wire electric
discharge machining of magnesium composite
reinforced with BN and SizNa.

Among the various Mg-based materials, the Mg
alloy with 4 wt.% Zn (Mg-4Zn) possesses a good
combination of low  degradation rate,
biocompatibility, and moderate  mechanical
properties, [14], [15], [16]. It has research scope for
property improvement by the addition of SisN4
ceramic particles. Silicon nitride (SisN4) possesses
good wear resistance, thermal stability, and
mechanical properties and is used in rollers, rotors,
and ball bearings [17] and has been used to improve
properties of various materials [18].

This research hypothesizes that the addition of
Si3N4 nanoparticles to improve the properties of Mg-
4Zn alloy will also influence its machining behavior.
Fig. 1 shows the highlights of this research. This
research deals with manufacturing of sustainable
lightweight Mg-4Zn nanocomposites reinforced
with small fractions of nano-SisN4 (a biocompatible
bioceramic [19]). Machining experiments are
conducted based on response surface methodology-
based Box-Behnken design with a polycrystalline
diamond (PCD) turning tool, which produces high-
quality surfaces in the machining of difficult-to-
machine materials, has low friction properties, and
has high hardness [20]. Regression models are

developed and validated for MRR and Ra. Multi-
objective optimization of MRR and R, is performed
to arrive at the optimal setting.

Input process Response 1: Material
parameters: Removal Rate, MRR
Reinforcement, r (wt.%) (mm®/min)

Cutting speed, v Response 2:

(m/min) Surface Roughness,
Feed rate, f (mm/rev) R, (um)
a
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Figure 1. Highlights of this research

MATERIALS AND METHODS

Vacuum stir cast Mg-4Zn/SizsN4 nanocomposites
(Fig. 2) are used for the machining studies. A
bottom-pouring stir casting machine (SwamEquip
make) under argon gas protection was used for the
vacuum stir casting. Mg and Zn ingots were melted
in the desired proportion in the furnace at 750 °C.

Mg-4Zn alloy in Mg-Zn phase diagram

650

Mg+MgZn

Mg-4Zn MgZn

0 4 10 Mass % Zn 70

Vacuum stir casting

Bottom pouring furnace
Stirrer

SizNy I
nanoparticles @
: I Molten alloy

>

Mold under
vacuum

|( Cast rod |»

Figure 2. Vacuum stir casting of Mg-4Zn/SizNa4
nanocomposites

Nanoshel-made  SisNs  nanoparticles  (rein-
forcement) of 15-30 nm average particle size were
then added to the melt in the desired proportion by
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wrapping in Al foil. The melt was stirred at 500 rpm
for 10 minutes for uniformly distributing the
constituents. The melt was poured into a preheated
steel mold under vacuum and removed after
solidification. This procedure was followed with
0.23, 0.45, and 0.67 wt.% SisN4 reinforcements to
produce Mg-4Zn nanocomposites. Specimens
extracted from the castings after surface preparation
were observed under an optical microscope

(Dewinter-made) and a ZEISS-made scanning
electron microscope (SEM). Fig. 3 shows the SEM
elemental maps and optical micrographs of the
nanocomposites.
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% e
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0.45 Wt.% :
Elemental maps

0.23 wt.% SisNg 0.23 wt.%

0.23 Wt.% SisNag

0.45 wt.% SizNs 0.45 wt.% SiaNa

0.45 wt.% Si3zNa
0.67 wt.% SizNa

0.67 wt.% SisNa

0.67 Wt.% SisNa

Optical Micrographs
0.23 Wt.% SisNs
A e

optical micrographs of the nanocomposites
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The surface preparation was done by polishing
with emery sheets and then with alumina powder and
then etching with acetic picral obtained by mixing 10
ml acetic acid, 10 ml water, 70 ml ethanol, and 4.2 g
picric acid. The optical micrographs were utilized to
measure the average grain size of 50 grains of each
nanocomposite using ImageJ software. Unetched
surfaces of the specimens were polished with
diamond paste (0.5-1 microns) and subjected to
wavelength  dispersive  X-ray  fluorescence
spectroscopic (XRF) studies in a Bruker S8 Tiger
Series Il 4kW machine. Microhardness of these
specimens (average of five readings) was measured
under a load of 500 g applied for 15 seconds in FIE
made microhardness tester. The density was
obtained from their weight (measured by a Mettler
Toledo weighing balance capable of measuring
+0.0001 g) using equation (1).

] _ ( Vvin air
pspec1men Win air

) X P of water (1)

- Win water

where p indicates the density, and W indicates the
weight. Porosity was calculated from the density
using equation (2).

PActual

Porosity (%) = (1 - ) x100 (2)

PTheoretical
Table 1 shows the Mg and Zn wt.% obtained by
XRF analysis, density, and porosity. Table 2 shows
the microhardness and grain size of the
nanocomposites.

Table 1. XRF analysis, density and porosity of the
nanocomposites

Wt% XRF analysis Density Porosity

SioNe (wt.%) (g/ce) (%)
Mg Zn

0.23 95.8 | 3.56 1.753 2.18

0.45 94 3.86 1.737 3.26

0.67 945 | 3.66 1.769 1.55

The porosity levels in all the nanocomposite castings
were indicative of good-quality castings.

Table 2. Microhardness and grain size of the
nanocomposites

wt.% Microhardness Grain size (um)
SisNs (HVos)

0.23 52.0 185.8

0.45 57.5 135.8

0.67 66.7 74.5

It is observed from the SEM elemental maps (Fig. 3)
that there is homogeneous distribution of the
elements Mg, Zn, Si, and N, which means the alloy
and SisN4 reinforcement have been homogeneously
distributed in the nanocomposites.

Machining experiments were carried out using a
Schaublin 180 CCN R-TM A 2-5 high-precision
CNC lathe. The dry machining experiments of the
nanocomposites were designed by following the
Box-Behnken design, which is an efficient design
based on the response surface methodology (RSM).
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Table 3 shows the input factors (coded and actual
values) along with their levels. The principle of RSM
is based on equation (3), where y indicates the
response, ¢ is a constant, ¢i‘s are the coefficients of
the linear terms, and ¢i” s and ¢j’s are the
coefficients of the square and interaction terms,
respectively. ¢ is the error in observations. RSM fits
a second-order model to the response values (Fig. 1)
based on the minimizing least squares to develop a
mathematical model that connects the responses and
the input factors, which are provided in Table 3.

Y=o+ i diX; + i PuX? + 23:24: dijXij+e (3)
=1 =1

i=1i=1

Table 3. Input factors and their levels

Input factors Units Level Level | Level
1 2 3
Coded value - -1 0 1
0} 9
Reinforeement | (Wt%) 0.23 045 | 067
wcutting | i | 8o o5 | 110
speed
(f) Feed rate mm/rev 0.04 0.1 0.16
(a) Depth of mm 0.04 0.1 0.16
cut

Material removal rate (MRR) and surface roughness
(Ra) were the responses. A Mitsubishi-made PCD
cutting tool (CCGWO09T304-PCD010) was used for
machining the nanocomposites in a dry environment.
MRR was calculated using Eqgn. (4),

D; — Dy D; + Dy
MRRzn( )x( )fN 4)
2 2
where D; and D; are diameters in mm of the
specimen before and after the machining,

respectively. f is the feed rate (mm/rev), and N is the
rotational speed (rpm) [10].

Surface roughness, R, was measured by using a
Talysurf 200 machine with 0.8 mm as cutoff length
and 4 mm as evaluation length, according to 1SO
4287:1997 standards. R, is the average roughness
from the mean line taken within sampling length [21]
and is represented in equation (5) and as a schematic
in Fig. 1.
1 N
Ro=< [ IFl ®)
SJo

The f(x) is the distribution of the height over a length
s of the profile [22]. An average value obtained from
three trials at each experimental setting is reported as
the response values. Multi-objective optimization
available in Design-Expert software was used to
optimize the surface roughness (Ra) and material
removal rate (MRR). This is based on the desirability
index. Let X be the set of input process parameters
and Y be the fitted response, which is a function of
X. Yu and Y are the highest and lowest values of Y.
Likewise, there are n responses. Numerical
optimization helps to optimize a combination of one
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or many goals on the responses. To minimize the
goal, the individual desirability L is calculated as in
Eqn. (6).

LY<Y,
[YH_Y]Y <Y<Y 6
=T <y < (6)

0,Y>Yy

To maximize the goal the individual desirability L is
calculated as in Eqn. (7).

0,Y<Y,

L= [Y_YL]Y<Y<Y 7

- YH—YL v 1L H ()
1Y > Yy

A weight also has to be assigned to each goal varying
from 0.1 to 10. Every goal can be assigned an
importance varying from + (a value of 1) to +++++
(a value of 5). When there are n responses, to convert
this response to a single one, we use the function, F
as shown by equation (8) [23]. The shape of
desirability function changes with weight as shown
in Fig. 4.

Minimizing the goal

Weight (W)

Desirability, L

Response, Y

Maximizing the goal

= | Weight (W)
£z
= N
S
=]
0 - .
YL Yll
Response, Y
Figure 4. Individual desirability function in

minimizing and maximizing the goals

(1)

i=1

|~

(8)

I1l. RESULTS AND DISCUSSION

The average values of MRR and Ra for each setting
of the input factors based on the Box-Behnken
design are presented in Table 4. These values were
analyzed using Design-Expert software. Statistical
validation of the models of MRR and R is presented
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in Fig. 5. It is evident that the data points are
normally distributed (Fig. 5 (a), Fig. 5 (b)) and that
the predicted and actual values fall along the
straight-line (Fig. 5 (c), Fig. 5 (d)), thus ensuring
statistical validation of the models of MRR and Ra.
For MRR, a model including the individual terms,
interaction terms, and square terms of all the input
factors was found to be significant by ANOVA
analysis. The R? and adjusted R? of the model were
0.9917 and 0.9821, respectively. The predicted R?
(of 0.9537) agrees with the adjusted R? since their
difference is lesser than 0.2, the model can be used
for prediction [24].

Table 4. Input factor settings and the average MRR
and R, values

Reinf  Cutti Feed Depth MRR Ra (um)
RuUN orce ng rate ofcut  (mm3m
order ment speed  (f) (@) in)

) v) mm/r mm

wt.% ev
1 0.45 95 0.10 0.10 899.95 0.7095
2 0.45 95 0.10 0.10 852.41 0.7104
3 0.45 95 0.10 0.10 820.7 0.6843
4 0.45 80 0.16 0.10 1148.83  1.1511
5 0.67 95 0.04 0.10 353.95 0.1912
6 0.67 110 0.10 0.10 1006.05  0.6977
7 0.67 80 0.10 0.10 736.47 0.6965
8 0.67 95 0.16 0.10 1331.3 1.1452
9 0.67 95 0.10 0.16 1538.75  0.7102
10 0.23 95 0.10 0.04 405.97 0.7071
11 0.23 110 0.10 0.10 1138.35  0.7053
12 0.23 95 0.16 0.10 1522.64  1.1528
13 0.23 95 0.04 0.10 395.44 0.1851
14 0.23 80 0.10 0.10 819.4 0.7101
15 0.23 95 0.10 0.16 1543.08 0.701
16 0.23 95 0.10 0.04 431.33 0.6962
17 0.45 80 0.10 0.16 1215.36  0.3067
18 0.45 95 0.04 0.16 564.9 0.1495
19 0.45 110 0.10 0.16 1585.67  0.3116
20 0.45 95 0.16 0.16 2183.51  0.3052
21 0.45 110 0.16 0.10 1778.5 1.0967
22 0.45 80 0.04 0.10 330.57 0.1903
23 0.45 110 0.04 0.10 427.51 0.214
24 0.45 95 0.16 0.04 644.33 1.0948
25 0.45 80 0.10 0.04 262.59 0.7232
26 0.45 95 0.04 0.04 107.85 0.2095
27 0.45 110 0.10 0.04 275.54 0.7404

Adeq Precision is an indicator of signal-to-noise
ratio. A value of 39.615 (>4) is an adequate signal
which also indicates that the model can be used for
prediction. The F-value of model is 102.64 which
ensures the significance of the model. There is only
a chance of 0.01 % that the F-value was caused by
the noise. Equation (9) is the coded regression
equation developed for predicting the MRR. The
model for R, including the individual terms of
reinforcement wt.% (r), feed rate (f) and depth of cut
(a), and interaction term of feed rate and depth of cut,
and square term of reinforcement wt.%, r, and depth
of cut, a was found to be significant by ANOVA
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analysis. The R?and adjusted R? of the model for R,
were 0.8804 and 0.8445, respectively.

Material Removal Rate, MRR = 857.69 — 39.81r +
141.53v +
535.74f + 541.97a
—12.34rv — 37.46rf + 5.26ra +

133.18vf +
89.34va + 270.53fa + 67.84r% + 5.6v2 +
13.66f2 + 9.85a2 9)
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Figure 5. Statistical validation plots (a) Normal
Probability of MRR (b) Predicted vs. Actual of
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The predicted R? (of 0.6641) agrees with the
adjusted R?, since their difference is lesser than 0.2,
the model can be used for prediction [24]. An Adeq
Precision value of 17.696 (>4) is an adequate signal
which also indicates that the model for R, can be
used for prediction. The F-value of the model is
24.53 ensuring the significance of the model. There
is only a 0.01% chance that that the F-value was
caused by the noise. Equation (10) is the coded
regression equation for Ra.

Surface Roughness,R, = 0.6311 — 0.00022r +
0.4005f — 0.1406a
—0.1824fa + 0.9664r2 — 0.1094a? (10)
A perturbation plot shows the changes in the values
of the response when each factor is moved from the
reference value when all the other factors are
maintained at their reference value. The steeper the
slope is, or the more the curvature is, the more
sensitive the response is to the factor. Fig. 6 (a) and
Fig. 6 (b) shows the perturbation plots of MRR and
Ra. It is evident that the MRR is more sensitive to
feed rate (C) and depth of cut (D) than to the cutting
speed (B) and the reinforcement wt.% (A). R, is
more sensitive to feed rate (C) than the depth of cut
(D) and reinforcement wt.% (A) since the slopes are
higher for the feed rate (C) compared to the slopes of
the reinforcement wt.% (A) and depth of cut (D). Ra
is not sensitive to changes in cutting speed (B). The
regression models obtained for MRR and Ra were
validated experimentally. Error % was less than 10
% for MRR and R, as presented in Table 5.

Perturbation

N
n
=3
>
1

A: Reinforcement wt.%
B: Cutting Speed
C: Feed Rate

D: Depth of cut
1500 pC

2000
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=
1

T T T T
-1 0.5 0 0.5 1

Deviation from reference point (coded units)
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1.4 |
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1 = i "
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= 2 SPp A
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=
=
o4 | e D
< g
g 02 |
=
=
Ao | (b)
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Figure 6. Perturbation plots of (a) MRR and (b) Ra
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Table 5. Experimental validation of the models of
MRR and Ra

Reinfor Cutting Feed Depth MRR Ra
cement speed rate (f) of cut Error Error %
) (v) (mm/re  (a) %
(wt.%) (m/min) V) (mm)
0.67 80 0.16  0.08 6.75 3.57
0.67 100 0.08 0.16 0.81 6.02

1. Individual effects of reinforcement wt.% (r)
on nanocomposite properties, MRR and Ra

Fig. 7(a)-(c) shows the variation in grain size,
microhardness, porosity, and density with SisN4
wt.% obtained from the data in Table 2.

200
2
£ 160 -
e
é 140 Ems.a @
81204
2]
[
§ 100
o
801 (a) §745
60 . . .
0.23 0.45 0.67
Wwt.% Si;N,
80
75
= 70
S 651 IGGJ
£ 60 575
o 551 )
$ 50 52.0
E 5]
5 401
Q
g 35
30
251 (b)
20 . : .
0.23 0.45 0.67
Wwt.% Si;N,

321 —@—Porosity
3.0 —&— Density

1.755 8
;G 750 £
g 22 17502
2.04 1.745 =
1.8 1.740
167 (C) 1.735
1.44— . . . . .
0.2 0.3 0.4 0.5 0.6 0.7
SigN, (Wt.%)

Figure 7. (a) Grain size (b) Microhardness and
(c) Porosity and density vs. SisN4wt.%

The addition of SisN. reinforcement has influenced
the grain size, microhardness, porosity and density.
Fig. 8 shows the main effects of the SisNg4
reinforcement wt.% on MRR and R. and the
reasoning for the variation as inset.
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A. Increase of SizN. (r) from 0.23 to 0.45 wt.%

From Fig. 7 (a) and the optical micrographs (Fig.
3), it is evident that as the SisN4 reinforcement wt.%
(r) is increased from 0.23 to 0.45 wt.%, the grain size
decreased. This is attributed to the SisNs particles
acting as heterogeneous nucleating sites within the
Mg grains and restricting the growth of grains as
observed by Viswanath et al. [25]. This has also
increased vickers microhardness (Fig. 7 (b)) due to
the increased resistance to deformation caused by the
restriction of the dislocation movement by the SizN4
nanoparticles [26] and agrees with the findings of
Mistry et al. [26]. The porosity has also increased
(Fig. 7 (c)) due to the increased number of particles
increasing the viscosity of the melt, which prevents
the air/gas trapped from escaping the melt and results
in increased porosity as observed by Aravindan et al.
[27] which has decreased the actual density (Fig. 7
(c)). The increase in porosity softens the material.
Therefore, as r is increased from 0.23 to 0.45 wt.%,
there are two possible effects:

0] Hardening effect on material characterized by
increase in  microhardness caused by
reduction in grain size.

(i)  Softening effect of material due to increase in

porosity.

Among these two effects, any one can predominate
over the other, which would impact the MRR and Ra.
From Fig. 8 (a) and Fig. 8 (b) respectively, it is
evident that as r is increased from 0.23 to 0.45 wt.%,
MRR decreased and R, also decreased. This is
because the hardening effect has predominantly
influenced the MRR over the softening effect, due to
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which material removal became difficult which
reduced MRR. Since less material was removed by
the tool, the nanoparticles remained intact in the
matrix. This prevented the formation of voids,
fracture of particles, dragging of particles over the
surface etc. thereby reducing the surface roughness,
Ra [21], [28] (Fig. 8 (inset)).
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Feed rate, f
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00
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Cutting speed,
v (m/min)

Depth of cut,
a (mm)

Figure 9. Individual effects of cutting speed, v, feed
rate, f, and depth of cut, a, on MRR

B. Increase of SisN4 (r) from 0.45 to 0.67 wt.%

From Fig. 7 (a), it is evident that as the SisNa
reinforcement wt.% (r) is increased from 0.45 to
0.67 wt.%, the grain size decreased further and
increased the microhardness (Fig. 7 (b)) due to the
increased heterogeneous nucleation and hence
increased deformation resistance. Fig. 7 (c) shows
that as the SisN4 reinforcement wt.% (r) is increased
from 0.45 to 0.67 wt.%, the porosity has decreased
due to the effects of increased wetting between the
nanoparticles and the matrix which predominated the
effects of viscosity, and hence decreased the
porosity, as observed by Tosun et al. [29], thereby
increasing the actual density (Table 1). However, as
r is increased from 0.45 to 0.67 wt.%, MRR and R,
increase (Fig. 8 (a) and Fig. 8 (b)) which means
more material has been removed and surface quality
has decreased. This could be explained as below:

In the range of 0.45 to 0.67 reinforcement wt.%,
the below effects are operating

(i) Hardening effect on material characterized by
increase in microhardness caused by reduction
in grain size.

(i)

Hardening effect of material due to decrease in
porosity.
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(iii) Softening effect caused by increased
dislodging of reinforcement particles from the
matrix.

Any of these three effects could predominantly
influence MRR and R, over the other two. With the
increase in reinforcement wt.% (r) from 0.45 to 0.67
wt.% i.e. the no: of reinforcement particles have
increased, which also increases the probability of
particle dislodging. This results in increased
dislodging of particles, which could soften the
material and increase the voids, particle pullout [28],
particle fracture, dragging of particles over the
surface [21] [28] as shown in Fig. 8 (inset) which
softened the material and increased the ease of
material removal (hence MRR), decreased surface
quality, and hence increase in the surface roughness,
Ra. Similar phenomenon was observed by Sikder et
al. [28] and Anandan et al. [21].

Fig. 9 shows the individual effects of the cutting
speed, v, feed rate, f, and depth of cut, a, on MRR. It
is evident that as v, f, and a are increased, MRR
increases. This is due to the enhanced amount of
material removed in less time in the directions of v,
f, and a. Fig. 10 shows the main (individual) effects
of the cutting speed, v, feed rate, f, and depth of cut,
a, on Ra. As fis increased from 0.04 to 0.16 mm/rev,
Ra increases.

1.004 1.00 4

)
N
o

0.75-

bt
o
)

0.50

Mean of R, (um)

0.25 0.25

005 010 0.15 0.05 0.10
Feed rate, f
(mm/rev)

0.15

Depth of cut, @
(mm)

Figure 10. Individual effects of cutting speed, v,
feed rate, f, and depth of cut, a, on R,

This is due to one or more of these reasons: (i) feed
marks, (ii) surface defects like voids (because of
particle pullout), (iii) cracking of the metal matrix
(due to low ductility), and (iv) hard reinforcement
[21]. As the depth of cut (a) increases from 0.04 mm,
Ra first slightly increases due to the effects of heavy
pressure and abrasion around the cutting edge and
extrusion below the cutting edge which caused the
roughness of the surface to increase, and increases
the Ra. After this initial rise, Ra decreases steeply
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with depth of cut, a because the area of contact
between the work and the cutting edge increases the
components of the forces as observed by Shoba et al.
[30]. This could have caused more cutting resistance,
causing the cutting tool to make fewer
impressions/undulations over the work surface
resulting in lesser Ra.

2. Interactive effects of input factors on MRR
and Ra

Fig. 11 and Fig. 12 show the interactive effects of
input factors on MRR. A, B, C, and D represent the
corners of the response surfaces. The reasoning for
variations in MRR and R,, with changes in the input
factors discussed in the individual effects, are
applicable here too. The reinforcement wt.% is
abbreviated as r, cutting speed as v, feed rate as f, and
depth of cut as a.

Fig. 11 (a) shows the 3D plot of interactive effects
of r and v on the MRR when f and a are held at their
mid-levels. At low v (along AB) and high v (along
DC), MRR decreases, reaches a minimum value, and
then increases with r non-linearly. At low r (along
AD) and high r (along BC), MRR increases with v.
Higher MRR is obtained at lower r and higher v. Fig.
11 (b) shows the 3D plot of interactive effects of r
and f, on the MRR when v, and a are held at their
mid-levels. At a low f (along AB), MRR decreases
and reaches a minimum value, and then it increases
curvilinearly with r. At high f (along DC), MRR
decreases curvilinearly with r. At low r (along AD)
and high r (along BC), MRR increases with f. Higher
MRR is obtained towards lower r and higher f. Fig.
11 (c) shows the 3D plot of interactive effects of r,
and a, on the MRR when f, and v, are held at their
mid-levels. At low a (along AB) and high a (along
DC), MRR decreases first and then increases
curvilinearly with r. At low r (along AD) and high r
(along BC), the MRR increases with a linearly.
Higher MRR is obtained at low r and high and a.

Fig. 12 (a) shows the 3D plot of interactive effects
of fand v on the MRR when r, and a, are held at their
mid-levels. At low f (along AB), MRR shows a very
slight increase when v is increased. At high f (along
DC), MRR increases with v, almost linearly. At low
v (along AD), MRR increases with f. At high v (along
BC), the MRR increases with f. Higher MRR is
obtained at higher v and higher f. Fig. 12 (b) shows
the 3D plot of interactive effects of f, and a, on the
MRR when r, and v, are held at their mid-levels. At
low a (along AB), MRR increases (almost linearly)
with f. At high a (along DC), the MRR increases
more steeply with f. At a low f (along AD), the MRR
increases (almost linearly) with a. At high f (along
BC), the MRR increases more steeply with a. Higher
MRR is obtained towards higher f and higher a. Fig.
12 (c) shows the 3D plot of interactive effects of a,
and v, on the MRR when r and f, are held at their mid-
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levels. At low a (along AB), MRR increases slightly
almost linearly with v.

a=0.1Tmm
f =0.1 mm/rev

Material Removal Rate, MRR (mm>3/min)

Material Removal Rate, MRR (mm?*min)

v=95m/min
f=0.1 mm/rev

2000
1500

Material Removal Rate, MRR (mm?/min)

Figure 11. Interactive effects of (a) vand r (b) f
and r (c) aand r on MRR

At high a (along DC), the MRR increases almost
linearly with v. At low v (along AD), MRR increases
almost linearly with a. At high v (along BC), MRR
increases almost linearly with a. Higher MRR is
achieved with higher a and higher v. Fig. 13 shows
the interactive effects of f and a on Ra. The model for
Ra indicates that only the interaction between the
feed rate (f) and depth of cut (a) is significant. Ra
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increases with f for lower a (along AB) and higher a
(along DC).

r=0.45wt.%
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Figure 12. Interactive effects of (a) v and f (b) f and
a(c)aandvon MRR

At low f, (along AD), as a increases, R first slightly
increases and then decreases. At higher f (along BC),
Ra decreases non-linearly with a. Lower R, is
obtained at lower f and also lower a.
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Multi-objective optimization using Design-Expert
software was done with the input factors (in range),
MRR (Weight: 4 Importance: ++) and R, (Weight: 7
Importance: +++) to maximize MRR and minimize
Ra Fig. 14 shows the optimization ramp. SisN4
nanoparticle addition of 0.44 wt.%, cutting speed of
110 m/min, feed rate of 0.09 mm/rev, and depth of
cut of 0.16 mm were suitable in the sustainable,
economical machining  of  Mg-4Zn/SisN4
nanocomposites with good surface quality.

v= 95 m/min
r=0.45wt.%

Surface Roughness R, (um)

Depth of cut, @ (mm) 007 Feed rate, f

0.04 (mm/rev)

0.04

Figure 13. Interactive effects of f and a on Ra

The optimal MRR is 1446.29 mm?/min and optimal
Rais 0.3351 pm. Confirmation experiments of MRR
and R, at the optimal parameter setting yielded an
error of 9.64 % and 7.01% respectively.

JM

107.85 sl 0.1495 1.1528

MRR=1446.29 mm?/min R,=0.3351 um
0.23 0.67 80 110

Reinforcement 0.44 wt.%

J ®

0.04

Cutting speed=110 m/min

L

0.16

L

0.16

0.04

Feed rate = 0.09 mm/rev Depth of cut = 0.16 mm

Figure 14. Optimization ramps showing the
optimized MRR, R,, and the input process
parameters

IV. CONCLUSIONS

The improvement in microhardness and variation
in porosity levels caused by the SisN4 nanoparticle
additions, and also the dry turning parameters
influenced the material removal rate (MRR) and
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surface roughness (Ra). Regression models for
prediction of MRR and R, were obtained.

The models were studied using ANOVA and
validated statistically and experimentally (with error
less than 10%). This showed that the SisNg4
reinforcement wt.% and machining parameters and
their interactions significantly affected the MRR.
The model for MRR of linear, square, and interaction
terms of the reinforcement wt.%, cutting speed, feed
rate, and depth of cut. Ra was influenced by the feed
rate and depth of cut and their interaction also by the
SisNs reinforcement wt.% (square term) as
confirmed by the regression model. Higher MRR was
obtained at a lower level of SisN. additions and
higher levels of v, f, and a. Lower R; is obtained at
lower feed rates and lower depths of cut (from
interactive plots).

Multi-objective optimization of MRR and Ra
revealed that for obtaining a higher material removal
rate and good surface quality, medium reinforcement
(0.44 wt.%), higher cutting speed (110 m/min),
medium feed rate (0.09 mm/rev), and higher depth
of cut (0.16) are preferred to obtain a material
removal rate of 1446.29 mm?*min and surface
roughness R, 0f 0.3351 um.
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