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Abstract:  This research presents a novel multi criteria decision making (MCDM) approach for optimizing
material selection in the design of a robotic prosthetic palm, a critical component in assistive and
rehabilitation technologies. The research addresses the urgent need for a systematic approach to
improve material efficiency and design precision in affordable prosthetic solutions. This study uses
LOPCOW to find weights and applies COBRA and EDAS methods to thoroughly evaluate and select
the best 3D printing material based on their mechanical, physical, and economic properties. Key
parameters such as tensile strength, elastic modulus, Poisson’s ratio, von misses stress, mass density,
displacement, equivalent strain, and cost were considered in the analysis. Among the 11 material
evaluated, Acrylic (MT-3) emerged as the most efficient alternative, followed by PET (MT-8) and
PA Type 6(MT-5). The use of Copeland voting rule, spearman correlation (0.9364) and sensitivity
analysis validated the consistency and reliability of the integrated MCDM process. This methodology
not only ensures optimal material selection for enhanced prosthetic performance but also
demonstrates practical potential in manufacturing application in in biomedical engineering.
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annually [1]. According to grand view research,

. INTRODUCTION global prosthetic market value is projected to grow
The development of robotic prosthetic hands has in future which was valued at USD 1.4 billion in
revolutionized assistive technology, significantly 2022. Technological advancement such Al, 3D
improving the quality of life for individuals with printing, and biosensor will lead to more
upper limb amputation_ These devices are designed SOphIStlcated and I|fe||!(e pI’OSthetIC hand Wth.h will
to mimic the natural movement and functionality of enhance the dexterity and user experience.
a human hand, allowing users to perform daily tasks Additionally, weight consideration plays a crucial
with greater ease and efficiency, by integrating rolg in prosthetlc_de5|gn, as the average human hand
sensors, actuators, and artificial intelligence (Al), weighs —approximately 400 grams for men,
modern prosthetic hands offer enhanced dexterity, accounting for about 0.65% of total body weight [2].
grip strength, and adaptability to different Designing _prosthetlc han_ds that closely mimic this
surroundings. natural weight is essential for user comfort. The
) ) . above data demonstrate the growing importance and
~ According to Chain et al, over 2.1 million influence of robotic prosthetic hands in enhancing
individuals in the USA are living with limb loss, with the lives of people with upper limb loss.

approximately 185,000 amputations occurring
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The development of a robotic prosthetic hand
should be based on the material selection that would
give an optimal combination of strength, softness,
weight, and cost. Metals, composites, and plastics
have been the materials considered in this approach
to prosthetics. While aluminum and titanium will
provide good strength and sharpness, they tend to be
heavy and expensive; hence not so suitable for such
an application where the prosthetic would need to be
used over a long period. Composites would provide
a fine balance between weight and strength but the
complexity of their manufacturing limits their use
within an economic range. However, the use of
plastics has been widely popular because they are
light in weight, easy to fabricate with, and cheap. For
this study, plastic materials are chosen as the primary
material for the robotic prosthetic palm due to their
compatibility with 3D printing technology.

Since 3D printing is perfect for rapid prototyping
as well as low-cost production, the prosthetic palm
could be tailored for the individual user. 3D printing
requires a more intricate design less material than
standard fabrication, so it’s a more efficient,
sustainable choice to do 3D printing. Additionally,
plastics allow for adjustments to mechanical
properties such as strength, flexibility, and
biocompatibility to meet specific application
requirements. To allow for the best selection of
plastic material, a series of plastic materials are
evaluated based on key mechanical and physical
properties, through the application of SolidWorks
CAD Modeling and Simulation tools. The selection
will be based on key mechanical and physical
properties that will have the most impact on
performance of the prosthetic palm.

Due to the variation of mechanical properties and
economic characteristics across different plastic
materials used in 3D printing, selecting the most
appropriate material for a robotic prosthetic palm
becomes a complex decision-making problem.
Attributes such as tensile strength, elastic modulus,
Poisson’s Ratio, max von mises stress, mass density,
resultant displacement, equivalent strain, and cost
often conflict with one another, making manual
selection unreliable and subjective. Therefore, a
logical and systematic approach is essential to ensure
an optimal balance between performance and cost.
MCDM models are highly suitable for this purpose,
as they enable the evaluation of alternatives against
multiple, conflicting criteria in a structured and
transparent manner. By applying MCDM
techniques, this study ensures a more objective, data-
driven, and reproducible material selection process,
which is critical for the efficiency, reliability, and
real-world application of 3D-printed robotic
prosthetics. In this study, LOPCOW (Logarithmic
Percentage Change-driven Objective Weighting)
identifies how strongly each type of criterion factors
into the final selection of a robotic prosthetic palm,

while COBRA (Comprehensive Distance Based
Ranking) and EDAS (Evaluation based on Distance
from Average Solution) rank and identify the best
alternative  material/materials.  Through  the
application of all of the proposed MCDM techniques
above, this project can identify a high-performance,
low-cost, low-mass robotic prosthetic palm using
data-driven material selection in an efficient manner.
The proposed framework created offers the
possibility —of improving higher-functioning
prosthetic design overall, while improving the
durability and experience of the user while using
robotic prosthetic hands. Overall, the systematic
approach taken can offer insight into enhancing
prosthetic design and ultimately improving assistive
technology and therapeutic approaches.

Il. LITERATURE REVIEW

The development of materials for prosthetic limbs
is critical to strategically mitigate the balance of
performance, durability, comfort, and cost. There are
so many materials available, and there is not a
straightforward way to select and determine the right
one that takes into account several criteria. The
combination of researchers applying various
materials with innovative approaches to improve
prosthetic limbs moves them past traditional
methods to include advances from the fields of
biomechanics, neuroscience, and robotics.

The use of MCDM techniques enables the
selection of decisions that is based on opposing
criteria.  Unlike single-objective optimization,
MCDM lets one assess trade-offs between several
criteria affecting a decision, hence producing a more
realistic and thorough evaluation [3]. Particularly
helpful in engineering, management, and social
sciences where intrinsic conflicts between goals
prevent the simultaneous optimization of decision
variables, these techniques are most effective.

MCDM approaches are used in several different
disciplines. Based on mechanical and financial
factors, MCDM helps in engineering design to
choose appropriate materials, components, or
systems [4]. It helps assess treatment alternatives,
plan hospital locations, and choose medical
equipment in the healthcare industry. Environmental
applications span selecting waste treatment
technologies and  evaluating  sustainability
indicators. MCDM is applied in supply chain and
logistics to manage inventory, optimize routes, and
choose vendors [5]. Its part has lately become vital
in robotics, especially in component choice and path
planning for smart systems such robotic prosthetic
devices.

In MCDM, objective weighting techniques are
essential as they lower biases connected to
subjective methods and improve openness [6]. These
methods use mathematical or statistical correlations



I. Dhar et al. — Acta Technica Jaurinensis, Vol. XX, No. Y, pp. ZZ-ZZ, 2026

inherent in the data to assign criteria weights.
Different approaches for calculating these weights
include Entropy, CRITIC, MEREC, LOPCOW and
other objective approaches [7].

LOPCOW stands out among objective weighting
methods due to its focus on logarithmic percentage
changes, making it more responsive to meaningful
deviations in data. Unlike the Entropy method,
which assumes independence among criteria and is
sensitive to normalization, LOPCOW offers a more
balanced and assumption-free weighting approach
[8]. Compared to CRITIC, which is best suited for
strongly correlated criteria, LOPCOW remains
effective even when such correlations are absent.
While WENSLO excels in normalization, it lacks
LOPCOW'’s fine sensitivity to percentage-based
variations. MEREC evaluates the impact of
removing criteria but does not emphasize
proportional shifts like LOPCOW [9]. Therefore,
LOPCOW is better suited for complex decision-
making scenarios involving diverse criteria, such as
material selection or system evaluation, where subtle
data variability is crucial. Because it can objectively
record intrinsic data volatility via logarithmic
percentage changes, the LOPCOW technique is
preferred for its great sensitivity to significant
differences among several standards [10, 11]. When
expert assistance is restricted, it is perfect since it
lowers subjectivity in weight calculations. Being
combined with ARAS and SAW methods for
material handling, cobot selection, and vendor
analysis, LOPCOW has shown adaptability to boost
performance  evaluations in  Industry 4.0,
manufacturing, and sustainable systems.

In MCDM, assessing and rating choices helps one
to pick the best solution depending on performance
against several criteria. VIKOR, MARCOS,
MABAC, MAIRCA, EDAS, and COBRA offer
organized frameworks for comparing different types
of ranking techniques [12, 13]. Different decision-
making situations call for different methods based on
data qualities and problem complexity because each
has different theoretical underpinnings and
operational processes. To tackle difficult decision-
making processes, such as selecting 3D printing
materials for prosthetic designs, two complementary
MCDM approaches can be used: EDAS and
COBRA. COBRA combines rankings from several
MCDM methods, hence reducing the impact of
individual method bias and producing a consistent
agreement ranking [14, 15]. This is especially
helpful in prosthetic uses where several opposing
performance demands including mechanical
strength, cost, and biocompatibility must be
assessed. Combining several approaches, COBRA
guarantees that no one model controls the decision-
making process, so producing a fairer and
trustworthy result. In contrast of concentrating only
on ideal or worst-case situations, EDAS evaluates

options by their variance from the mean solution.
This is especially appropriate in engineering fields
where trade-offs are bound to occur. Simplicity and
interpretability are also qualities of EDAS that
enable decision-makers to clearly comprehend the
assessment process [16]. EDAS provides more
transparency in results and is less computationally
demanding than techniques like VIKOR, MAIRCA,
or MARCOS. Combined, COBRA and EDAS offer
a strong and understandable decision-making
approach suitable for material selection in prosthetic
manufacture. This combined strategy improves
evaluation accuracy and stays useful for real-world
engineering projects.

Regarding prosthetics, Controzzi et al. reached the
conclusion that interdisciplinary advancement might
enable duplication of the human hand. Ultimately
adding to a better user experience and prosthetic
performance, better materials together with
improved sensitivity, control, and durability also
contribute to a more elevated user experience. They
did not offer a methodical technique for choosing
materials meeting such interdisciplinary demands
[17]. Introducing a bio-mechatronic technique, Zollo
et al. expanded on integrating several disciplines of
mechanical engineering, control systems, and
material choice but lacked quantitative tools to
systematically compare alternative materials. Their
study showed how light and adaptive structures can
improve the quality of human hand movement that
finally results in a more effective prosthetic [18].
Coinciding with this concept, Saikia et al. researched
the biomimetic of robotics concerning prosthetic
devices. They argued that optimized materials would
enhance dexterity, sensory-motor representation,
control, and allow amputees to engage in daily living
at a higher degree, hence enhancing overall quality
of life, yet the material selection standards remained
qualitative and application-specific [19]. Tan et al.
investigated hybrid nano-materials in addition to this
information to demonstrate uses in bone, skin, and
neurological optimization. Though they failed to
address tradeoffs across several performance
measures including durability, cost, and sensitivity
[20], they explained how carbon-based, metallic and
composite nano-materials can provide better bio-
sensing possibilities. Rohila et al. conducted a
similar investigation using ANSYS for prosthetic
hand material testing concerning material testing and
evaluation [21]. Rohila et al.'s findings suggested
that Nylon 6 is a potential candidate for a prototype
material, showing the most favorable trade-off
between weight, cost, and strength. Conventional
methods often fall short in capturing the full
complexity of the material selection process. The
application of MCDM in material selection in
different application is summarized in the Table 1
and Table 2.
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Table 1. Material selection using MCDM Method 1

Sl Author Obijective Parameter MCDM Finding
No. Methods
1 Tayyip Optimize 12 assessment PROMETHEE Ti-6Al-7Nb, Ti-6Al-
Kogak material parameters, including GAIA 4V, and Co-Cr-W are
etal. [22] selection for density, tensile optimal prosthetic
prosthetic strength, and ultimate femur materials.
femurs. tensile strength and
more.
2 Sultana To optimize This study used Taguchi- PLA with 2D
etal. [23] 3D printing parameter like infill CRITIC-EDAS  honeycomb, 0.10 mm
parameters pattern, layer layer, 50% infill
affecting PLA thickness, infill showed optimal
and ABS. percentage, and tensile performance.
materials.
3 Shahab To select Biocompatibility- SWARA Chitosan-HA
etal. [24] optimal bone based properties of COPRAS composite ranked
scaffold polymer and ceramic best; natural polymers
materials using composites were outperformed
hybrid MCDM. used. synthetics.
4 Sahoo and Optimize 7 assessment CRITIC, EDAS,  Gray castiron is the
Choudhury material parameters, including COPRAS optimal choice for a
[25] selection for a cost, mass density, low-cost wheelchair
low-cost robotic  tensile strength, and chassis.
wheelchair. von mises stress and
more.
5 Mangera To determine Material density, ELECTRE I Aluminium 7175 is
etal. [26] the optimal light structural strength, the optimal material
metal for a and material cost for a paediatric
paediatric were evaluated. prosthetic knee.
prosthetic knee.
6 Abas To select the Seven different WISP, PLA is the best
etal. [27] optimal material materials were MARCOS, and material for SAFOs,
for SAFOs evaluated based on TOPSIS, with  with AHP-MARCOS.
using FDM. eleven criteria. AHP for
weighting.
7 Bahramina To select the Material alternatives, VIKOR Porous NiTi alloy is
and Jahan  optimal material aseptic loosening the best material for
[28] for the femoral resistance, TKR femoral
component of mechanical components
TKR. properties,
biocompatibility, and
durability.
8 Kirisei To develop and Expert opinions, Fermatean fuzzy Fermatean fuzzy
etal. [29] apply the decision matrix, ELECTRE I. ELECTRE I
Fermatean fuzzy concordance, effectively selects
ELECTRE | discordance, optimal biomaterials
method for aggregation, ranking. for hip joint
biomaterial prostheses.
selection in
prosthetics
9 Bouraima Determine Human resources, AROMAN This study identified
et al. [30] sustainable structure, financing, ICT investment and
healthcare leadership, human resource
devolution infrastructure, development as top
strategies for politics, ICT, priority strategies.
Kisumu County pharmaceutical
availability.
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Table 2. Material selection using MCDM Method 2

10 Daniyan To select the Strength-to-weight
etal. [31] optimal material ratio,
and assembly crashworthiness,
method for mechanical
railcar body properties,
shells using formability, and cost-
AHP analysis. effectiveness.
11 Kagizman To select the Economic feasibility,
et al. [32] best manufacturability,
thermoplastic sustainability,
material for structural features,
CPR device cost, durability,
chassis using strength, weight,
MCDM method flexibility, and safety.
12 Kumarand  Assess and rank Biocompatibility,
Rajak [33] metallic bio- corrosion resistance,
implant strength, density,
materials using fatigue resistance,
hybrid MCDM wear resistance,
for optimal elastic modulus,
patient osseointegration,
outcomes feasibility, and cost-
effectiveness are key
bio-implant material
parameters.
13 Ansaripour Evaluate and Young’s modulus,
et al. [34] rank six density, tensile
biomaterials for  strength, cost, wear
spinal TDR rate, corrosion
using MCDM resistance,
methods. conductivity,
toughness, strength.
14 Du Develop Biocompatibility,
etal. [35] biocompatible  porosity, compression
Ti-Zr-Si BMG strength, Young's
for bio-implants modulus, density,
using corrosion resistance,
mechanical hardness, wear
alloying and resistance,
SPS. manufacturability,
cost-effectiveness.
15 Rouhani To assess People, Management,
Tazangi [36] hospital e- Environment,
procurement Technology, Process
readiness

Analytical AHP identified
Hierarchy optimal railcar
Process materials and
assembly methods for
performance and
efficiency
Intuitionistic PC/ABS FR is the
Fuzzy (IF) best material for the
TOPSIS, IF CPR device chassis
VIKOR, and IF
CODAS.
SWARA AND  Titanium-based alloys
WASPAS are the best choice for
bio-implant
applications
Fuzzy AHP, ZTA and Ti-6Al-4V
TOPSIS, Fuzzy-  identified as optimal
VIKOR, and spinal disc materials
Fuzzy-
MOORA.
AHP Biocompatible Ti-Zr-
Si BMG shows ideal
strength and modulus
for bio-implants
GRA Management support

and technological
infrastructure are key
drivers of e-
procurement
readiness.

1. Research Gap of the Study

Despite the growing interest in robotic prosthetics,
there remain several key research gaps in material ii.
selection methodologies for 3D-printed prosthetic
palms:

i. Lack of a systematic decision-making
framework. Existing studies do not provide a
structured approach to evaluating plastic

materials specifically for
applications.

prosthetic palm

Limited exploration of advanced MCDM
techniques — While AHP, TOPSIS, and
VIKOR are commonly used in material
selection, they have limitations in handling
complex trade-offs between different criteria.
There is little research integrating LOPCOW,
COBRA, and EDAS for optimized material
selection in prosthetic designs.
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iii. Insufficient focus on 3D-printed plastic
materials — Most studies focus on metals and
composite materials, neglecting the potential of
plastic-based prosthetic palms, which offer
lightweight, cost-effective, and customizable
solutions. The role of 3D printing in prosthetic
development has not been extensively explored
in conjunction with advanced MCDM
techniques.

2. Novelty of the Study

The development of robotic prosthetic palms has
significantly advanced with improvements in sensor
integration, artificial intelligence, and additive
manufacturing techniques. However, selecting an
optimal material remains a crucial challenge,
impacting factors such as durability, flexibility,
lightweight properties, and cost-effectiveness. While
numerous studies have explored material selection
using traditional methods, this research introduces a
decision-making approach by integrating LOPCOW,
COBRA, and EDAS to systematically identify the
most suitable plastic material for 3D-printed
prosthetic palms.

Moreover, this research utilizes finite element
analysis (or FEA) in SolidWorks, which allows for a
more data-driven, performance based assessment of
different plastic materials. FEA considers the key
mechanical properties of tension strength, elastic
modulus, Poisson's ratio, shear modulus, von Mises
stress, mass density, resultant displacement,
equivalent strain and cost to ensure the chosen
material is viable as an economically structurally
sound prosthetic palm.

3. Key Parameters for Material Selection in
Avrtificial Robotic Prosthetic limb

Selecting an optimal material for an artificial robotic
prosthetic palm requires a careful evaluation of
several mechanical, physical, and economic
parameters to ensure durability, flexibility, and cost-
effectiveness. The following key parameters play a
crucial role in determining the most suitable plastic
material for a 3D-printed prosthetic palm:

i. Tensile Strength (TS) — The ability of a
material to sustain pulling forces until failure.
The higher the tensile strength of the prosthetic
palm, the longer the prosthetic palm would
retain its structural integrity after everyday
tasks [37].

ii. Elastic Modulus (EM) — The amount of
stiffness of the material and the ability to return
to its original shape after being deformed.
Appropriate elastic modulus of the material
allows the prosthetic palm to show flexibility
and rigidity in certain applications [38].

iii. Poisson's Ratio (PR) — How much a material
distorts in a direction plane perpendicular to the
direction of the stress. A balance of Poisson's
ratio allows the selected material to optimally
distribute stress without excess distortion [39].

iv. Von Mises Stress (VON) — Evaluates the
maximum stress a material can withstand
before failure. This property illustrates how
well the material can take large forces and loads
in the real world without experiencing
structural failure [40].

v. Mass Density (MD) — Considering the mass
density is also important to the overall weight
of the prosthetic palm. As user comfort is a
major concern, appropriate mass density of the
plastic material is needed to closely represent
the weight of a human hand while allowing
realistic movement [41].

vi.  Resultant Displacement (RD) — This measures
the maximum deformation of the material
when subject to a load. A low resultant
displacement indicates that the material returns
to its shape under load and will hold up over the
long term [42].

vii.  Equivalent Strain (ES) — This indicates where
the strain is found in the material. Helping to
show where the areas of deformation typically
happen. We do not like to think of deformation
when optimising design, but it is good to know
where the weakest areas are, so that we can
improve them [43].

viii.  Cost (CO) — This helps ascertain if the material

can be used economically to manufacture in
large volumes. We want to achieve a
compromise between performance, and cost to
make the prosthetic palm affordable to the user
without compromising quality [44].

This work have used SolidWorks CAD modeling
and simulation software to optimize the above
parameters to apply MCDM for selection of Plastic
material that to be used for optimal design of Robotic
Prosthetic Palm.

4. Obijective of this study

The objective of this research is to improve the
material selection process for a plastic based robotic
prosthetic palm by combining LOPCOW, COBRA
and EDAS MCDM approaches.

The study aims to achieve the following specific
objectives:

i. To identify and evaluate suitable materials
(plastics) for the fabrication of a robotic
prosthetic palm, considering their mechanical,
physical, and economic properties.
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To utilize SolidWorks CAD modeling and
simulation to analyze key material properties

To implement LOPCOW for determining the
relative importance of different material
selection criteria in an objective manner.

To apply COBRA and EDAS to rank and select
the best plastic material based on its overall
performance across multiple criteria.

To perform a sensitivity analysis on the result
derive from applied MCDM methods.

To provide insights for future research and
practical applications in prosthetic
development  and material selection
methodologies, contributing to advancements
in  assistive robotics and  biomedical
engineering.

By achieving these objectives, the study aims to
enhance the efficiency, affordability, and
functionality of robotic prosthetic palms, ultimately
improving the quality of life for individuals with
upper limb amputations.

111. Methodology

The methodology adopted in this study follows a
systematic approach to optimize the material
selection process for a plastic-based robotic
prosthetic palm as shown in Fig. 1.

The process includes criteria assessment through
structural analysis, objective weighting using
LOPCOW, and alternative ranking using COBRA
and EDAS. Finally, Copeland’s rule is employed to
determine the ultimate ranking, and sensitivity
analysis is performed to validate the results.

Proposed Study

Designing the initial Decision Matrix

e Discussion with Project Members
® Past Literature Analysis

® CAD Model Design ‘

e Static Analysis in SolidWorks Simulation

® Acquiring data SolidWorks Database

® Finding Cost Value from internet for
each Criteria

Selected Criteria
. Tensile Strength (TS) (Benefit Criteria)
. Elastic Modulus (EM) (Benefit Criteria)
. Poisson's Ratio (PR) (Benefit Criteria)
. Von Mises Stress (VON) (Benefit Criteria)
. Mass Density (MD) (Cost Criteria)
. Resultant Displacement (RD) (Cost Criteria)
. Equivalent Strain (ES) (Cost Criteria)
. Cost (CO) (Cost Criteria)

0 N O B W N

Establishing Alternative

MT-1, MT-2, MT-3, MT-4, MT-5, MT-6, MT-7, MT-8, MT-S,
Plastic Material MT-10, MT-11

Alternative Plastic Material

Criteria Weight Calculation F‘ 'LOPCOW
METHOD

1. COBRA
Ranking

2. EDAS Method

Comparison Analysis

Ranking Sensitivity

Figure 1. Framework of the presented Study
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1. Criteria Assessment through Structural
Analysis

Structural analysis is a crucial step in prototype
design, as it ensures the safety, stability, and
performance of the structure under expected loads
and conditions [45, 46, 47]. To ensure an optimal
prosthetic palm design, this study began by
analyzing the natural human palm's dimensions,
which were measured and documented as shown in
Fig. 2 (A, B and C). These measurements served as
the foundation for constructing a precise 3D CAD
model in SolidWorks. The model was designed to
closely replicate the natural structure and functional
aspects of a human palm, allowing for an accurate
structural analysis of different plastic materials.

From the SolidWorks material database, an initial
selection of 16 plastic materials was considered for
evaluation. However, five materials were excluded
due to their unsuitability for 3D printing. These
included Epoxy, Delrin 2700, PEEK, Plasticized
PVC 0.007, and Nylon 610, as they either required
specialized printing conditions, exhibited excessive
flexibility, or were primarily used for coatings rather
than structural applications.

After filtering out these materials, 11 plastic
materials were shortlisted for further analysis,
including ABS PC (MT-1), ABS (MT-2), Acrylic
(MT-3), Nylon 101 (MT-4), PA Type 6 (MT-5), PC
High Viscosity (MT-6), PE High Density (MT-7),
PET (MT-8), POM Acetal Copolymer (MT-9), PP
Copolymer (MT-10), and PVC Rigid (MT-11).

For each selected material, a static analysis was
performed using the SolidWorks simulation module,
applying a 10 Newton force to the CAD model to

Figure-A

assess the mechanical response as shown in Table 3.
The analysis focused on key parameters essential for
material selection, including Max von Mises Stress,
Resultant Displacement (MAX), and Equivalent
Strain. These parameters provided insights into the
structural integrity, and deformation characteristics
of each material, ensuring that the prosthetic palm
could withstand real-world forces while maintaining
flexibility and durability.

The results from the static analysis for all 11
materials were systematically recorded in Table 4,
allowing for comparative evaluation. This data
serves as the foundation for MCDM process, where
LOPCOW, COBRA, and EDAS methods will be
employed to determine the most suitable material for
the prosthetic palm.

2. Logarithmic Percentage Change-driven
Objective Weighting (LOPCOW)

In order to solve MCDM problems, criteria
weighting is essential. The ultimate ranking and
decision results are directly impacted by the
methodology employed to assess each criterion's
significance [48]. Due to its significance, different
aspects of weighing methods have been studied in
depth by several contributory researchers [49, 50].
The objective weighting method in question within
this study is LOPCOW method developed at first in
article by Ecer and Pamucar [51]. The LOPCOW
method has some advantages, as the setting of the
negative values in the initial decision matrix is often
problematic in the practical applications [52].
Furthermore, this method applies log operations in
order to mitigate the effect of extremes in datasets
[53].

Finger 1 2 3 Base | Baseto
Dimensions | (mm) [ (mm) | (mm) | (mm) PW-4
THUMB (T) 34 36 - 45

INDEX (1) 25 25 25 23 16,5
MIDDLE (M) 26 28 30 21 18
RING (R) 26 26 26 21 15
LITTLE (L) 24 20 20 21 9
Figure-B
Palm Dimensions In mm
Palm Width (PW)-1 65
Palm Width (PW)-2 93
Palm Width (PW)-3 95
Palm Width (PW)-4 90
Palm Left (PL)-21 20
Palm Left (PL)-32 38
Palm Left (PL)-34 37
Palm Right (PR)-43 30
Palm Base Thumb 40
Base (PBTB)
Palm Height (PH) 95

Figure-C

Figure 2. Dimension of different parts of hand
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Table 3. SOLIDWORK Simulation of three sample materials

Material Von Mises Stress Resultant Displacement Equivalent Strain
Acrylic
(MT-3)
PET
(MT-8)
Nylon 101
(MT-4)
%
Table 4. Criteria assessment for presented study
Material TS in 107 EM in 10° PR VON in 10* MD in RDin10* ESin COin$
N/m? N/m? N/m? kg/m? mm 10°  per KG
MT-1 4,00 241 0.39 4.48 1070 4,75 1.54 25
MT-2 3.00 2.00 0.39 4.48 1020 5.74 1.87 45
MT-3 7.30 3.00 0.35 4.45 1200 3.70 1.20 35
MT-4 7.93 1.00 0.30 4.4 1150 10.70 3.45 5.5
MT-5 9.00 2.62 0.34 4.44 1120 4.20 1.36 5.0
MT-6 6.27 2.32 0.39 4.48 1190 4.94 1.60 6.0
MT-7 2.21 1.07 0.41 4.49 952 10.9 3.53 2.0
MT-8 5.73 2.96 0.37 4.46 1420 3.81 1.24 25
MT-9 7.15 2.6 0.39 4.48 1390 4.39 1.43 9.0
MT-10 2.76 0.89 0.41 4.49 890 13.00 4.21 25
MT-11 4,07 241 0.38 4.47 1300 4,72 1.53 2.0
It also differentiates between cost and benefit LiiLip .. Ly
criteria taking into account differences in the scales L Ly1Lyy . Loy (1)

of the measurements via percent calculations of the
data’s mean square and standard deviation. Another
significant strength is that LOPCOW is efficient in
analysing large datasets [54]. To calculate the
importance weight of each criterion, LOPCOW
follows these steps.

Step 1: Construct the Initial Decision Matrix

The methodology starts from an original decision
matrix (L), which is given in the following form:

LiiLmz o L
Step 2: Normalize the Decision Matrix

The objective data is normalized to a non-
dimensional interval [0, 1] in order that the different
criteria are equivalent according to Eq. (2 and 3). The
normalization is also differently applied according to
the type of criterion chosen (cost or benefit):

e For beneficial criteria, normalization is

performed using:
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Lij = Linin 2)

n;; =
J
Lmax - Lmin

e For cost-based criteria, normalization is
performed using:

Linax — Lij (3)

J
Lmax - Lmin

Step 3: Compute the Percentage Value (PV)

The PV for each criterion, indicating its
significance, is determined. The method requires
the set of Normalized values (n;), Standard
deviation (o) of the criterion and Number of
alternatives (m). The PV is calculated with Equation
4.

m 2

i=1"4j
PV;; = |In| Y— | x 100 (4)
mo

Step 4: Determine the Criteria Weights

In the final step, the weight (w;) of each criterion
is calculated by normalizing the PV values using
Equation 5.

Py (5)
Wi = A
=1 13

This method guarantees that the more significant
criteria are weighted more heavily, which makes for
a fairer and more realistic evaluation process.

3. Comprehensive Distance Based Ranking
(COBRA)

Since its introduction by Krsti¢ et al. [55], the
COBRA method has been fairly recent, and its full
potential has not yet been fully realized. It has only
been mentioned in a small number of research
articles thus far, most of which concentrate on its use
in supply chain management practices [56, 57]. A
series of steps can be used to methodically describe
the COBRA method's computational procedure.

Step 1: Construct the Decision Matrix

The procedure outlined in section 3.2 (step-1) is
followed in this stage.

Step 2: Normalize the Decision Matrix

To standardize the values, the decision matrix (L)
is transformed into a normalized decision matrix
using Equation 6. This ensures that all criteria are
scaled proportionally within a common range.

_ Ly (6)
max;L

nli]-
ij

Step 3: Compute the Weighted Normalized
Decision Matrix

The normalized values (nl;;) are weighted
according to the relative importance w; of each
criterion, forming the weighted normalized matrix
(wnl;;) using Equation 7.

Wnll-j = [W] X nlij]nxm (7)

Step 4: Identify Key Solutions (Ideal, Negative,
and Average Solutions)

For each criterion, determine three key reference
points:

e  Positive Ideal Solution (PIS):
PIS; = max; (Wj X nlij) For benefitcri.  (8)
PIS; = min;(w; x nl;;) For costcri. ©)
e Negative Ideal Solution (NIS):
NIS; = mini(wj X nll.].) For benefit cri.  (10)

NIS; = maxi(w,- X nll.].) For cost cri. (11)
e  Average Solution (AS):
A, = i (w x nly;) (12)
J
n

Step 5: Calculate Distances from Key Solutions

For each alternative, compute the distances from
PIS, NIS, and AS using the Equation 13 and 14.

e Generalized Distance Formula:
d(S;) = dE(S;) + {o x dE(S;) x dT(S;)} (13)
o= maxidE(Sj)i - minidE(S]-)i (14)
Where, the correction coefficient is denoted by o

and distance solution d(S;) using Euclidean dE(S;)
and Taxicab distance dT (S;).

e Euclidean distance calculation from PIS,
NIS, and positive distance from the average
solution (AS]-);r , negative distance from the
average solution(AS;). , adjustment factors
(z*) and (z ) using Equation 15 to 20.

- (15)
dE(PIS;), = Z(Plsj —w; xnly)’
=1
- (16)
dE(NIS;), = Z(lej —w; x nl;;)°
j=1
m (7)
j=1
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" (18)
j=1
(20)

<
|
I

e Taxicab distance calculation from PIS,
NIS, and positive distance from the average

sqution(AS]-): , negative distance from the
average sqution(ASj)i_ using Equation 15

to 20.
m
dr(PIS;), = Z|P15,- —w; X nlyj| 21)
j=1
m
dT(NIS;), = Z|N15,- — w; X nlj| 22)
j=1
m
dr(As)’ = Z TAs —w Xl
j=1
m
j=1

Step 6: Compute the Final Ranking

The comprehensive distance (dC;) for each
alternative is obtained using Equation 25. Finally,
the alternatives are ranked in ascending order of
(dC;), with the lowest value representing the best
alternative.

. d(P1s)), — d(NIs;), - d(AS))| +d(4s).  (25)

t 4

4. Evaluation based on Distance from Average
Solution (EDAS)

EDAS is a successful MCDM method for solving
complex decision-making problems in the presence
of many attributes [58]. This delineation considers
alternatives by assessing their separation from an
average solution in a multi-dimensional parameter
space. The EDAS takes into account both Positive
Distance from Average (PDA) and Negative
Distance from Average (NDA) in order to generate
a proper ranking of alternatives. The EDAS
algorithmic steps are as follows:

Step 1: Construct the Decision Matrix

The process as presented (LOPCOW step-1) is
employed in this step.

10

Step 2: Compute the Average Value of Each
Criterion

Second step is to estimate the average score for
each criteria using Eq. (26).

(26)

Where, AVG; is the mean value of the criterion for
all alternatives.

Step 3: Determine PDA and NDA for Each
Alternative

Depending on whether the criterion is a benefit or
acost, PDA and NDA values are calculated using the
following equations:

e For a Benefit Criterion:

max (0, (Lyj — AVG;))

AVG; )
max (0, (AVG; - Ly;) )
NDA;; = AVG, (28)
e For a Cost Criterion:
max (0, (AVG; - Ly;))
DA = AVG, (29)
max (0, (Lyj — AVG;))
NDA; = AVG (30)

Step 4: Compute the Weighted Sum of PDA and
NDA

For each alternative, the weighted sum of PDA and
NDA is determined using equation 31 and 32:

n
j=1

n
j=1

(32)

Where, w; is the weight assigned to the j,
criterion.

Step 5: Normalize PDA and NDA Scores

The normalization of PDA and NDA values for
each alternative is performed using equation 33 and
34:

WSP; (33)
NWSP; = ——
' max;(WSP;)
WSN; (34)
NWSN; =1 — ———
' max;(WSN;)

Step 6: Compute the Final Appraisal Score
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The overall evaluation score (FAS;) for each
alternative is calculated using:

1 35
FAS; = 5 (NWSP, + NWSN,) (35)

Where, FSA;values range between 0 to 1.
Step 7: Rank the Alternatives

Finally, all alternatives are ranked in descending
order based on their appraisal scores (FAS;). The
alternative with the highest FAS; is considered the
best choice.

IV. Result and Analysis

This section includes illustrative case studies that
validate and  demonstrate  the  practical
implementation of the proposed study.

1. Application of the LOPCOW Method

The LOPCOW method is applied in the first phase
of the decision-making process to determine the

weight of criteria for the selected materials. Initially,
the normalized decision matrix is constructed using
Equation 2 and 3 as shown in Table 5. Then, the
comprehensive weights derived percentage value.
The LOPCOW method calculates the percentage
value of each criteria using standard deviation using
Equation 3 and 4 as shown in Table 6 This
systematic approach ensures different criteria weight
for prosthetic palm.

In optimizing the robotic prosthetic palm design
using LOPCOW, the most significant criteria are
Resultant Displacement (0.1417), Equivalent Strain
(0.1416), and Max von Mises Stress (0.1400),
indicating that mechanical performance is crucial.
Poisson's Ratio (0.1307) and Elastic Modulus
(0.1191) also contribute notably. Cost (0.1364) and
mass Density (0.0967) are moderately important,
balancing efficiency and material use. Tensile
Strength (0.0938) has the least impact.

Table 5. Normalization of the Decision-Matrix

Material TS EM PR VON MD RD ES CO
MT-1 0.2636 0.7204 0.8132 0.8889 0.6604 0.8871 0.8870 0.9286
MT-2 0.1163 0.5261 0.8522 0.8889 0.7547 0.7806 0.7774 0.6429
MT-3 0.7496 1.0000 0.4533 0.5556 0.4151 1.0000 1.0000 0.7857
MT-4 0.8424 0.0521 0.0000 0.0000 0.5094 0.2473 0.2525 0.5000
MT-5 1.0000 0.8199 0.3626 0.4444 0.5660 0.9462 0.9468 0.5714
MT-6 0.5979 0.6777 0.8268 0.8889 0.4340 0.8667 0.8671 0.4286
MT-7 0.0000 0.0853 0.9982 1.0000 0.8830 0.2258 0.2259 1.0000
MT-8 0.5184 0.9810 0.6346 0.6667 0.0000 0.9882 0.9867 0.9286
MT-9 0.7275 0.8104 0.7788 0.8889 0.0566 0.9258 0.9236 0.0000
MT-10 0.0810 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.9286
MT-11 0.2739 0.7204 0.7480 0.7778 0.2264 0.8903 0.8904 1.0000

Table 6. Percentage Value and weights of selected criteria

Material TS EM PR VON MD RD ES CO
MT-1 0.0695 0.5189 0.6614 0.7901 0.4361 0.7869 0.7868 0.8622
MT-2 0.0135 0.2767 0.7263 0.7901 0.5696 0.6094 0.6044 0.4133
MT-3 0.5619 1.0000 0.2055 0.3086 0.1723 1.0000 1.0000 0.6173
MT-4 0.7097 0.0027 0.0000 0.0000 0.2595 0.0612 0.0638 0.2500
MT-5 1.0000 0.6722 0.1315 0.1975 0.3204 0.8954 0.8965 0.3265
MT-6 0.3575 0.4593 0.6837 0.7901 0.1883 0.7511 0.7519 0.1837
MT-7 0.0000 0.0073 0.9964 1.0000 0.7797 0.0510 0.0510 1.0000
MT-8 0.2687 0.9624 0.4028 0.4444 0.0000 0.9765 0.9736 0.8622
MT-9 0.5293 0.6568 0.6065 0.7901 0.0032 0.8571 0.8530 0.0000

MT-10 0.0066 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.8622

MT-11 0.0750 0.5189 0.5594 0.6049 0.0513 0.7927 0.7928 1.0000
SUM 3.5918 5.0754 5.9734 6.7160 3.7804 6.7812 6.7738 6.3776

c 0.9960 1.3754 1.5987 1.7905 1.0396 1.8175 1.8154 1.7083
b 55.5562  70.5490  77.4497 82.9198 57.2853  83.9327 83.8737 80.8045
W; 0.0938 0.1191 0.1307 0.1400 0.0967 0.1417 0.1416 0.1364

11
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2. Application of the COBRA Method

This study applies the COBRA method to rank 11
alternative materials based on multiple criteria. The
process includes constructing and normalizing the
decision matrix, applying criterion weights,
identifying key reference solutions, and calculating
generalized distances using Equation 6 to 25 and the
corresponding values are included in Table 7 to 9.
The final rankings are derived from comprehensive
distance values, offering a structured and accurate
multi-criteria decision-making approach as shown in
Table 10.

The approach of COBRA was utilized and eleven
materials were ranked for optimal design. COBRA
method presents that acrylic (MT-3), PET (MT-8),
and PA type 6 (MT-5) are the most appropriate
materials since lower comprehensive distances (DC)
are obtained. Such materials as Nylon 101 (MT-4)
and PP Copolymer (MT-10) were rated as the least
suitable on account of the relatively large DC
values. This methodology provides the objective,
empirical criteria for choosing 3D printing materials
that will improve functionality and performance of
the prosthesis.

Table 7. Weighted Normalization of the Decision-Matrix

Material TS EM PR VON MD RD ES CO
MT-1 0.0417 0.0957 0.1242 0.1397 0.0729 0.0518 0.0518  0.0379
MT-2 0.0313 0.0794 0.1256 0.1397 0.0695 0.0626  0.0629  0.0682
MT-3 0.0761 0.1191 0.1115 0.1387 0.0817 0.0403  0.0404  0.0530
MT-4 0.0826 0.0397 0.0956 0.1372 0.0783 0.1166  0.1160  0.0834
MT-5 0.0938 0.1040 0.1083 0.1384 0.0763 0.0458  0.0457  0.0758
MT-6 0.0653 0.0921 0.1247 0.1397 0.0810 0.0538  0.0538  0.0909
MT-7 0.0230 0.0425 0.1307 0.1400 0.0648 0.1188  0.1187  0.0303
MT-8 0.0597 0.1175 0.1179 0.1390 0.0967 0.0415 0.0417  0.0379
MT-9 0.0745 0.1032 0.1230 0.1397 0.0947 0.0478 0.0481 0.1364
MT-10 0.0288 0.0353 0.1307 0.1400 0.0606 0.1417  0.1416  0.0379
MT-11 0.0424 0.0957 0.1219 0.1394 0.0885 0.0514 0.0515  0.0303

PIS 0.0938 0.1191 0.1307 0.1400 0.0606 0.0403  0.0404  0.0303
NIS 0.0230 0.0353 0.0956 0.1372 0.0967 0.1417 0.1416  0.1364
AS 0.0563 0.0840 0.1195 0.1392 0.0786 0.0702  0.0702  0.0620
Table 8. Distances from Positive and Negative Ideal Solution
Distances from Positive Ideal Solution Distances from Negative Ideal Solution
d(PIS) d(NIS)

Material ~ dE(PIS)  dT(PIS) o(PIS)  d(PIS) dE(NIS) dT(NIS)  o(NIS) d(NIS)
MT-1 0.0614 0.1251 0.0964  0.0622 0.1767 0.4121 0.1063 0.1845
MT-2 0.0896 0.1992 0.0964  0.0913  0.1441 0.3380 0.1063 0.1493
MT-3 0.0406 0.0820 0.0964  0.0409  0.1944 0.4552 0.1063 0.2038
MT-4 0.1495 0.3512 0.0964  0.1545  0.0895 0.1860 0.1063 0.0912
MT-5 0.0557 0.1110 0.0964  0.0563  0.1799 0.4262 0.1063 0.1881
MT-6 0.0777 0.1699 0.0964  0.0789  0.1536 0.3674 0.1063 0.1596
MT-7 0.1523 0.3085  0.0964  0.1568  0.1209 0.2288 0.1063 0.1238
MT-8 0.0519 0.0957 0.0964  0.0524  0.1957 0.4416 0.1063 0.2049
MT-9 0.1150 0.1986  0.0964  0.1172 0.1599 0.3386 0.1063 0.1656
MT-10 0.1784 0.3590 0.0964  0.1846  0.1108 0.1783 0.1063 0.1129
MT-11 0.0655 0.1344  0.0964 0.0664  0.1797 0.4028 0.1063 0.1874

12
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Table 9. Positive and Negative Distances from Average Solution

Positive Distances from Average Solution

Negative Distances from Average Solution

d(AS)+ d(AS)-

Material dE(AS)+ dT(AS)+ o(AS)+  d(AS)+ dE(AS)- dT(AS)-  o(AS)- d(AS)-
MT-1 00126 00168  0.0930 00126  0.0388  0.0813  0.0404 0.0389
MT-2 0.0087 00127  0.0930  0.0087 00290 0.0538  0.0403 0.0291
MT-3 0.0404 00579  0.0930  0.0406  0.0439  0.0771  0.0403 0.0440
MT-4 00735 01400  0.0930  0.0745  0.0504  0.0705  0.0403 0.0505
MT-5 00447 00713  0.0930  0.0450  0.0364  0.0632  0.0403 0.0364
MT-6 00319 00541  0.0930  0.0321 00232  0.0327  0.0403 0.0231
MT-7 00696 01091  0.0930  0.0703  0.0635 01203  0.0403 0.0637
MT-8 00382 00550  0.0930  0.0384 00471  0.0830  0.0403 0.0472
MT-9 0.0807 01318  0.0930  0.0816  0.0314  0.0445  0.0403 0.0314
MT-10 01017  0.549  0.0930 01031  0.0635 01184  0.0403 0.0638
MT-11 00155  0.0241  0.0930 00155 0.0436 00831  0.0403 0.0437

Table 10. Comprehensive Distances and Final Ranking

Material d(PIS) d(NIS) d(AS)+ d(AS)- DC Ranking
MT-1 0.0622 0.1845 0.0126 0.0389 -0.0240 5
MT-2 0.0913 0.1493 0.0087 0.0291 -0.0094 8
MT-3 0.0409 0.2038 0.0406 0.0440 -0.0399 1
MT-4 0.1545 0.0912 0.0745 0.0505 0.0098 11
MT-5 0.0563 0.1881 0.0450 0.0365 -0.0351 3
MT-6 0.0789 0.1596 0.0321 0.0232 -0.0224 7
MT-7 0.1568 0.1238 0.0703 0.0638 0.0066 9
MT-8 0.0524 0.2049 0.0384 0.0473 -0.0359 2
MT-9 0.1172 0.1656 0.0816 0.0315 -0.0247 4

MT-10 0.1846 0.1129 0.1031 0.0638 0.0081 10
MT-11 0.0664 0.1874 0.0155 0.0437 -0.0232 6

Table 11. Weighted Sum from PDA

Material TS EM PR VON MD RD ES CO

MT-1 0.0000 0.0165 0.0052  0.0005 0.0071 0.0372 0.0371 0.0530
MT-2 0.0000 0.0000 0.0067  0.0005 0.0113 0.0154 0.0147 0.0000
MT-3 0.0330 0.0497 0.0000 0.0000 0.0000 0.0603 0.0602  0.0197
MT-4 0.0439 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000  0.0000
MT-5 0.0625 0.0283 0.0000 0.0000 0.0029 0.0493 0.0493  0.0000
MT-6 0.0151 0.0115 0.0057  0.0005 0.0000 0.0330 0.0331  0.0000
MT-7 0.0000 0.0000 0.0123  0.0008 0.0170 0.0000 0.0000 0.0697
MT-8 0.0057 0.0475 0.0000 0.0000 0.0000 0.0579 0.0575 0.0530
MT-9 0.0304 0.0272 0.0038 0.0005 0.0000 0.0451 0.0446  0.0000
MT-10 0.0000 0.0000 0.0124 0.0008 0.0222 0.0000 0.0000 0.0530
MT-11 0.0000 0.0165 0.0027  0.0001 0.0000 0.0379 0.0378  0.0697

3. Application of the EDAS Method

In this paper, we use EDAS approach to prioritize
11 alternative materials for robot prosthesis palm
based on the weight of LOPCOW. This procedure
consists of building a decision matrix, calculating
the average criterion values, and measuring positive
and negative distances based on Equations 26 to 30.

13

Weighted sums are then calculated, divided by their
maximum values, and a final appraisal score and the
ranking of the alternatives is calculated according to
Equation 31 to 35 as following applicable values
has shown for efficient selection of 3D printing
material for based on performance base criteria as
shown in Table 11 to 13.
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Table 12. Weighted Sum from NDA

Material TS EM PR VON MD RD ES Cco
MT-1 0.0243 0.0000 0.0000 0.0000 0.0000 0.0000  0.0000  0.0000
MT-2 0.0417 0.0065 0.0000 0.0000 0.0000 0.0000  0.0000 0.0136
MT-3 0.0000 0.0000 0.0087 0.0005 0.0038 0.0000  0.0000 0.0000
MT-4 0.0000 0.0628 0.0261 0.0021 0.0000 0.0937  0.0924  0.0470
MT-5 0.0000 0.0000 0.0122 0.0008 0.0000 0.0000  0.0000 0.0303
MT-6 0.0000 0.0000 0.0000 0.0000 0.0030 0.0000  0.0000 0.0637
MT-7 0.0554 0.0589 0.0000 0.0000 0.0000 0.0981  0.0979  0.0000
MT-8 0.0000 0.0000 0.0017 0.0002 0.0222 0.0000  0.0000 0.0000
MT-9 0.0000 0.0000 0.0000 0.0000 0.0197 0.0000  0.0000 0.1637
MT-10 0.0459 0.0690 0.0000 0.0000 0.0000 0.1443  0.1440 0.0000
MT-11 0.0231 0.0000 0.0000 0.0000 0.0122 0.0000  0.0000 0.0000

Table 13. Normalize Value of WSP, WSN and Final Ranking

Material WSP; WSN; NWSP; NWSN; FAS; Rank
MT-1 0.1566 0.0243 0.7027 0.9396 0.8212 5
MT-2 0.0486 0.0619 0.2179 0.8465 0.5322 8
MT-3 0.2229 0.0130 1.0000 0.9679 0.9839 1
MT-4 0.0443 0.3241 0.1987 0.1961 0.1974 11
MT-5 0.1924 0.0433 0.8631 0.8927 0.8779 3
MT-6 0.0988 0.0666 0.4431 0.8348 0.6389 6
MT-7 0.0998 0.3103 0.4476 0.2304 0.3390 9
MT-8 0.2216 0.0241 0.9942 0.9402 0.9672 2
MT-9 0.1516 0.1834 0.6801 0.5451 0.6126 7
MT-10 0.0883 0.4032 0.3964 0.0000 0.1982 10
MT-11 0.1647 0.0353 0.7390 0.9125 0.8257 4

The EDAS approach with the LOPCOW-based
weighting criterion is successfully rank 11 materials
for a robotic prosthetic palm. The highest score
(0.9839) is given to Acrylic (MT-3) followed by
PET (MT-8) and PA Type 6 (MT-5) with good
overall value. Low-rank materials such as Nylon 101
(MT-4) and PP Copolymer (MT-10) are below
average in deviation score as well as shown in
Table 13. This method secures a well-balanced
comparison, taking into account both positive and
negative distances, for the precise and efficient
material selection in 3D printing.

V. Assessment of Results

This section discusses a tri-phase strategy to
examine the dependability of the results. In the first
phase, the outcomes of the selected MCDM model
are evaluated with those of the conventional
methods, and the Copeland voting is utilized to rank
the alternatives to get the overall ranking. The
second stage is to estimate the Spearman rank
correlation coefficient in order to quantify the level
of agreement in the rankings obtained under the sel-
-ected method. Sensitivity analysis is the third stage
used on RD criteria, to evaluate the stability and
robustness of secondary ordinal rankings in different
states.

14

1. Comparative Analysis of Various MCDM
Methods and Consolidated Ranking

The assessment of 3D printing materials for
prosthetic palm design involves comparing results
from LOPCOW-COBRA and LOPCOW-EDAS
methods with established MCDM techniques such as
TOPSIS, WSM, WPM, WASPAS, PIV, and
MOOQOSRA. The Copeland voting method [59]
applies to achieve a detailed final ranking by
integrating both victories and defeats of each
alternative into the traditional Borda count. The WIN
score for each alternative emerges by totaling its
positions across all MCDM methods. The LOSS
score emerges through deducting the positions of
rival options from the WIN score. Each alternative's
final performance score emerges through the
subtraction of LOSS scores from WIN scores.

Through the integration of outcomes from eight
distinct methods combined with Copeland
aggregation, this research establishes a final priority
list to determine the optimal material choice.
Stakeholders in robotic prosthetic palm development
can utilize the consolidated ranking presented in
Table 14 and Fig. 3 as a decision-making tool that
allows them to evaluate the eleven materials from
most to least effective based on their exceptional
characteristics.
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Table 14. Alternative’s ranking.

COBRA EDAS TOPSIS WSM WPM WASPAS PIV.  MOOSRA COPELAND

Material RANK  RANK RANK RANK RANK RANK RANK RANK RANK
MT-1 5 5 3 5 5 5 4 3 5
MT-2 8 8 7 8 8 8 7 7 8
MT-3 1 1 1 2 2 2 1 1 1
MT-4 11 11 11 11 11 11 10 10 11
MT-5 3 3 5 3 4 4 3 4 3
MT-6 7 6 6 7 6 7 6 6 6
MT-7 9 9 9 9 9 9 9 9 9
MT-8 2 2 2 1 1 1 2 2 2
MT-9 4 7 8 6 7 6 8 8 7

MT-10 10 10 10 10 10 10 11 11 10
MT-11 6 4 4 4 3 3 5 5 4
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Figure 3. Ranking Comparison of alternative materials with eight different MCDM method

performs well under purely additive as well as

Among all materials, Acrylic (MT-3) is the best in multiplicative evaluation frameworks,

all MCDM methods. It is ranked first in COBRA,

EDAS, TOPSIS, PIV, and MOOSRA but placed PA Type 6 (MT-5) is achieved the third Copeland
second in WSM, WPM, and WASPAS. Due to high rank, exhibiting mid-to-high performance across all
strength with a balanced elastic modulus at a techniques. It presents a good balance of tensile
moderate price and excellent strain displacement strength, density, and strain-related properties,
behaviour, Acrylic is preferred as the most suitable making it a suitable choice under cost-performance
material for making prosthetic palms showing well- considerations. Close to fourth place was PVC Rigid
rounded characteristics matching highly weighted (MT-11), which boasts excellent cost-effectiveness
criteria that led to the first Copeland rank. The as well as structural integrity to support its use in
second-ranked material is PET (MT-8), which non-flexible prosthetic components.

showed remarkable constancy since it was ranked
first or second in all MCDM methods. Because of its
low cost and strong mechanical performance as well

While none of the methods showed superiority,
consistency is what keeps it among the leading
as good strain behaviour, PET would be an excellent performers. In fifth place was ABS PC (MT-1) with

substitute for Acrylic. Its top-ranking performance in moderate to_hlgh p(_erforr_nance for all criteria _a_nd
WSM., WPM, and WASPAS indicates that it methods. This material might have good printability
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coupled with moderate mechanical strength, thus
making it an acceptable candidate under certain
constraints. PC High Viscosity (MT-6) was ranked
sixth without showing exceptional or significant
underperformance in most criteria. This material
would be particularly suitable for designs requiring
flexibility or specific printing properties.

POM Acetal Copolymer showed the most
variability in ranking, placed between 4th and 8th
depending on the method, thus giving an overall rank
of 7. Such variability may imply inconsistency in
performance under highly critiqued criteria such as
strain and displacement. ABS was consistently
positioned at the eighth spot and PE High-Density at
ninth, which indicates their performance consistency
gets neither extreme nor too low- suggesting that
these materials do not possess the required
mechanical strength or flexibility to be used as
prosthetic components. PP Copolymer was ranked
tenth among the MCDM methods while Nylon 101
was placed eleventh. The two worst-performing
materials had Copeland ranks of 10 and 11,
respectively. All MCDM methods ranked them last
or close to it, meaning they fail terribly in meeting
desired mechanical as well as cost parameters. Nylon
101 has been rated eleventh in all processes; hence it
would have very poor suitability for the concerned
application.

This full multi-criteria study has identified
Acryllic (MT-3) and PET (MT-8) as the two best
materials for 3D printed prosthetic palm
applications. These have the performance qualities
we want at a less expensive cost, and they were
stable in the ranking comparison figure 3 with almost
all the MCDM ranking methods. These materials
rate high based on heavy performance criteria
weighting like strain, displacement and stress
resistance. Other materials such as PA Type 6, PVC
Rigid and ABS PC have at least some means of
promise potentially based on design specifications.
The least favorable candidates were Nylon 101 and
PP Copolymer based on the majority of failing to
reconcile over most of the performance criteria.

2. Spearman’s rank correlation

This study evaluates the consistency of ranking
outcomes across different methods using the
Spearman rank correlation coefficient [60],
calculated using Equation 36. This coefficient (SR,)
measures the correlation between rankings from
various MCDM techniques, with values ranging
from -1 to 1. Here, R, represents the difference in
ranks, and N, is the number of alternatives. As
shown in Table 15, the high Spearman coefficients
(typically between 0.8 and 1.0) suggest strong
agreement among the methods, confirming the
reliability of the chosen ranking approach.

6 X Y R
TN, x(N2—1) (36)

The Spearman correlation matrix reveals the
degree of agreement between the eight applied
MCDM techniques used to rank the 3D printing
materials for prosthetic palm applications. Overall,
the correlation coefficients range from 0.86 to 1.00,
indicating a strong positive correlation across all
methods. This consistency reflects the reliability of
the techniques in evaluating alternatives and
enhances confidence in the final decision outcomes.
Among the combinations, EDAS and WSM display
an exceptionally high correlation of 0.9818, closely
followed by WPM and WASPAS with 0.9909, and
PIV and MOOSRA with 0.9909 as well. These
values suggest that these pairs of methods generate
nearly identical rankings, highlighting their
compatibility and similar evaluation logic.

Interestingly, TOPSIS and COBRA present the
lowest correlation at 0.8636, though still within a
high agreement range. This indicates that while
COBRA and TOPSIS are somewhat aligned, their
assessment criteria or algorithmic focus may differ
more significantly compared to other method pairs.
WSM, WPM, and WASPAS are among the most
consistently aligned methods, each correlating
highly with the others and with EDAS, reflecting
their shared foundation in weighted-sum or product-
based logic. Meanwhile, MOOSRA also shows

SR.=1

Table 15. Spearman correlation scores between MCDM Techniques

COBRA  EDAS  TOPSIS

WSM WPM WASPAS P1V MOOSRA

COBRA 1.0000 0.9364 0.8636

EDAS 0.9364 1.0000 0.9545
TOPSIS 0.8636 0.9545 1.0000
WSM 0.9545 0.9818 0.9273
WPM 0.9000 0.9818 0.9545
WASPAS 0.9273 0.9727 0.9364
PIV 0.9000 0.9727 0.9636

MOOSRA 0.8818 0.9545 0.9818

0.9545  0.9000 0.9273 0.9000 0.8818
0.9818 0.9818 0.9727 0.9727 0.9545
0.9273  0.9545 0.9364 0.9636 0.9818
1.0000  0.9818 0.9909 0.9455 0.9273
0.9818  1.0000 0.9909 0.9455 0.9364
0.9909  0.9909 1.0000 0.9273 0.9182
0.9455  0.9455 0.9273 1.0000 0.9909
0.9273  0.9364 0.9182 0.9909 1.0000
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strong correlation values with all others, particularly
with TOPSIS and PIV, emphasizing its robustness
and agreement with the broader evaluation
framework. So, the Spearman correlation analysis
validates the coherence and robustness of the
employed MCDM techniques. The strong inter-
method correlations reinforce the credibility of the
final material rankings, particularly those aggregated
through the Copeland method. This suggests that
decision-makers can confidently rely on the
outcomes of this comparative analysis when
selecting materials for prosthetic palm design.

3. Sensitivity Analysis on the presented study

This section of the paper examines the reliability
and the stability of the two MCDM techniques which
have been applied in the study. In real-world
applications, the input of the stakeholders is often
based on their own insights and preferences, which
are usually shaped through their experiences and
their expertise. Though these inputs are precious,
sometimes they can create biases which may lead to
uncertainty and thus be one of the reasons that the
decision outcomes would be affected. The first step
in the sensitivity analysis is to modify the weight of
the criteria in the decision-making process
systematically so that it is possible to measure how
different criteria alterations impact the final ranks.
For instance, the pre-study has eight aspects that are
used to rank the candidate materials for prosthetic
palm design. The first step is to find the most
influential criteria (MIC) by using a criteria
weighting method.

Ciphering the weight of this criterion is the next
procedure that provides an understanding of how the
rankings are influenced by the MIC weight. Here,
one can know the degree of ranking consistency
which would depend exclusively on the MIC weight
and thus know the weaknesses and strengths of the
MCDM model vis-a-vis the changes of the decision-
making context.

The process of sensitivity analysis by criterion
weight variation is explained through the following.

Step 1: Estimation of Elastic Weight Coefficient
(Ewc)

Elastic Weight Coefficient serves as an indicator
of how changes in MIC’s weight impact the balance
among all other criteria. It reflects the proportional
adjustment required for the remaining weights when
the MIC's weight is modified. For the MIC itself, this
coefficient is always set to 1, indicating full impact.
For the other parameters, Equation 37 is used to
compute their respective coefficients.

Oy (37)
EWC 1- meic

Where, 0,, is the original weight of the criterion
being adjusted, O,,,;-iS the weight of the most
influential criteria. This calculation ensures that
changes in one parameter are properly compensated
by adjustments in others, maintaining the overall
balance of the weight distribution. The resulting Ey, ¢
values are listed in Table 16.

Step 2: Determination of Permissible Weight
Variation (Ax)

This step involves in calculating the Ax factor,
which represents the extent of weight variation
applied to the criteria set based on the corresponding
elastic weight coefficients. To maintain validity, the
adjusted weight of the most influential criteria must
not exceed certain bounds; otherwise, it may cause
some weights to become negative, violating the
condition of weight non-negativity. A positive Ax
implies an increase in relative influence, while a
negative Ax implies a reduction. Equation (38) is
used to define the permissible range of Ax, and the
resulting limits are listed in Table 16.

0,
—Owmic < AX < MIN (—W> (38)

wmic
Step 3: Recalculation of Updated Weights based
on Ax

In this step, new weights for the MIC and the
remaining criteria are determined using Equation 39.
The updated weight of the MIC (W},,,) is calculated
by adding the product of the elastic weight

Table 16. Ey, with varying weights

Criteria Calculated Weight Ewc AX
W-6 (RD) 0.1417 1 -
W-1 (TS) 0.0938 0.1092 0.8583
W-2 (EM) 0.1191 0.1387 0.8583
W-3 (PR) 0.1307 0.1523 0.8583

W-4 (VON) 0.1400 0.1630 0.8583
W-5 (MD) 0.0967 0.1126 0.8583
W-7 (ES) 0.1416 0.1649 0.8583
W-8 (CO) 0.1364 0.1589 0.8583
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coefficient and Ax to the original MIC weight.
Conversely, for the other criteria, their new weights
(W;,,) are obtained by subtracting this product from
their original values (0,,). This adjustment ensures
that the total of all new weights remains normalized
(i.e., their sum equals 1), maintaining
proportionality. The corresponding values are
presented in Table 17.

Wnu = meic + (Ewc X AX)
Who = Oy — (Eye X AX) (39)

Any alteration in the weights of the criteria
(derived through the ranking technique) can
significantly affect the final order of the available
alternatives in certain cases. To assess the
consistency and resilience of the decision-making
model, a sensitivity analysis was conducted to
identify if such variations might occur. For this
purpose, the allowable range of weight variation
(Ax) for parameter “W6” was calculated, ranging
from -0.1417 to 0.8583. After establishing these
boundaries, 22 different weight scenarios were
generated using Equation 39, as presented in Table
17. This table also indicates that when Ax equals 0,
the weights across all criteria match their initial
values, confirming the consistency of the original
setup.

For example, the 3rd alternative is constantly the
top performer (Rank 1) under all scenarios, thus,
giving evidence of the unprecedentedly strong

stability and performance of the system independent
of the variation in the criteria weights.

Correspondingly, the 5th alternative is solid at
Rank 3, and the 8th and 9th alternatives continue to
secure Ranks 2 and 4, respectively as shown in Fig.
4. This is the evidence of the fact that these materials
are indeed very robust and can be recommended with
great confidence even under changed decision
conditions. Contrarily, materials like the 4th and the
11th are not that much affected. At first, the 4th
alternative moves up from Rank 11 in scenarios 1 to
5 (C1-C5) to Rank 9 in scenarios 11 to 22 (C11-
C22), and the 11th alternative changes from Rank 6
to Rank 5 in the middle positions. These changes
make it clear that their orders are tied to the specific
criteria that are accentuated by the weight. Further,
the 2nd (always Rank 8), 6th (always Rank 7), and
7th (always Rank 9) alternatives, though not
identical, have similar stable performances in the
mid-tier, maintaining their positions neither
extraordinarily well nor significantly declining from
the best. As for the 10th alternative, the drop from
Rank 10 to 11 after the fifth scenario shows that the
level of sensitivity is small. Generally speaking, the
rankings distribution emphasizes the credibility of
the decision-making framework—one that can track
the meaningful alterations as weights change, while
simultaneously upholding the stability of the best
options under different evaluation scenarios.

Table 17. New Criteria Weight (W,,,, and W,,,,)

Case del X W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 Total
C1 -0.142 0.109 0139 0.152 0.163 0.113 0.000 0.165 0.159 1.000
Cc2 -0.100 0.105 0.133 0.146 0.156 0.108 0.042 0.158 0.152 1.000
C3 -0.050 0.099 0126 0.138 0.148 0.102 0.092 0150 0.144 1.000
C4 0.000 0.094 0119 0.131 0.140 0.097 0.142 0.142 0.136 1.000
C5 0.050 0.088 0.112 0.123 0.132 0.091 0.192 0133 0.128 1.000
C6 0.100 0.083 0105 0.116 0.124 0.085 0.242 0125 0.121 1.000
Cc7 0.150 0.077 0.098 0.108 0.116 0.080 0292 0117 0.113 1.000
C8 0.200 0.072 0.091 0.100 0.107 0.074 0.342 0109 0.105 1.000
C9 0.250 0.066 0.084 0.093 0.099 0.069 0392 0.100 0.097 1.000
C10 0.300 0.061  0.077 0.085 0.091 0.063 0.442 0.092 0.089 1.000
Cl1 0.350 0.056 0.071 0.077 0.083 0.057 0.492 0.084 0.081 1.000
C12 0.400 0.050 0.064 0.070 0.075 0.052 0542 0.076 0.073 1.000
C13 0.450 0.045 0.057 0.062 0.067 0.046 0.592 0.067 0.065 1.000
Cl4 0.500 0.039 0.050 0.055 0.058 0.040 0.642 0.059 0.057 1.000
C15 0.550 0.034 0.043 0.047 0.050 0.035 0.692 0.051 0.049 1.000
C16 0.600 0.028 0.036 0.039 0.042 0.029 0.742 0.043 0.041 1.000
C17 0.650 0.023 0.029 0.032 0.034 0.023 0.792 0.034 0.033 1.000
C18 0.700 0.017 0.022 0.024 0.026 0.018 0.842 0.026 0.025 1.000
C19 0.750 0.012 0.015 0.016 0.018 0.012 0.892 0.018 0.017 1.000
C20 0.800 0.006  0.008 0.009 0.010 0.007 0.942 0.010 0.009 1.000
c21 0.850 0.001 0.001 0.001 0.001 0.001 0992 0.001 0.001 1.000
C22 0.858 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000
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Fig. 5 shows the rankings of 11 alternatives under
22 different weight scenarios (C1-C22). Each
alternative is shown how it performs in different
decision contexts using LOPCOW-EDAS. The most
notable finding is the 3rd alternative which is always
Rank 1 across all scenarios, it’s very robust and
perform well regardless of changes in criteria
weight.

The 5th alternative is also consistent at Rank 3, the
8th alternative at Rank 2, and the 6th and 7th at 6 and
9 respectively. The 4th alternative is sensitive to
weight changes, its Rank 11 from C1 to C4, then
Rank 10 from C5 to C18 and finally Rank 9 from
C19 onwards. Its performance gets better as the
weight scheme evolves.

The 9th alternative is also sensitive, it’s Rank 8,
then Rank 7 from C2 to C5, Rank 6 from C6 to C12
and finally Rank 5 from C13 to C22. It’s a big
upward trend. The 11th alternative is Rank 4 to 5 in
the last few scenarios, its moderate sensitive. The
10th alternative is slightly down, it’s Rank 10 from
C1 to C4 and then consistently Rank 11 afterwards.

Overall the Fig. 5 shows a ranking framework that
shows both robust and sensitive alternatives. The
3rd, 5th and 8th alternatives are not affected by
weight changes while the 4th, 9th and 11th
alternatives show the model can detect performance
shifts due to weight changes, thus the sensitivity
analysis is working.

12
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Figure 4. LOPCOW-COBRA Sensitivity Analysis
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Figure 5. LOPCOW-EDAS Sensitivity Analysis

V1. Conclusion

This paper presents a robust and integrated
decision making framework combining LOPCOW,
COBRA and EDAS methods to select materials for
the design of a robotic prosthetic palm. The
framework provides a systematic way to evaluate
and rank multiple 3D printing material alternatives
based on multiple performance criteria.

Through LOPCOW  methodology eight
essential criteria weights were determined
which highlight Resultant Displacement
(0.1417), Equivalent Strain (0.1416), and Max
von Mises Stress (0.1400) as key factors for
assessing 3D  printing  materials in
biomechanical uses.

The application of both COBRA and EDAS
methods resulted in the ranking of materials.
The investigation revealed consistent and
insightful results which demonstrated dual-
method validation as a valuable approach for
obtaining reliable material rankings.

Through the application of Copeland voting
methodology to consolidate outcomes, Acrylic

Vi.

Vii.
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(MT-3) attained the position of top-performing
material with PET (MT-8) and PA Type 6 (MT-
5) following in rank. The proposed evaluation
system demonstrates significant strength
through reinforced robustness.

Nylon 101 (MT-4) and PP Copolymer (MT-10)
emerged at the bottom of the ranking list
indicating their unsuitability for prosthetic
palm applications because they perform poorly
against essential criteria.

Materials such as Acrylic represent top-tier
choices because they deliver exceptional
mechanical strength  while  maintaining
flexibility and cost-effectiveness, which makes
them perfect for creating patient-specific
prosthetic palms.

Displacement and strain criteria receive
substantial weight assignments because they
powerfully affect prosthetic performance to
guarantee user safety along with durability and
comfort.

The Spearman correlation coefficient of 0. The
value 9364 in LOPCOW-COBRA and
LOPCOW-EDAS rankings demonstrates
exceptional methodological agreement. The
robust concordance serves as evidence for the
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integrated MCDM framework's dependability
while simultaneously boosting trust in the
material selection results.

The LOPCOW-COBRA-EDAS framework
demonstrates adaptability for diverse medical
device applications and general engineering
problems requiring efficient material selection.

1. Practical Implementation

LOPCOW, COBRA and EDAS together provide a
robust decision making framework for selecting the
best 3D printing materials for robotic prosthetic
palm design. This approach improves product
performance, reduces manufacturing cost and user
comfort. The top ranked materials like Acrylic and
PET offer a practical balance of strength, flexibility
and cost, making the prosthetic more functional,
customizable and accessible for real world
rehabilitation and clinical applications

2. Limitation

One limitation of this study is the use of simulated
material properties which may not capture the
complexity of real world prosthetic applications. The
selected criteria though comprehensive may miss out
factors like long term durability or biocompatibility.
Also the MCDM methods assume stable and
consistent parameter weightings which may vary
with user specific needs or evolving technologies
and may affect the generalizability of the material
selection results.

3. Future Scope

This work could be extended in future to evaluate
durability, comfort and user acceptance under real
use conditions. If more decision variable, such as
environmental influence, recyclability, and bio-
compatibility are included, the selection of the
material becomes more promising and robust.
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