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Abstract: This research presents a novel multi criteria decision making (MCDM) approach for optimizing 

material selection in the design of a robotic prosthetic palm, a critical component in assistive and 

rehabilitation technologies. The research addresses the urgent need for a systematic approach to 

improve material efficiency and design precision in affordable prosthetic solutions. This study uses 

LOPCOW to find weights and applies COBRA and EDAS methods to thoroughly evaluate and select 

the best 3D printing material based on their mechanical, physical, and economic properties. Key 

parameters such as tensile strength, elastic modulus, Poisson’s ratio, von misses stress, mass density, 

displacement, equivalent strain, and cost were considered in the analysis. Among the 11 material 

evaluated, Acrylic (MT-3) emerged as the most efficient alternative, followed by PET (MT-8) and 

PA Type 6(MT-5). The use of Copeland voting rule, spearman correlation (0.9364) and sensitivity 

analysis validated the consistency and reliability of the integrated MCDM process. This methodology 

not only ensures optimal material selection for enhanced prosthetic performance but also 

demonstrates practical potential in manufacturing application in in biomedical engineering. 
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I. INTRODUCTION 

The development of robotic prosthetic hands has 

revolutionized assistive technology, significantly 

improving the quality of life for individuals with 

upper limb amputation. These devices are designed 

to mimic the natural movement and functionality of 

a human hand, allowing users to perform daily tasks 

with greater ease and efficiency, by integrating 

sensors, actuators, and artificial intelligence (AI), 

modern prosthetic hands offer enhanced dexterity, 

grip strength, and adaptability to different 

surroundings. 

According to Chain et al., over 2.1 million 

individuals in the USA are living with limb loss, with 

approximately 185,000 amputations occurring 

annually [1]. According to grand view research, 

global prosthetic market value is projected to grow 

in future which was valued at USD 1.4 billion in 

2022. Technological advancement such AI, 3D 

printing, and biosensor will lead to more 

sophisticated and lifelike prosthetic hand which will 

enhance the dexterity and user experience. 

Additionally, weight consideration plays a crucial 

role in prosthetic design, as the average human hand 

weighs approximately 400 grams for men, 

accounting for about 0.65% of total body weight [2]. 

Designing prosthetic hands that closely mimic this 

natural weight is essential for user comfort. The 

above data demonstrate the growing importance and 

influence of robotic prosthetic hands in enhancing 

the lives of people with upper limb loss. 

https://dx.doi.org/10.14513/actatechjaur.00789
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The development of a robotic prosthetic hand 

should be based on the material selection that would 

give an optimal combination of strength, softness, 

weight, and cost. Metals, composites, and plastics 

have been the materials considered in this approach 

to prosthetics. While aluminum and titanium will 

provide good strength and sharpness, they tend to be 

heavy and expensive; hence not so suitable for such 

an application where the prosthetic would need to be 

used over a long period. Composites would provide 

a fine balance between weight and strength but the 

complexity of their manufacturing limits their use 

within an economic range. However, the use of 

plastics has been widely popular because they are 

light in weight, easy to fabricate with, and cheap. For 

this study, plastic materials are chosen as the primary 

material for the robotic prosthetic palm due to their 

compatibility with 3D printing technology. 

Since 3D printing is perfect for rapid prototyping 

as well as low-cost production, the prosthetic palm 

could be tailored for the individual user. 3D printing 

requires a more intricate design less material than 

standard fabrication, so it’s a more efficient, 

sustainable choice to do 3D printing. Additionally, 

plastics allow for adjustments to mechanical 

properties such as strength, flexibility, and 

biocompatibility to meet specific application 

requirements. To allow for the best selection of 

plastic material, a series of plastic materials are 

evaluated based on key mechanical and physical 

properties, through the application of SolidWorks 

CAD Modeling and Simulation tools. The selection 

will be based on key mechanical and physical 

properties that will have the most impact on 

performance of the prosthetic palm.  

Due to the variation of mechanical properties and 

economic characteristics across different plastic 

materials used in 3D printing, selecting the most 

appropriate material for a robotic prosthetic palm 

becomes a complex decision-making problem. 

Attributes such as tensile strength, elastic modulus, 

Poisson’s Ratio, max von mises stress, mass density, 

resultant displacement, equivalent strain, and cost 

often conflict with one another, making manual 

selection unreliable and subjective. Therefore, a 

logical and systematic approach is essential to ensure 

an optimal balance between performance and cost. 

MCDM models are highly suitable for this purpose, 

as they enable the evaluation of alternatives against 

multiple, conflicting criteria in a structured and 

transparent manner. By applying MCDM 

techniques, this study ensures a more objective, data-

driven, and reproducible material selection process, 

which is critical for the efficiency, reliability, and 

real-world application of 3D-printed robotic 

prosthetics. In this study, LOPCOW (Logarithmic 

Percentage Change-driven Objective Weighting) 

identifies how strongly each type of criterion factors 

into the final selection of a robotic prosthetic palm, 

while COBRA (Comprehensive Distance Based 

Ranking) and EDAS (Evaluation based on Distance 

from Average Solution) rank and identify the best 

alternative material/materials. Through the 

application of all of the proposed MCDM techniques 

above, this project can identify a high-performance, 

low-cost, low-mass robotic prosthetic palm using 

data-driven material selection in an efficient manner. 

The proposed framework created offers the 

possibility of improving higher-functioning 

prosthetic design overall, while improving the 

durability and experience of the user while using 

robotic prosthetic hands. Overall, the systematic 

approach taken can offer insight into enhancing 

prosthetic design and ultimately improving assistive 

technology and therapeutic approaches. 

II. LITERATURE REVIEW 

The development of materials for prosthetic limbs 

is critical to strategically mitigate the balance of 

performance, durability, comfort, and cost. There are 

so many materials available, and there is not a 

straightforward way to select and determine the right 

one that takes into account several criteria. The 

combination of researchers applying various 

materials with innovative approaches to improve 

prosthetic limbs moves them past traditional 

methods to include advances from the fields of 

biomechanics, neuroscience, and robotics. 

The use of MCDM techniques enables the 

selection of decisions that is based on opposing 

criteria. Unlike single-objective optimization, 

MCDM lets one assess trade-offs between several 

criteria affecting a decision, hence producing a more 

realistic and thorough evaluation [3]. Particularly 

helpful in engineering, management, and social 

sciences where intrinsic conflicts between goals 

prevent the simultaneous optimization of decision 

variables, these techniques are most effective. 

MCDM approaches are used in several different 

disciplines. Based on mechanical and financial 

factors, MCDM helps in engineering design to 

choose appropriate materials, components, or 

systems [4]. It helps assess treatment alternatives, 

plan hospital locations, and choose medical 

equipment in the healthcare industry. Environmental 

applications span selecting waste treatment 

technologies and evaluating sustainability 

indicators. MCDM is applied in supply chain and 

logistics to manage inventory, optimize routes, and 

choose vendors [5]. Its part has lately become vital 

in robotics, especially in component choice and path 

planning for smart systems such robotic prosthetic 

devices. 

In MCDM, objective weighting techniques are 

essential as they lower biases connected to 

subjective methods and improve openness [6]. These 

methods use mathematical or statistical correlations 
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inherent in the data to assign criteria weights. 

Different approaches for calculating these weights 

include Entropy, CRITIC, MEREC, LOPCOW and 

other objective approaches [7]. 

LOPCOW stands out among objective weighting 

methods due to its focus on logarithmic percentage 

changes, making it more responsive to meaningful 

deviations in data. Unlike the Entropy method, 

which assumes independence among criteria and is 

sensitive to normalization, LOPCOW offers a more 

balanced and assumption-free weighting approach 

[8]. Compared to CRITIC, which is best suited for 

strongly correlated criteria, LOPCOW remains 

effective even when such correlations are absent. 

While WENSLO excels in normalization, it lacks 

LOPCOW’s fine sensitivity to percentage-based 

variations. MEREC evaluates the impact of 

removing criteria but does not emphasize 

proportional shifts like LOPCOW [9]. Therefore, 

LOPCOW is better suited for complex decision-

making scenarios involving diverse criteria, such as 

material selection or system evaluation, where subtle 

data variability is crucial. Because it can objectively 

record intrinsic data volatility via logarithmic 

percentage changes, the LOPCOW technique is 

preferred for its great sensitivity to significant 

differences among several standards [10, 11]. When 

expert assistance is restricted, it is perfect since it 

lowers subjectivity in weight calculations. Being 

combined with ARAS and SAW methods for 

material handling, cobot selection, and vendor 

analysis, LOPCOW has shown adaptability to boost 

performance evaluations in Industry 4.0, 

manufacturing, and sustainable systems. 

In MCDM, assessing and rating choices helps one 

to pick the best solution depending on performance 

against several criteria. VIKOR, MARCOS, 

MABAC, MAIRCA, EDAS, and COBRA offer 

organized frameworks for comparing different types 

of ranking techniques [12, 13]. Different decision-

making situations call for different methods based on 

data qualities and problem complexity because each 

has different theoretical underpinnings and 

operational processes. To tackle difficult decision-

making processes, such as selecting 3D printing 

materials for prosthetic designs, two complementary 

MCDM approaches can be used: EDAS and 

COBRA.  COBRA combines rankings from several 

MCDM methods, hence reducing the impact of 

individual method bias and producing a consistent 

agreement ranking [14, 15]. This is especially 

helpful in prosthetic uses where several opposing 

performance demands including mechanical 

strength, cost, and biocompatibility must be 

assessed. Combining several approaches, COBRA 

guarantees that no one model controls the decision-

making process, so producing a fairer and 

trustworthy result. In contrast of concentrating only 

on ideal or worst-case situations, EDAS evaluates 

options by their variance from the mean solution. 

This is especially appropriate in engineering fields 

where trade-offs are bound to occur. Simplicity and 

interpretability are also qualities of EDAS that 

enable decision-makers to clearly comprehend the 

assessment process [16]. EDAS provides more 

transparency in results and is less computationally 

demanding than techniques like VIKOR, MAIRCA, 

or MARCOS. Combined, COBRA and EDAS offer 

a strong and understandable decision-making 

approach suitable for material selection in prosthetic 

manufacture. This combined strategy improves 

evaluation accuracy and stays useful for real-world 

engineering projects. 

Regarding prosthetics, Controzzi et al. reached the 

conclusion that interdisciplinary advancement might 

enable duplication of the human hand. Ultimately 

adding to a better user experience and prosthetic 

performance, better materials together with 

improved sensitivity, control, and durability also 

contribute to a more elevated user experience. They 

did not offer a methodical technique for choosing 

materials meeting such interdisciplinary demands 

[17]. Introducing a bio-mechatronic technique, Zollo 

et al. expanded on integrating several disciplines of 

mechanical engineering, control systems, and 

material choice but lacked quantitative tools to 

systematically compare alternative materials. Their 

study showed how light and adaptive structures can 

improve the quality of human hand movement that 

finally results in a more effective prosthetic [18]. 

Coinciding with this concept, Saikia et al. researched 

the biomimetic of robotics concerning prosthetic 

devices. They argued that optimized materials would 

enhance dexterity, sensory-motor representation, 

control, and allow amputees to engage in daily living 

at a higher degree, hence enhancing overall quality 

of life, yet the material selection standards remained 

qualitative and application-specific [19]. Tan et al. 

investigated hybrid nano-materials in addition to this 

information to demonstrate uses in bone, skin, and 

neurological optimization. Though they failed to 

address tradeoffs across several performance 

measures including durability, cost, and sensitivity 

[20], they explained how carbon-based, metallic and 

composite nano-materials can provide better bio-

sensing possibilities. Rohila et al. conducted a 

similar investigation using ANSYS for prosthetic 

hand material testing concerning material testing and 

evaluation [21]. Rohila et al.'s findings suggested 

that Nylon 6 is a potential candidate for a prototype 

material, showing the most favorable trade-off 

between weight, cost, and strength. Conventional 

methods often fall short in capturing the full 

complexity of the material selection process. The 

application of MCDM in material selection in 

different application is summarized in the Table 1 

and Table 2. 
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Table 1. Material selection using MCDM Method 1 

Sl. 

No. 

Author Objective Parameter MCDM 

Methods 

Finding 

1 Tayyip 

Koçak 

et al.  [22] 

Optimize 

material 

selection for 

prosthetic 

femurs. 

12 assessment 

parameters, including 

density, tensile 

strength, and ultimate 

tensile strength and 

more. 

PROMETHEE

GAIA 

Ti-6Al-7Nb, Ti-6Al-

4V, and Co-Cr-W are 

optimal prosthetic 

femur materials. 

2 Sultana 

et al. [23] 

To optimize 

3D printing 

parameters 

affecting PLA 

and ABS.  

This study used 

parameter like infill 

pattern, layer 

thickness, infill 

percentage, and 

materials. 

Taguchi-

CRITIC-EDAS 

 

PLA with 2D 

honeycomb, 0.10 mm 

layer, 50% infill 

showed optimal 

tensile performance. 

3 Shahab 

et al. [24] 

To select 

optimal bone 

scaffold 

materials using 

hybrid MCDM. 

Biocompatibility-

based properties of 

polymer and ceramic 

composites were 

used. 

SWARA 

COPRAS 

Chitosan-HA 

composite ranked 

best; natural polymers 

outperformed 

synthetics. 

4 Sahoo and 

Choudhury 

[25] 

Optimize 

material 

selection for a 

low-cost robotic 

wheelchair. 

7 assessment 

parameters, including 

cost, mass density, 

tensile strength, and 

von mises stress and 

more. 

CRITIC, EDAS, 

COPRAS 

Gray cast iron is the 

optimal choice for a 

low-cost wheelchair 

chassis. 

5 Mangera 

et al. [26] 

To determine 

the optimal light 

metal for a 

paediatric 

prosthetic knee. 

Material density, 

structural strength, 

and material cost 

were evaluated. 

ELECTRE III Aluminium 7175 is 

the optimal material 

for a paediatric 

prosthetic knee. 

6 Abas 

et al. [27] 

To select the 

optimal material 

for SAFOs 

using FDM. 

Seven different 

materials were 

evaluated based on 

eleven criteria. 

WISP, 

MARCOS, and 

TOPSIS, with 

AHP for 

weighting. 

PLA is the best 

material for SAFOs, 

with AHP-MARCOS. 

7 Bahramina 

and Jahan 

[28] 

To select the 

optimal material 

for the femoral 

component of 

TKR. 

Material alternatives, 

aseptic loosening 

resistance, 

mechanical 

properties, 

biocompatibility, and 

durability. 

VIKOR Porous NiTi alloy is 

the best material for 

TKR femoral 

components 

8 Kirişci 

et al. [29] 

To develop and 

apply the 

Fermatean fuzzy 

ELECTRE I 

method for 

biomaterial 

selection in 

prosthetics 

Expert opinions, 

decision matrix, 

concordance, 

discordance, 

aggregation, ranking. 

Fermatean fuzzy 

ELECTRE I. 

Fermatean fuzzy 

ELECTRE I 

effectively selects 

optimal biomaterials 

for hip joint 

prostheses. 

9 Bouraima 

et al. [30] 

Determine 

sustainable 

healthcare 

devolution 

strategies for 

Kisumu County 

Human resources, 

structure, financing, 

leadership, 

infrastructure, 

politics, ICT, 

pharmaceutical 

availability. 

AROMAN This study identified 

ICT investment and 

human resource 

development as top 

priority strategies. 
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1. Research Gap of the Study 

Despite the growing interest in robotic prosthetics, 

there remain several key research gaps in material 

selection methodologies for 3D-printed prosthetic 

palms: 

i. Lack of a systematic decision-making 

framework. Existing studies do not provide a 

structured approach to evaluating plastic 

materials specifically for prosthetic palm 

applications.  

ii. Limited exploration of advanced MCDM 

techniques – While AHP, TOPSIS, and 

VIKOR are commonly used in material 

selection, they have limitations in handling 

complex trade-offs between different criteria. 

There is little research integrating LOPCOW, 

COBRA, and EDAS for optimized material 

selection in prosthetic designs. 

Table 2. Material selection using MCDM Method 2 

10 Daniyan 

et al. [31] 

To select the 

optimal material 

and assembly 

method for 

railcar body 

shells using 

AHP analysis. 

Strength-to-weight 

ratio, 

crashworthiness, 

mechanical 

properties, 

formability, and cost-

effectiveness. 

Analytical 

Hierarchy 

Process 

AHP identified 

optimal railcar 

materials and 

assembly methods for 

performance and 

efficiency 

11 Kağızman 

et al. [32] 

To select the 

best 

thermoplastic 

material for 

CPR device 

chassis using 

MCDM method 

Economic feasibility, 

manufacturability, 

sustainability, 

structural features, 

cost, durability, 

strength, weight, 

flexibility, and safety. 

Intuitionistic 

Fuzzy (IF) 

TOPSIS, IF 

VIKOR, and IF 

CODAS. 

PC/ABS FR is the 

best material for the 

CPR device chassis 

12 Kumar and 

Rajak [33] 

Assess and rank 

metallic bio-

implant 

materials using 

hybrid MCDM 

for optimal 

patient 

outcomes 

Biocompatibility, 

corrosion resistance, 

strength, density, 

fatigue resistance, 

wear resistance, 

elastic modulus, 

osseointegration, 

feasibility, and cost-

effectiveness are key 

bio-implant material 

parameters. 

SWARA AND 

WASPAS 

Titanium-based alloys 

are the best choice for 

bio-implant 

applications 

13 Ansaripour 

et al. [34] 

Evaluate and 

rank six 

biomaterials for 

spinal TDR 

using MCDM 

methods. 

Young’s modulus, 

density, tensile 

strength, cost, wear 

rate, corrosion 

resistance, 

conductivity, 

toughness, strength. 

Fuzzy AHP, 

TOPSIS, Fuzzy-

VIKOR, and 

Fuzzy-

MOORA. 

ZTA and Ti–6Al–4V 

identified as optimal 

spinal disc materials 

14 Du 

et al. [35] 

Develop 

biocompatible 

Ti-Zr-Si BMG 

for bio-implants 

using 

mechanical 

alloying and 

SPS. 

Biocompatibility, 

porosity, compression 

strength, Young's 

modulus, density, 

corrosion resistance, 

hardness, wear 

resistance, 

manufacturability, 

cost-effectiveness. 

AHP Biocompatible Ti-Zr-

Si BMG shows ideal 

strength and modulus 

for bio-implants 

15 Rouhani 

Tazangi [36] 

To assess 

hospital e-

procurement 

readiness 

People, Management, 

Environment, 

Technology, Process 

GRA Management support 

and technological 

infrastructure are key 

drivers of e-

procurement 

readiness. 
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iii. Insufficient focus on 3D-printed plastic 

materials – Most studies focus on metals and 

composite materials, neglecting the potential of 

plastic-based prosthetic palms, which offer 

lightweight, cost-effective, and customizable 

solutions. The role of 3D printing in prosthetic 

development has not been extensively explored 

in conjunction with advanced MCDM 

techniques. 

2. Novelty of the Study 

The development of robotic prosthetic palms has 

significantly advanced with improvements in sensor 

integration, artificial intelligence, and additive 

manufacturing techniques. However, selecting an 

optimal material remains a crucial challenge, 

impacting factors such as durability, flexibility, 

lightweight properties, and cost-effectiveness. While 

numerous studies have explored material selection 

using traditional methods, this research introduces a 

decision-making approach by integrating LOPCOW, 

COBRA, and EDAS to systematically identify the 

most suitable plastic material for 3D-printed 

prosthetic palms. 

Moreover, this research utilizes finite element 

analysis (or FEA) in SolidWorks, which allows for a 

more data-driven, performance based assessment of 

different plastic materials. FEA considers the key 

mechanical properties of tension strength, elastic 

modulus, Poisson's ratio, shear modulus, von Mises 

stress, mass density, resultant displacement, 

equivalent strain and cost to ensure the chosen 

material is viable as an economically structurally 

sound prosthetic palm. 

3. Key Parameters for Material Selection in 

Artificial Robotic Prosthetic limb 

Selecting an optimal material for an artificial robotic 

prosthetic palm requires a careful evaluation of 

several mechanical, physical, and economic 

parameters to ensure durability, flexibility, and cost-

effectiveness. The following key parameters play a 

crucial role in determining the most suitable plastic 

material for a 3D-printed prosthetic palm: 

i. Tensile Strength (TS) – The ability of a 

material to sustain pulling forces until failure. 

The higher the tensile strength of the prosthetic 

palm, the longer the prosthetic palm would 

retain its structural integrity after everyday 

tasks [37]. 

ii. Elastic Modulus (EM) – The amount of 

stiffness of the material and the ability to return 

to its original shape after being deformed. 

Appropriate elastic modulus of the material 

allows the prosthetic palm to show flexibility 

and rigidity in certain applications [38]. 

iii. Poisson's Ratio (PR) – How much a material 

distorts in a direction plane perpendicular to the 

direction of the stress. A balance of Poisson's 

ratio allows the selected material to optimally 

distribute stress without excess distortion [39]. 

iv. Von Mises Stress (VON) – Evaluates the 

maximum stress a material can withstand 

before failure. This property illustrates how 

well the material can take large forces and loads 

in the real world without experiencing 

structural failure [40]. 

v. Mass Density (MD) – Considering the mass 

density is also important to the overall weight 

of the prosthetic palm. As user comfort is a 

major concern, appropriate mass density of the 

plastic material is needed to closely represent 

the weight of a human hand while allowing 

realistic movement [41]. 

vi. Resultant Displacement (RD) – This measures 

the maximum deformation of the material 

when subject to a load. A low resultant 

displacement indicates that the material returns 

to its shape under load and will hold up over the 

long term [42]. 

vii. Equivalent Strain (ES) – This indicates where 

the strain is found in the material. Helping to 

show where the areas of deformation typically 

happen. We do not like to think of deformation 

when optimising design, but it is good to know 

where the weakest areas are, so that we can 

improve them [43]. 

viii. Cost (CO) – This helps ascertain if the material 

can be used economically to manufacture in 

large volumes. We want to achieve a 

compromise between performance, and cost to 

make the prosthetic palm affordable to the user 

without compromising quality [44]. 

This work have used SolidWorks CAD modeling 

and simulation software to optimize the above 

parameters to apply MCDM for selection of Plastic 

material that to be used for optimal design of Robotic 

Prosthetic Palm. 

4. Objective of this study 

The objective of this research is to improve the 

material selection process for a plastic based robotic 

prosthetic palm by combining LOPCOW, COBRA 

and EDAS MCDM approaches. 

The study aims to achieve the following specific 

objectives: 

i. To identify and evaluate suitable materials 

(plastics) for the fabrication of a robotic 

prosthetic palm, considering their mechanical, 

physical, and economic properties. 
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ii. To utilize SolidWorks CAD modeling and 

simulation to analyze key material properties 

iii. To implement LOPCOW for determining the 

relative importance of different material 

selection criteria in an objective manner. 

iv. To apply COBRA and EDAS to rank and select 

the best plastic material based on its overall 

performance across multiple criteria. 

v. To perform a sensitivity analysis on the result 

derive from applied MCDM methods. 

vi. To provide insights for future research and 

practical applications in prosthetic 

development and material selection 

methodologies, contributing to advancements 

in assistive robotics and biomedical 

engineering. 

 

By achieving these objectives, the study aims to 

enhance the efficiency, affordability, and 

functionality of robotic prosthetic palms, ultimately 

improving the quality of life for individuals with 

upper limb amputations. 

III. Methodology 

The methodology adopted in this study follows a 

systematic approach to optimize the material 

selection process for a plastic-based robotic 

prosthetic palm as shown in Fig. 1. 

The process includes criteria assessment through 

structural analysis, objective weighting using 

LOPCOW, and alternative ranking using COBRA 

and EDAS. Finally, Copeland’s rule is employed to 

determine the ultimate ranking, and sensitivity 

analysis is performed to validate the results. 

 

Figure 1. Framework of the presented Study 
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1. Criteria Assessment through Structural 

Analysis 

Structural analysis is a crucial step in prototype 

design, as it ensures the safety, stability, and 

performance of the structure under expected loads 

and conditions [45, 46, 47]. To ensure an optimal 

prosthetic palm design, this study began by 

analyzing the natural human palm's dimensions, 

which were measured and documented as shown in 

Fig. 2 (A, B and C). These measurements served as 

the foundation for constructing a precise 3D CAD 

model in SolidWorks. The model was designed to 

closely replicate the natural structure and functional 

aspects of a human palm, allowing for an accurate 

structural analysis of different plastic materials. 

From the SolidWorks material database, an initial 

selection of 16 plastic materials was considered for 

evaluation. However, five materials were excluded 

due to their unsuitability for 3D printing. These 

included Epoxy, Delrin 2700, PEEK, Plasticized 

PVC 0.007, and Nylon 610, as they either required 

specialized printing conditions, exhibited excessive 

flexibility, or were primarily used for coatings rather 

than structural applications.  

After filtering out these materials, 11 plastic 

materials were shortlisted for further analysis, 

including ABS PC (MT-1), ABS (MT-2), Acrylic 

(MT-3), Nylon 101 (MT-4), PA Type 6 (MT-5), PC 

High Viscosity (MT-6), PE High Density (MT-7), 

PET (MT-8), POM Acetal Copolymer (MT-9), PP 

Copolymer (MT-10), and PVC Rigid (MT-11). 

For each selected material, a static analysis was 

performed using the SolidWorks simulation module, 

applying a 10 Newton force to the CAD model to 

assess the mechanical response as shown in Table 3. 

The analysis focused on key parameters essential for 

material selection, including Max von Mises Stress, 

Resultant Displacement (MAX), and Equivalent 

Strain. These parameters provided insights into the 

structural integrity, and deformation characteristics 

of each material, ensuring that the prosthetic palm 

could withstand real-world forces while maintaining 

flexibility and durability. 

The results from the static analysis for all 11 

materials were systematically recorded in Table 4, 

allowing for comparative evaluation. This data 

serves as the foundation for MCDM process, where 

LOPCOW, COBRA, and EDAS methods will be 

employed to determine the most suitable material for 

the prosthetic palm. 

2. Logarithmic Percentage Change-driven 

Objective Weighting (LOPCOW) 

In order to solve MCDM problems, criteria 

weighting is essential. The ultimate ranking and 

decision results are directly impacted by the 

methodology employed to assess each criterion's 

significance [48]. Due to its significance, different 

aspects of weighing methods have been studied in 

depth by several contributory researchers [49, 50]. 

The objective weighting method in question within 

this study is LOPCOW method developed at first in 

article by Ecer and Pamucar [51]. The LOPCOW 

method has some advantages, as the setting of the 

negative values in the initial decision matrix is often 

problematic in the practical applications [52]. 

Furthermore, this method applies log operations in 

order to mitigate the effect of extremes in datasets 

[53]. 

 

Figure 2. Dimension of different parts of hand 
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It also differentiates between cost and benefit 

criteria taking into account differences in the scales 

of the measurements via percent calculations of the 

data’s mean square and standard deviation. Another 

significant strength is that LOPCOW is efficient in 

analysing large datasets [54]. To calculate the 

importance weight of each criterion, LOPCOW 

follows these steps. 

Step 1: Construct the Initial Decision Matrix 

The methodology starts from an original decision 

matrix (L), which is given in the following form:  

 

𝐿 = [

𝐿11𝐿12…𝐿1𝑛
𝐿21𝐿22…𝐿2𝑛
.     .      …   .    
𝐿𝑚1𝐿𝑚2…𝐿𝑚𝑛

] 

 

(1) 

Step 2: Normalize the Decision Matrix 

The objective data is normalized to a non-

dimensional interval [0, 1] in order that the different 

criteria are equivalent according to Eq. (2 and 3). The 

normalization is also differently applied according to 

the type of criterion chosen (cost or benefit): 

 For beneficial criteria, normalization is 

performed using: 

Table 3. SOLIDWORK Simulation of three sample materials 

Material Von Mises Stress Resultant Displacement Equivalent Strain 

 

 

Acrylic 

(MT-3) 

 

   
 

 

PET  

(MT-8) 

  
 

 

 

Nylon 101 

(MT-4) 

   

 Table 4. Criteria assessment for presented study 

Material TS in 107 

N/m2 

EM in 109 

N/m2 

PR VON in 104 

N/m2 

MD in  

kg/m3 

RD in 104 

mm 

ES in 

105 

CO in $ 

per KG 

MT-1 4.00 2.41 0.39 4.48 1070 4.75 1.54 2.5 

MT-2 3.00 2.00 0.39 4.48 1020 5.74 1.87 4.5 

MT-3 7.30 3.00 0.35 4.45 1200 3.70 1.20 3.5 

MT-4 7.93 1.00 0.30 4.4 1150 10.70 3.45 5.5 

MT-5 9.00 2.62 0.34 4.44 1120 4.20 1.36 5.0 

MT-6 6.27 2.32 0.39 4.48 1190 4.94 1.60 6.0 

MT-7 2.21 1.07 0.41 4.49 952 10.9 3.53 2.0 

MT-8 5.73 2.96 0.37 4.46 1420 3.81 1.24 2.5 

MT-9 7.15 2.6 0.39 4.48 1390 4.39 1.43 9.0 

MT-10 2.76 0.89 0.41 4.49 890 13.00 4.21 2.5 

MT-11 4.07 2.41 0.38 4.47 1300 4.72 1.53 2.0 
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𝑛𝑖𝑗 =
𝐿𝑖𝑗 − 𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛
 

(2) 

 For cost-based criteria, normalization is 

performed using: 

𝑛𝑖𝑗 =
𝐿𝑚𝑎𝑥 − 𝐿𝑖𝑗

𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛
 

(3) 

Step 3: Compute the Percentage Value (PV) 

The PV for each criterion, indicating its 

significance, is determined. The method requires 

the set of Normalized values (nij), Standard 

deviation (σ) of the criterion and Number of 

alternatives (m). The PV is calculated with Equation 

4. 

𝑃𝑉𝑖𝑗 = ||ln

(

 
√∑ 𝑛𝑖𝑗

2𝑚
𝑖=1

𝑚𝜎

)

 × 100|| 

 

(4) 

Step 4: Determine the Criteria Weights 

In the final step, the weight (𝑤𝑗) of each criterion 

is calculated by normalizing the PV values using 

Equation 5. 

𝑤𝑗 =
𝑃𝑉𝑖𝑗

∑ 𝑃𝑉𝑖𝑗
𝑛
𝑖=1

 
(5) 

This method guarantees that the more significant 

criteria are weighted more heavily, which makes for 

a fairer and more realistic evaluation process. 

3. Comprehensive Distance Based Ranking 

(COBRA) 

Since its introduction by Krstić et al. [55], the 

COBRA method has been fairly recent, and its full 

potential has not yet been fully realized. It has only 

been mentioned in a small number of research 

articles thus far, most of which concentrate on its use 

in supply chain management practices [56, 57]. A 

series of steps can be used to methodically describe 

the COBRA method's computational procedure. 

Step 1: Construct the Decision Matrix 

The procedure outlined in section 3.2 (step-1) is 

followed in this stage. 

Step 2: Normalize the Decision Matrix 

To standardize the values, the decision matrix (L) 

is transformed into a normalized decision matrix 

using Equation 6. This ensures that all criteria are 

scaled proportionally within a common range. 

𝑛𝑙𝑖𝑗 =
𝐿𝑖𝑗

𝑚𝑎𝑥𝑖𝐿𝑖𝑗
 

(6) 

Step 3: Compute the Weighted Normalized 

Decision Matrix 

The normalized values (𝑛𝑙𝑖𝑗) are weighted 

according to the relative importance 𝑤𝑗  of each 

criterion, forming the weighted normalized matrix 

(𝑤𝑛𝑙𝑖𝑗) using Equation 7. 

𝑤𝑛𝑙𝑖𝑗 = [𝑤𝑗 × 𝑛𝑙𝑖𝑗]𝑛×𝑚 (7) 

Step 4: Identify Key Solutions (Ideal, Negative, 

and Average Solutions) 

For each criterion, determine three key reference 

points: 

 Positive Ideal Solution (PIS): 

𝑃𝐼𝑆𝑗 = 𝑚𝑎𝑥𝑗(𝑤𝑗 × 𝑛𝑙𝑖𝑗) For benefit cri. (8) 

𝑃𝐼𝑆𝑗 = 𝑚𝑖𝑛𝑗(𝑤𝑗 × 𝑛𝑙𝑖𝑗) For cost cri. (9) 

 Negative Ideal Solution (NIS): 

𝑁𝐼𝑆𝑗 = 𝑚𝑖𝑛𝑖(𝑤𝑗 × 𝑛𝑙𝑖𝑗) For benefit cri. (10) 

𝑁𝐼𝑆𝑗 = 𝑚𝑎𝑥𝑖(𝑤𝑗 × 𝑛𝑙𝑖𝑗) For cost cri. (11) 

 Average Solution (AS): 

𝐴𝑆𝑗 =
∑ (𝑤𝑗 × 𝑛𝑙𝑖𝑗)
𝑛
𝑖=1

𝑛
 

(12) 

Step 5: Calculate Distances from Key Solutions 

For each alternative, compute the distances from 

PIS, NIS, and AS using the Equation 13 and 14.  

 Generalized Distance Formula: 

𝑑(𝑆𝑗) = 𝑑𝐸(𝑆𝑗) + {𝜎 × 𝑑𝐸(𝑆𝑗) × 𝑑𝑇(𝑆𝑗)} (13) 

𝜎 = 𝑚𝑎𝑥𝑖𝑑𝐸(𝑆𝑗)𝑖 −𝑚𝑖𝑛𝑖𝑑𝐸(𝑆𝑗)𝑖 
(14) 

Where, the correction coefficient is denoted by 𝜎 

and distance solution 𝑑(𝑆𝑗) using Euclidean 𝑑𝐸(𝑆𝑗) 

and Taxicab distance 𝑑𝑇(𝑆𝑗). 

 Euclidean distance calculation from PIS, 

NIS, and positive distance from the average 

solution (𝐴𝑆𝑗)𝑖
+

 , negative distance from the 

average solution(𝐴𝑆𝑗)𝑖
−

, adjustment factors 

(𝜏+) and (𝜏−) using Equation 15 to 20. 

𝑑𝐸(𝑃𝐼𝑆𝑗)𝑖 = √∑(𝑃𝐼𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗)
2

𝑚

𝑗=1

 

(15) 

𝑑𝐸(𝑁𝐼𝑆𝑗)𝑖 = √∑(𝑁𝐼𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗)
2

𝑚

𝑗=1

 

(16) 

𝑑𝐸(𝐴𝑆𝑗)𝑖
+
= √∑𝜏+(𝐴𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗)

2
𝑚

𝑗=1

 

(17) 
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𝑑𝐸(𝐴𝑆𝑗)𝑖
−
= √∑𝜏−(𝐴𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗)

2
𝑚

𝑗=1

 

(18) 

𝜏+ = {
1 𝑖𝑓 𝐴𝑆𝑗 < 𝑤𝑗 × 𝑛𝑙𝑖𝑗
0 𝑖𝑓 𝐴𝑆𝑗 > 𝑤𝑗 × 𝑛𝑙𝑖𝑗

 
(19) 

𝜏− = {
1 𝑖𝑓 𝐴𝑆𝑗 > 𝑤𝑗 × 𝑛𝑙𝑖𝑗
0 𝑖𝑓 𝐴𝑆𝑗 < 𝑤𝑗 × 𝑛𝑙𝑖𝑗

 
(20) 

 

 Taxicab distance calculation from PIS, 

NIS, and positive distance from the average 

solution(𝐴𝑆𝑗)𝑖
+

 , negative distance from the 

average solution(𝐴𝑆𝑗)𝑖
−

 using Equation 15 

to 20. 

𝑑𝑇(𝑃𝐼𝑆𝑗)𝑖 =∑|𝑃𝐼𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗|

𝑚

𝑗=1

 
 

(21) 

𝑑𝑇(𝑁𝐼𝑆𝑗)𝑖 =∑|𝑁𝐼𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗|

𝑚

𝑗=1

 
 

(22) 

𝑑𝑇(𝐴𝑆𝑗)𝑖
+
=∑𝜏+|𝐴𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗|

𝑚

𝑗=1

 
 

(23) 

𝑑𝑇(𝐴𝑆𝑗)𝑖
−
=∑𝜏−|𝐴𝑆𝑗 − 𝑤𝑗 × 𝑛𝑙𝑖𝑗|

𝑚

𝑗=1

 
 

(24) 

Step 6: Compute the Final Ranking 

The comprehensive distance (𝑑𝐶𝑖) for each 

alternative is obtained using Equation 25. Finally, 

the alternatives are ranked in ascending order of 

(𝑑𝐶𝑖), with the lowest value representing the best 

alternative. 

𝑑𝐶𝑖 =
𝑑(𝑃𝐼𝑆𝑗)𝑖

− 𝑑(𝑁𝐼𝑆𝑗)𝑖
− 𝑑(𝐴𝑆𝑗)𝑖

+
+ 𝑑(𝐴𝑆𝑗)𝑖

−

4
 

(25) 

4. Evaluation based on Distance from Average 

Solution (EDAS) 

EDAS is a successful MCDM method for solving 

complex decision-making problems in the presence 

of many attributes [58]. This delineation considers 

alternatives by assessing their separation from an 

average solution in a multi-dimensional parameter 

space. The EDAS takes into account both Positive 

Distance from Average (PDA) and Negative 

Distance from Average (NDA) in order to generate 

a proper ranking of alternatives. The EDAS 

algorithmic steps are as follows: 

Step 1: Construct the Decision Matrix 

The process as presented (LOPCOW step-1) is 

employed in this step. 

Step 2: Compute the Average Value of Each 

Criterion 

Second step is to estimate the average score for 

each criteria using Eq. (26).     

𝐴𝑉𝐺𝑗 =
∑ 𝐿𝑖𝑗
𝑚
𝑖=1

𝑚
 

(26) 

Where, 𝐴𝑉𝐺𝑗 is the mean value of the criterion for 

all alternatives. 

Step 3: Determine PDA and NDA for Each 

Alternative 

Depending on whether the criterion is a benefit or 

a cost, PDA and NDA values are calculated using the 

following equations: 

 For a Benefit Criterion: 

𝑃𝐷𝐴𝑖𝑗 =
𝑚𝑎𝑥 (0, (𝐿𝑖𝑗 − 𝐴𝑉𝐺𝑗))

𝐴𝑉𝐺𝑗
 

 

(27) 

𝑁𝐷𝐴𝑖𝑗 =
𝑚𝑎𝑥 (0, (𝐴𝑉𝐺𝑗 − 𝐿𝑖𝑗))

𝐴𝑉𝐺𝑗
 

 

(28) 

 For a Cost Criterion: 

𝑃𝐷𝐴𝑖𝑗 =
𝑚𝑎𝑥 (0, (𝐴𝑉𝐺𝑗 − 𝐿𝑖𝑗))

𝐴𝑉𝐺𝑗
 

 

(29) 

𝑁𝐷𝐴𝑖𝑗 =
𝑚𝑎𝑥 (0, (𝐿𝑖𝑗 − 𝐴𝑉𝐺𝑗))

𝐴𝑉𝐺𝑗
 

 

(30) 

Step 4: Compute the Weighted Sum of PDA and 

NDA 

For each alternative, the weighted sum of PDA and 

NDA is determined using equation 31 and 32: 

𝑊𝑆𝑃𝑖 =∑𝑤𝑗

𝑛

𝑗=1

𝑃𝐷𝐴𝑖𝑗  
 

(31) 

𝑊𝑆𝑁𝑖 =∑𝑤𝑗

𝑛

𝑗=1

𝑁𝐷𝐴𝑖𝑗 
 

(32) 

Where, 𝑤𝑗  is the weight assigned to the 𝑗𝑡ℎ 

criterion. 

Step 5: Normalize PDA and NDA Scores 

The normalization of PDA and NDA values for 

each alternative is performed using equation 33 and 

34: 

𝑁𝑊𝑆𝑃𝑖 =
𝑊𝑆𝑃𝑖

𝑚𝑎𝑥𝑖(𝑊𝑆𝑃𝑖)
 

(33) 

𝑁𝑊𝑆𝑁𝑖 = 1 −
𝑊𝑆𝑁𝑖

𝑚𝑎𝑥𝑖(𝑊𝑆𝑁𝑖)
 

(34) 

Step 6: Compute the Final Appraisal Score 
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The overall evaluation score (𝐹𝐴𝑆𝑖) for each 

alternative is calculated using: 

𝐹𝐴𝑆𝑖 =
1

2
(𝑁𝑊𝑆𝑃𝑖 + 𝑁𝑊𝑆𝑁𝑖) 

(35) 

Where, 𝐹𝑆𝐴𝑖values range between 0 to 1. 

Step 7: Rank the Alternatives 

Finally, all alternatives are ranked in descending 

order based on their appraisal scores (𝐹𝐴𝑆𝑖). The 

alternative with the highest 𝐹𝐴𝑆𝑖 is considered the 

best choice.  

IV. Result and Analysis 

This section includes illustrative case studies that 

validate and demonstrate the practical 

implementation of the proposed study. 

1. Application of the LOPCOW Method 

The LOPCOW method is applied in the first phase 

of the decision-making process to determine the 

weight of criteria for the selected materials. Initially, 

the normalized decision matrix is constructed using 

Equation 2 and 3 as shown in Table 5. Then, the 

comprehensive weights derived percentage value. 

The LOPCOW method calculates the percentage 

value of each criteria using standard deviation using 

Equation 3 and 4 as shown in Table 6 This 

systematic approach ensures different criteria weight 

for prosthetic palm. 

In optimizing the robotic prosthetic palm design 

using LOPCOW, the most significant criteria are 

Resultant Displacement (0.1417), Equivalent Strain 

(0.1416), and Max von Mises Stress (0.1400), 

indicating that mechanical performance is crucial. 

Poisson's Ratio (0.1307) and Elastic Modulus 

(0.1191) also contribute notably. Cost (0.1364) and 

mass Density (0.0967) are moderately important, 

balancing efficiency and material use. Tensile 

Strength (0.0938) has the least impact. 

Table 5. Normalization of the Decision-Matrix 

Material TS  EM  PR VON  MD RD  ES  CO  

MT-1 0.2636 0.7204 0.8132 0.8889 0.6604 0.8871 0.8870 0.9286 

MT-2 0.1163 0.5261 0.8522 0.8889 0.7547 0.7806 0.7774 0.6429 

MT-3 0.7496 1.0000 0.4533 0.5556 0.4151 1.0000 1.0000 0.7857 

MT-4 0.8424 0.0521 0.0000 0.0000 0.5094 0.2473 0.2525 0.5000 

MT-5 1.0000 0.8199 0.3626 0.4444 0.5660 0.9462 0.9468 0.5714 

MT-6 0.5979 0.6777 0.8268 0.8889 0.4340 0.8667 0.8671 0.4286 

MT-7 0.0000 0.0853 0.9982 1.0000 0.8830 0.2258 0.2259 1.0000 

MT-8 0.5184 0.9810 0.6346 0.6667 0.0000 0.9882 0.9867 0.9286 

MT-9 0.7275 0.8104 0.7788 0.8889 0.0566 0.9258 0.9236 0.0000 

MT-10 0.0810 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.9286 

MT-11 0.2739 0.7204 0.7480 0.7778 0.2264 0.8903 0.8904 1.0000 

Table 6. Percentage Value and weights of selected criteria 

Material TS  EM  PR VON  MD  RD  ES  CO  

MT-1 0.0695 0.5189 0.6614 0.7901 0.4361 0.7869 0.7868 0.8622 

MT-2 0.0135 0.2767 0.7263 0.7901 0.5696 0.6094 0.6044 0.4133 

MT-3 0.5619 1.0000 0.2055 0.3086 0.1723 1.0000 1.0000 0.6173 

MT-4 0.7097 0.0027 0.0000 0.0000 0.2595 0.0612 0.0638 0.2500 

MT-5 1.0000 0.6722 0.1315 0.1975 0.3204 0.8954 0.8965 0.3265 

MT-6 0.3575 0.4593 0.6837 0.7901 0.1883 0.7511 0.7519 0.1837 

MT-7 0.0000 0.0073 0.9964 1.0000 0.7797 0.0510 0.0510 1.0000 

MT-8 0.2687 0.9624 0.4028 0.4444 0.0000 0.9765 0.9736 0.8622 

MT-9 0.5293 0.6568 0.6065 0.7901 0.0032 0.8571 0.8530 0.0000 

MT-10 0.0066 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.8622 

MT-11 0.0750 0.5189 0.5594 0.6049 0.0513 0.7927 0.7928 1.0000 

SUM 3.5918 5.0754 5.9734 6.7160 3.7804 6.7812 6.7738 6.3776 

σ 0.9960 1.3754 1.5987 1.7905 1.0396 1.8175 1.8154 1.7083 

𝑃𝑗 55.5562 70.5490 77.4497 82.9198 57.2853 83.9327 83.8737 80.8045 

𝑊𝑗 0.0938 0.1191 0.1307 0.1400 0.0967 0.1417 0.1416 0.1364 
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2.  Application of the COBRA Method  

This study applies the COBRA method to rank 11 

alternative materials based on multiple criteria. The 

process includes constructing and normalizing the 

decision matrix, applying criterion weights, 

identifying key reference solutions, and calculating 

generalized distances using Equation 6 to 25 and the 

corresponding values are included in Table 7 to 9. 

The final rankings are derived from comprehensive 

distance values, offering a structured and accurate 

multi-criteria decision-making approach as shown in 

Table 10. 

The approach of COBRA was utilized and eleven 

materials were ranked for optimal design. COBRA 

method presents that acrylic (MT-3), PET (MT-8), 

and PA type 6 (MT-5) are the most appropriate 

materials since lower comprehensive distances (DC) 

are obtained. Such materials as Nylon 101 (MT-4) 

and PP Copolymer (MT-10) were rated as the least 

suitable on account of the relatively large DC 

values. This methodology provides the objective, 

empirical criteria for choosing 3D printing materials 

that will improve functionality and performance of 

the prosthesis. 

Table 7. Weighted Normalization of the Decision-Matrix 

Material TS  EM  PR VON  MD  RD  ES  CO  

MT-1 0.0417 0.0957 0.1242 0.1397 0.0729 0.0518 0.0518 0.0379 

MT-2 0.0313 0.0794 0.1256 0.1397 0.0695 0.0626 0.0629 0.0682 

MT-3 0.0761 0.1191 0.1115 0.1387 0.0817 0.0403 0.0404 0.0530 

MT-4 0.0826 0.0397 0.0956 0.1372 0.0783 0.1166 0.1160 0.0834 

MT-5 0.0938 0.1040 0.1083 0.1384 0.0763 0.0458 0.0457 0.0758 

MT-6 0.0653 0.0921 0.1247 0.1397 0.0810 0.0538 0.0538 0.0909 

MT-7 0.0230 0.0425 0.1307 0.1400 0.0648 0.1188 0.1187 0.0303 

MT-8 0.0597 0.1175 0.1179 0.1390 0.0967 0.0415 0.0417 0.0379 

MT-9 0.0745 0.1032 0.1230 0.1397 0.0947 0.0478 0.0481 0.1364 

MT-10 0.0288 0.0353 0.1307 0.1400 0.0606 0.1417 0.1416 0.0379 

MT-11 0.0424 0.0957 0.1219 0.1394 0.0885 0.0514 0.0515 0.0303 

PIS 0.0938 0.1191 0.1307 0.1400 0.0606 0.0403 0.0404 0.0303 

NIS 0.0230 0.0353 0.0956 0.1372 0.0967 0.1417 0.1416 0.1364 

AS 0.0563 0.0840 0.1195 0.1392 0.0786 0.0702 0.0702 0.0620 

Table 8. Distances from Positive and Negative Ideal Solution 

 
Distances from Positive Ideal Solution 

d(PIS) 

Distances from Negative Ideal Solution 

 d(NIS) 

Material dE(PIS) dT(PIS) σ(PIS) d(PIS) dE(NIS) dT(NIS) σ(NIS) d(NIS) 

MT-1 0.0614 0.1251 0.0964 0.0622 0.1767 0.4121 0.1063 0.1845 

MT-2 0.0896 0.1992 0.0964 0.0913 0.1441 0.3380 0.1063 0.1493 

MT-3 0.0406 0.0820 0.0964 0.0409 0.1944 0.4552 0.1063 0.2038 

MT-4 0.1495 0.3512 0.0964 0.1545 0.0895 0.1860 0.1063 0.0912 

MT-5 0.0557 0.1110 0.0964 0.0563 0.1799 0.4262 0.1063 0.1881 

MT-6 0.0777 0.1699 0.0964 0.0789 0.1536 0.3674 0.1063 0.1596 

MT-7 0.1523 0.3085 0.0964 0.1568 0.1209 0.2288 0.1063 0.1238 

MT-8 0.0519 0.0957 0.0964 0.0524 0.1957 0.4416 0.1063 0.2049 

MT-9 0.1150 0.1986 0.0964 0.1172 0.1599 0.3386 0.1063 0.1656 

MT-10 0.1784 0.3590 0.0964 0.1846 0.1108 0.1783 0.1063 0.1129 

MT-11 0.0655 0.1344 0.0964 0.0664 0.1797 0.4028 0.1063 0.1874 
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3. Application of the EDAS Method 

In this paper, we use EDAS approach to prioritize 

11 alternative materials for robot prosthesis palm 

based on the weight of LOPCOW. This procedure 

consists of building a decision matrix, calculating 

the average criterion values, and measuring positive 

and negative distances based on Equations 26 to 30. 

Weighted sums are then calculated, divided by their 

maximum values, and a final appraisal score and the 

ranking of the alternatives is calculated according to 

Equation 31 to 35 as following applicable values 

has shown for efficient selection of 3D printing 

material for based on performance base criteria as 

shown in Table 11 to 13. 

Table 9. Positive and Negative Distances from Average Solution 

 
Positive Distances from Average Solution 

d(AS)+ 

Negative Distances from Average Solution 

d(AS)- 

Material dE(AS)+ dT(AS)+ σ(AS)+ d(AS)+ dE(AS)- dT(AS)- σ(AS)- d(AS)- 

MT-1 0.0126 0.0168 0.0930 0.0126 0.0388 0.0813 0.0404 0.0389 

MT-2 0.0087 0.0127 0.0930 0.0087 0.0290 0.0538 0.0403 0.0291 

MT-3 0.0404 0.0579 0.0930 0.0406 0.0439 0.0771 0.0403 0.0440 

MT-4 0.0735 0.1400 0.0930 0.0745 0.0504 0.0705 0.0403 0.0505 

MT-5 0.0447 0.0713 0.0930 0.0450 0.0364 0.0632 0.0403 0.0364 

MT-6 0.0319 0.0541 0.0930 0.0321 0.0232 0.0327 0.0403 0.0231 

MT-7 0.0696 0.1091 0.0930 0.0703 0.0635 0.1203 0.0403 0.0637 

MT-8 0.0382 0.0550 0.0930 0.0384 0.0471 0.0830 0.0403 0.0472 

MT-9 0.0807 0.1318 0.0930 0.0816 0.0314 0.0445 0.0403 0.0314 

MT-10 0.1017 0.1549 0.0930 0.1031 0.0635 0.1184 0.0403 0.0638 

MT-11 0.0155 0.0241 0.0930 0.0155 0.0436 0.0831 0.0403 0.0437 

Table 10. Comprehensive Distances and Final Ranking 

Material d(PIS) d(NIS) d(AS)+ d(AS)- DC Ranking 

MT-1 0.0622 0.1845 0.0126 0.0389 -0.0240 5 

MT-2 0.0913 0.1493 0.0087 0.0291 -0.0094 8 

MT-3 0.0409 0.2038 0.0406 0.0440 -0.0399 1 

MT-4 0.1545 0.0912 0.0745 0.0505 0.0098 11 

MT-5 0.0563 0.1881 0.0450 0.0365 -0.0351 3 

MT-6 0.0789 0.1596 0.0321 0.0232 -0.0224 7 

MT-7 0.1568 0.1238 0.0703 0.0638 0.0066 9 

MT-8 0.0524 0.2049 0.0384 0.0473 -0.0359 2 

MT-9 0.1172 0.1656 0.0816 0.0315 -0.0247 4 

MT-10 0.1846 0.1129 0.1031 0.0638 0.0081 10 

MT-11 0.0664 0.1874 0.0155 0.0437 -0.0232 6 

Table 11. Weighted Sum from PDA 

Material TS  EM  PR VON  MD  RD  ES  CO  

MT-1 0.0000 0.0165 0.0052 0.0005 0.0071 0.0372 0.0371 0.0530 

MT-2 0.0000 0.0000 0.0067 0.0005 0.0113 0.0154 0.0147 0.0000 

MT-3 0.0330 0.0497 0.0000 0.0000 0.0000 0.0603 0.0602 0.0197 

MT-4 0.0439 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 

MT-5 0.0625 0.0283 0.0000 0.0000 0.0029 0.0493 0.0493 0.0000 

MT-6 0.0151 0.0115 0.0057 0.0005 0.0000 0.0330 0.0331 0.0000 

MT-7 0.0000 0.0000 0.0123 0.0008 0.0170 0.0000 0.0000 0.0697 

MT-8 0.0057 0.0475 0.0000 0.0000 0.0000 0.0579 0.0575 0.0530 

MT-9 0.0304 0.0272 0.0038 0.0005 0.0000 0.0451 0.0446 0.0000 

MT-10 0.0000 0.0000 0.0124 0.0008 0.0222 0.0000 0.0000 0.0530 

MT-11 0.0000 0.0165 0.0027 0.0001 0.0000 0.0379 0.0378 0.0697 
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The EDAS approach with the LOPCOW-based 

weighting criterion is successfully rank 11 materials 

for a robotic prosthetic palm. The highest score 

(0.9839) is given to Acrylic (MT-3) followed by 

PET (MT-8) and PA Type 6 (MT-5) with good 

overall value. Low-rank materials such as Nylon 101 

(MT-4) and PP Copolymer (MT-10) are below 

average in deviation score as well as shown in 

Table 13. This method secures a well-balanced 

comparison, taking into account both positive and 

negative distances, for the precise and efficient 

material selection in 3D printing. 

V. Assessment of Results 

This section discusses a tri-phase strategy to 

examine the dependability of the results. In the first 

phase, the outcomes of the selected MCDM model 

are evaluated with those of the conventional 

methods, and the Copeland voting is utilized to rank 

the alternatives to get the overall ranking. The 

second stage is to estimate the Spearman rank 

correlation coefficient in order to quantify the level 

of agreement in the rankings obtained under the sel- 

-ected method. Sensitivity analysis is the third stage 

used on RD criteria, to evaluate the stability and 

robustness of secondary ordinal rankings in different 

states. 

1. Comparative Analysis of Various MCDM 

Methods and Consolidated Ranking 

The assessment of 3D printing materials for 

prosthetic palm design involves comparing results 

from LOPCOW-COBRA and LOPCOW-EDAS 

methods with established MCDM techniques such as 

TOPSIS, WSM, WPM, WASPAS, PIV, and 

MOOSRA. The Copeland voting method [59] 

applies to achieve a detailed final ranking by 

integrating both victories and defeats of each 

alternative into the traditional Borda count. The WIN 

score for each alternative emerges by totaling its 

positions across all MCDM methods. The LOSS 

score emerges through deducting the positions of 

rival options from the WIN score. Each alternative's 

final performance score emerges through the 

subtraction of LOSS scores from WIN scores. 

Through the integration of outcomes from eight 

distinct methods combined with Copeland 

aggregation, this research establishes a final priority 

list to determine the optimal material choice. 

Stakeholders in robotic prosthetic palm development 

can utilize the consolidated ranking presented in 

Table 14 and Fig. 3 as a decision-making tool that 

allows them to evaluate the eleven materials from 

most to least effective based on their exceptional 

characteristics. 

Table 12. Weighted Sum from NDA 

Material TS  EM  PR VON  MD  RD  ES  CO  

MT-1 0.0243 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MT-2 0.0417 0.0065 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 

MT-3 0.0000 0.0000 0.0087 0.0005 0.0038 0.0000 0.0000 0.0000 

MT-4 0.0000 0.0628 0.0261 0.0021 0.0000 0.0937 0.0924 0.0470 

MT-5 0.0000 0.0000 0.0122 0.0008 0.0000 0.0000 0.0000 0.0303 

MT-6 0.0000 0.0000 0.0000 0.0000 0.0030 0.0000 0.0000 0.0637 

MT-7 0.0554 0.0589 0.0000 0.0000 0.0000 0.0981 0.0979 0.0000 

MT-8 0.0000 0.0000 0.0017 0.0002 0.0222 0.0000 0.0000 0.0000 

MT-9 0.0000 0.0000 0.0000 0.0000 0.0197 0.0000 0.0000 0.1637 

MT-10 0.0459 0.0690 0.0000 0.0000 0.0000 0.1443 0.1440 0.0000 

MT-11 0.0231 0.0000 0.0000 0.0000 0.0122 0.0000 0.0000 0.0000 

Table 13. Normalize Value of WSP, WSN and Final Ranking 

Material 𝑾𝑺𝑷𝒊 𝑾𝑺𝑵𝒊 𝑵𝑾𝑺𝑷𝒊 𝑵𝑾𝑺𝑵𝒊 𝑭𝑨𝑺𝒊 Rank 

MT-1 0.1566 0.0243 0.7027 0.9396 0.8212 5 

MT-2 0.0486 0.0619 0.2179 0.8465 0.5322 8 

MT-3 0.2229 0.0130 1.0000 0.9679 0.9839 1 

MT-4 0.0443 0.3241 0.1987 0.1961 0.1974 11 

MT-5 0.1924 0.0433 0.8631 0.8927 0.8779 3 

MT-6 0.0988 0.0666 0.4431 0.8348 0.6389 6 

MT-7 0.0998 0.3103 0.4476 0.2304 0.3390 9 

MT-8 0.2216 0.0241 0.9942 0.9402 0.9672 2 

MT-9 0.1516 0.1834 0.6801 0.5451 0.6126 7 

MT-10 0.0883 0.4032 0.3964 0.0000 0.1982 10 

MT-11 0.1647 0.0353 0.7390 0.9125 0.8257 4 
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Among all materials, Acrylic (MT-3) is the best in 

all MCDM methods. It is ranked first in COBRA, 

EDAS, TOPSIS, PIV, and MOOSRA but placed 

second in WSM, WPM, and WASPAS. Due to high 

strength with a balanced elastic modulus at a 

moderate price and excellent strain displacement 

behaviour, Acrylic is preferred as the most suitable 

material for making prosthetic palms showing well-

rounded characteristics matching highly weighted 

criteria that led to the first Copeland rank. The 

second-ranked material is PET (MT-8), which 

showed remarkable constancy since it was ranked 

first or second in all MCDM methods. Because of its 

low cost and strong mechanical performance as well 

as good strain behaviour, PET would be an excellent 

substitute for Acrylic. Its top-ranking performance in 

WSM, WPM, and WASPAS indicates that it 

performs well under purely additive as well as 

multiplicative evaluation frameworks. 

PA Type 6 (MT-5) is achieved the third Copeland 

rank, exhibiting mid-to-high performance across all 

techniques. It presents a good balance of tensile 

strength, density, and strain-related properties, 

making it a suitable choice under cost-performance 

considerations. Close to fourth place was PVC Rigid 

(MT-11), which boasts excellent cost-effectiveness 

as well as structural integrity to support its use in 

non-flexible prosthetic components.  

While none of the methods showed superiority, 

consistency is what keeps it among the leading 

performers. In fifth place was ABS PC (MT-1) with 

moderate to high performance for all criteria and 

methods. This material might have good printability 

Table 14. Alternative’s ranking.  

Material 

COBRA 

RANK 

EDAS 

RANK 

TOPSIS 

RANK 

WSM 

RANK 

WPM 

RANK 

WASPAS 

RANK 

PIV 

RANK 

MOOSRA 

RANK 

COPELAND 

RANK 

MT-1 5 5 3 5 5 5 4 3 5 

MT-2 8 8 7 8 8 8 7 7 8 

MT-3 1 1 1 2 2 2 1 1 1 

MT-4 11 11 11 11 11 11 10 10 11 

MT-5 3 3 5 3 4 4 3 4 3 

MT-6 7 6 6 7 6 7 6 6 6 

MT-7 9 9 9 9 9 9 9 9 9 

MT-8 2 2 2 1 1 1 2 2 2 

MT-9 4 7 8 6 7 6 8 8 7 

MT-10 10 10 10 10 10 10 11 11 10 

MT-11 6 4 4 4 3 3 5 5 4 

 

Figure 3. Ranking Comparison of alternative materials with eight different MCDM method 
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coupled with moderate mechanical strength, thus 

making it an acceptable candidate under certain 

constraints. PC High Viscosity (MT-6) was ranked 

sixth without showing exceptional or significant 

underperformance in most criteria. This material 

would be particularly suitable for designs requiring 

flexibility or specific printing properties. 

POM Acetal Copolymer showed the most 

variability in ranking, placed between 4th and 8th 

depending on the method, thus giving an overall rank 

of 7. Such variability may imply inconsistency in 

performance under highly critiqued criteria such as 

strain and displacement. ABS was consistently 

positioned at the eighth spot and PE High-Density at 

ninth, which indicates their performance consistency 

gets neither extreme nor too low- suggesting that 

these materials do not possess the required 

mechanical strength or flexibility to be used as 

prosthetic components. PP Copolymer was ranked 

tenth among the MCDM methods while Nylon 101 

was placed eleventh. The two worst-performing 

materials had Copeland ranks of 10 and 11, 

respectively. All MCDM methods ranked them last 

or close to it, meaning they fail terribly in meeting 

desired mechanical as well as cost parameters. Nylon 

101 has been rated eleventh in all processes; hence it 

would have very poor suitability for the concerned 

application. 

This full multi-criteria study has identified 

Acryllic (MT-3) and PET (MT-8) as the two best 

materials for 3D printed prosthetic palm 

applications. These have the performance qualities 

we want at a less expensive cost, and they were 

stable in the ranking comparison figure 3 with almost 

all the MCDM ranking methods. These materials 

rate high based on heavy performance criteria 

weighting like strain, displacement and stress 

resistance. Other materials such as PA Type 6, PVC 

Rigid and ABS PC have at least some means of 

promise potentially based on design specifications. 

The least favorable candidates were Nylon 101 and 

PP Copolymer based on the majority of failing to 

reconcile over most of the performance criteria. 
 

2. Spearman's rank correlation 

This study evaluates the consistency of ranking 

outcomes across different methods using the 

Spearman rank correlation coefficient [60], 

calculated using Equation 36. This coefficient (𝑆𝑅𝑐) 

measures the correlation between rankings from 

various MCDM techniques, with values ranging 

from -1 to 1. Here, 𝑅𝑑 represents the difference in 

ranks, and 𝑁𝑎 is the number of alternatives. As 

shown in Table 15, the high Spearman coefficients 

(typically between 0.8 and 1.0) suggest strong 

agreement among the methods, confirming the 

reliability of the chosen ranking approach. 

𝑆𝑅𝑐 = 1 −
6 × ∑𝑅𝑑

2

𝑁𝑎 × (𝑁𝑎
2 − 1)

 
 

(36) 

The Spearman correlation matrix reveals the 

degree of agreement between the eight applied 

MCDM techniques used to rank the 3D printing 

materials for prosthetic palm applications. Overall, 

the correlation coefficients range from 0.86 to 1.00, 

indicating a strong positive correlation across all 

methods. This consistency reflects the reliability of 

the techniques in evaluating alternatives and 

enhances confidence in the final decision outcomes. 

Among the combinations, EDAS and WSM display 

an exceptionally high correlation of 0.9818, closely 

followed by WPM and WASPAS with 0.9909, and 

PIV and MOOSRA with 0.9909 as well. These 

values suggest that these pairs of methods generate 

nearly identical rankings, highlighting their 

compatibility and similar evaluation logic. 

Interestingly, TOPSIS and COBRA present the 

lowest correlation at 0.8636, though still within a 

high agreement range. This indicates that while 

COBRA and TOPSIS are somewhat aligned, their 

assessment criteria or algorithmic focus may differ 

more significantly compared to other method pairs. 

WSM, WPM, and WASPAS are among the most 

consistently aligned methods, each correlating 

highly with the others and with EDAS, reflecting 

their shared foundation in weighted-sum or product-

based logic. Meanwhile, MOOSRA also shows 

Table 15. Spearman correlation scores between MCDM Techniques 

 COBRA EDAS TOPSIS WSM WPM WASPAS PIV MOOSRA 

COBRA 1.0000 0.9364 0.8636 0.9545 0.9000 0.9273 0.9000 0.8818 

EDAS 0.9364 1.0000 0.9545 0.9818 0.9818 0.9727 0.9727 0.9545 

TOPSIS 0.8636 0.9545 1.0000 0.9273 0.9545 0.9364 0.9636 0.9818 

WSM 0.9545 0.9818 0.9273 1.0000 0.9818 0.9909 0.9455 0.9273 

WPM 0.9000 0.9818 0.9545 0.9818 1.0000 0.9909 0.9455 0.9364 

WASPAS 0.9273 0.9727 0.9364 0.9909 0.9909 1.0000 0.9273 0.9182 

PIV 0.9000 0.9727 0.9636 0.9455 0.9455 0.9273 1.0000 0.9909 

MOOSRA 0.8818 0.9545 0.9818 0.9273 0.9364 0.9182 0.9909 1.0000 
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strong correlation values with all others, particularly 

with TOPSIS and PIV, emphasizing its robustness 

and agreement with the broader evaluation 

framework. So, the Spearman correlation analysis 

validates the coherence and robustness of the 

employed MCDM techniques. The strong inter-

method correlations reinforce the credibility of the 

final material rankings, particularly those aggregated 

through the Copeland method. This suggests that 

decision-makers can confidently rely on the 

outcomes of this comparative analysis when 

selecting materials for prosthetic palm design. 

3. Sensitivity Analysis on the presented study 

This section of the paper examines the reliability 

and the stability of the two MCDM techniques which 

have been applied in the study. In real-world 

applications, the input of the stakeholders is often 

based on their own insights and preferences, which 

are usually shaped through their experiences and 

their expertise. Though these inputs are precious, 

sometimes they can create biases which may lead to 

uncertainty and thus be one of the reasons that the 

decision outcomes would be affected. The first step 

in the sensitivity analysis is to modify the weight of 

the criteria in the decision-making process 

systematically so that it is possible to measure how 

different criteria alterations impact the final ranks. 

For instance, the pre-study has eight aspects that are 

used to rank the candidate materials for prosthetic 

palm design. The first step is to find the most 

influential criteria (MIC) by using a criteria 

weighting method. 

Ciphering the weight of this criterion is the next 

procedure that provides an understanding of how the 

rankings are influenced by the MIC weight. Here, 

one can know the degree of ranking consistency 

which would depend exclusively on the MIC weight 

and thus know the weaknesses and strengths of the 

MCDM model vis-à-vis the changes of the decision-

making context.  

The process of sensitivity analysis by criterion 

weight variation is explained through the following. 

Step 1: Estimation of Elastic Weight Coefficient 

(𝐸𝑊𝐶) 

Elastic Weight Coefficient serves as an indicator 

of how changes in MIC’s weight impact the balance 

among all other criteria. It reflects the proportional 

adjustment required for the remaining weights when 

the MIC's weight is modified. For the MIC itself, this 

coefficient is always set to 1, indicating full impact. 

For the other parameters, Equation 37 is used to 

compute their respective coefficients. 

𝐸𝑊𝐶 =
𝑂𝑤

1 − 𝑂𝑤𝑚𝑖𝑐
 

(37) 

Where, 𝑂𝑤 is the original weight of the criterion 

being adjusted, 𝑂𝑤𝑚𝑖𝑐is the weight of the most 

influential criteria. This calculation ensures that 

changes in one parameter are properly compensated 

by adjustments in others, maintaining the overall 

balance of the weight distribution. The resulting 𝐸𝑊𝐶  

values are listed in Table 16. 

Step 2: Determination of Permissible Weight 

Variation (∆x) 

This step involves in calculating the ∆x factor, 

which represents the extent of weight variation 

applied to the criteria set based on the corresponding 

elastic weight coefficients. To maintain validity, the 

adjusted weight of the most influential criteria must 

not exceed certain bounds; otherwise, it may cause 

some weights to become negative, violating the 

condition of weight non-negativity. A positive ∆x 

implies an increase in relative influence, while a 

negative ∆x implies a reduction. Equation (38) is 

used to define the permissible range of ∆x, and the 

resulting limits are listed in Table 16. 

−𝑂𝑤𝑚𝑖𝑐 ≤ ∆𝑋 ≤ 𝑀𝐼𝑁 (
𝑂𝑤
𝑂𝑤𝑚𝑖𝑐

) 
(38) 

Step 3: Recalculation of Updated Weights based 

on ∆x 

In this step, new weights for the MIC and the 

remaining criteria are determined using Equation 39. 

The updated weight of the MIC (𝑊𝑛𝑢) is calculated 

by adding the product of the elastic weight 

Table 16. 𝐸𝑊𝐶  with varying weights 

Criteria Calculated Weight 𝑬𝑾𝑪 ΔX 

W-6 (RD) 0.1417 1 - 

W-1 (TS) 0.0938 0.1092 0.8583 

W-2 (EM) 0.1191 0.1387 0.8583 

W-3 (PR) 0.1307 0.1523 0.8583 

W-4 (VON) 0.1400 0.1630 0.8583 

W-5 (MD) 0.0967 0.1126 0.8583 

W-7 (ES) 0.1416 0.1649 0.8583 

W-8 (CO) 0.1364 0.1589 0.8583 
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coefficient and ∆x to the original MIC weight. 

Conversely, for the other criteria, their new weights 

(𝑊𝑛𝑜) are obtained by subtracting this product from 

their original values (𝑂𝑤). This adjustment ensures 

that the total of all new weights remains normalized 

(i.e., their sum equals 1), maintaining 

proportionality. The corresponding values are 

presented in Table 17. 

𝑊𝑛𝑢 = 𝑂𝑤𝑚𝑖𝑐 + (𝐸𝑤𝑐 × ∆𝑋)  

𝑊𝑛𝑜 = 𝑂𝑤 − (𝐸𝑤𝑐 × ∆𝑋) (39) 

Any alteration in the weights of the criteria 

(derived through the ranking technique) can 

significantly affect the final order of the available 

alternatives in certain cases. To assess the 

consistency and resilience of the decision-making 

model, a sensitivity analysis was conducted to 

identify if such variations might occur. For this 

purpose, the allowable range of weight variation 

(∆x) for parameter “W6” was calculated, ranging 

from -0.1417 to 0.8583. After establishing these 

boundaries, 22 different weight scenarios were 

generated using Equation 39, as presented in Table 

17. This table also indicates that when ∆x equals 0, 

the weights across all criteria match their initial 

values, confirming the consistency of the original 

setup. 

For example, the 3rd alternative is constantly the 

top performer (Rank 1) under all scenarios, thus, 

giving evidence of the unprecedentedly strong 

stability and performance of the system independent 

of the variation in the criteria weights.  

Correspondingly, the 5th alternative is solid at 

Rank 3, and the 8th and 9th alternatives continue to 

secure Ranks 2 and 4, respectively as shown in Fig. 

4. This is the evidence of the fact that these materials 

are indeed very robust and can be recommended with 

great confidence even under changed decision 

conditions. Contrarily, materials like the 4th and the 

11th are not that much affected. At first, the 4th 

alternative moves up from Rank 11 in scenarios 1 to 

5 (C1–C5) to Rank 9 in scenarios 11 to 22 (C11–

C22), and the 11th alternative changes from Rank 6 

to Rank 5 in the middle positions. These changes 

make it clear that their orders are tied to the specific 

criteria that are accentuated by the weight. Further, 

the 2nd (always Rank 8), 6th (always Rank 7), and 

7th (always Rank 9) alternatives, though not 

identical, have similar stable performances in the 

mid-tier, maintaining their positions neither 

extraordinarily well nor significantly declining from 

the best. As for the 10th alternative, the drop from 

Rank 10 to 11 after the fifth scenario shows that the 

level of sensitivity is small. Generally speaking, the 

rankings distribution emphasizes the credibility of 

the decision-making framework—one that can track 

the meaningful alterations as weights change, while 

simultaneously upholding the stability of the best 

options under different evaluation scenarios. 

Table 17. New Criteria Weight (𝑊𝑛𝑢 and 𝑊𝑛𝑜) 

 Case del X W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 Total 

C1 -0.142 0.109 0.139 0.152 0.163 0.113 0.000 0.165 0.159 1.000 

C2 -0.100 0.105 0.133 0.146 0.156 0.108 0.042 0.158 0.152 1.000 

C3 -0.050 0.099 0.126 0.138 0.148 0.102 0.092 0.150 0.144 1.000 

C4 0.000 0.094 0.119 0.131 0.140 0.097 0.142 0.142 0.136 1.000 

C5 0.050 0.088 0.112 0.123 0.132 0.091 0.192 0.133 0.128 1.000 

C6 0.100 0.083 0.105 0.116 0.124 0.085 0.242 0.125 0.121 1.000 

C7 0.150 0.077 0.098 0.108 0.116 0.080 0.292 0.117 0.113 1.000 

C8 0.200 0.072 0.091 0.100 0.107 0.074 0.342 0.109 0.105 1.000 

C9 0.250 0.066 0.084 0.093 0.099 0.069 0.392 0.100 0.097 1.000 

C10 0.300 0.061 0.077 0.085 0.091 0.063 0.442 0.092 0.089 1.000 

C11 0.350 0.056 0.071 0.077 0.083 0.057 0.492 0.084 0.081 1.000 

C12 0.400 0.050 0.064 0.070 0.075 0.052 0.542 0.076 0.073 1.000 

C13 0.450 0.045 0.057 0.062 0.067 0.046 0.592 0.067 0.065 1.000 

C14 0.500 0.039 0.050 0.055 0.058 0.040 0.642 0.059 0.057 1.000 

C15 0.550 0.034 0.043 0.047 0.050 0.035 0.692 0.051 0.049 1.000 

C16 0.600 0.028 0.036 0.039 0.042 0.029 0.742 0.043 0.041 1.000 

C17 0.650 0.023 0.029 0.032 0.034 0.023 0.792 0.034 0.033 1.000 

C18 0.700 0.017 0.022 0.024 0.026 0.018 0.842 0.026 0.025 1.000 

C19 0.750 0.012 0.015 0.016 0.018 0.012 0.892 0.018 0.017 1.000 

C20 0.800 0.006 0.008 0.009 0.010 0.007 0.942 0.010 0.009 1.000 

C21 0.850 0.001 0.001 0.001 0.001 0.001 0.992 0.001 0.001 1.000 

C22 0.858 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 
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Fig. 5 shows the rankings of 11 alternatives under 

22 different weight scenarios (C1–C22). Each 

alternative is shown how it performs in different 

decision contexts using LOPCOW-EDAS. The most 

notable finding is the 3rd alternative which is always 

Rank 1 across all scenarios, it’s very robust and 

perform well regardless of changes in criteria 

weight.  

The 5th alternative is also consistent at Rank 3, the 

8th alternative at Rank 2, and the 6th and 7th at 6 and 

9 respectively. The 4th alternative is sensitive to 

weight changes, its Rank 11 from C1 to C4, then 

Rank 10 from C5 to C18 and finally Rank 9 from 

C19 onwards. Its performance gets better as the 

weight scheme evolves.  

 

 

 

 

 

 

 

 

The 9th alternative is also sensitive, it’s Rank 8, 

then Rank 7 from C2 to C5, Rank 6 from C6 to C12 

and finally Rank 5 from C13 to C22. It’s a big 

upward trend. The 11th alternative is Rank 4 to 5 in 

the last few scenarios, its moderate sensitive. The 

10th alternative is slightly down, it’s Rank 10 from 

C1 to C4 and then consistently Rank 11 afterwards. 

Overall the Fig. 5 shows a ranking framework that 

shows both robust and sensitive alternatives. The 

3rd, 5th and 8th alternatives are not affected by 

weight changes while the 4th, 9th and 11th 

alternatives show the model can detect performance 

shifts due to weight changes, thus the sensitivity 

analysis is working. 

 

Figure 4. LOPCOW-COBRA Sensitivity Analysis 
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VI. Conclusion 

This paper presents a robust and integrated 

decision making framework combining LOPCOW, 

COBRA and EDAS methods to select materials for 

the design of a robotic prosthetic palm. The 

framework provides a systematic way to evaluate 

and rank multiple 3D printing material alternatives 

based on multiple performance criteria. 

i. Through LOPCOW methodology eight 

essential criteria weights were determined 

which highlight Resultant Displacement 

(0.1417), Equivalent Strain (0.1416), and Max 

von Mises Stress (0.1400) as key factors for 

assessing 3D printing materials in 

biomechanical uses. 

ii. The application of both COBRA and EDAS 

methods resulted in the ranking of materials. 

The investigation revealed consistent and 

insightful results which demonstrated dual-

method validation as a valuable approach for 

obtaining reliable material rankings. 

iii. Through the application of Copeland voting 

methodology to consolidate outcomes, Acrylic 

(MT-3) attained the position of top-performing 

material with PET (MT-8) and PA Type 6 (MT-

5) following in rank. The proposed evaluation 

system demonstrates significant strength 

through reinforced robustness. 

iv. Nylon 101 (MT-4) and PP Copolymer (MT-10) 

emerged at the bottom of the ranking list 

indicating their unsuitability for prosthetic 

palm applications because they perform poorly 

against essential criteria. 

v. Materials such as Acrylic represent top-tier 

choices because they deliver exceptional 

mechanical strength while maintaining 

flexibility and cost-effectiveness, which makes 

them perfect for creating patient-specific 

prosthetic palms. 

vi. Displacement and strain criteria receive 

substantial weight assignments because they 

powerfully affect prosthetic performance to 

guarantee user safety along with durability and 

comfort. 

vii. The Spearman correlation coefficient of 0. The 

value 9364 in LOPCOW-COBRA and 

LOPCOW-EDAS rankings demonstrates 

exceptional methodological agreement. The 

robust concordance serves as evidence for the 

 

Figure 5. LOPCOW-EDAS Sensitivity Analysis 
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integrated MCDM framework's dependability 

while simultaneously boosting trust in the 

material selection results. 

viii. The LOPCOW–COBRA–EDAS framework 

demonstrates adaptability for diverse medical 

device applications and general engineering 

problems requiring efficient material selection. 

1. Practical Implementation 

LOPCOW, COBRA and EDAS together provide a 

robust decision making framework for selecting the 

best 3D printing materials for robotic prosthetic 

palm design. This approach improves product 

performance, reduces manufacturing cost and user 

comfort. The top ranked materials like Acrylic and 

PET offer a practical balance of strength, flexibility 

and cost, making the prosthetic more functional, 

customizable and accessible for real world 

rehabilitation and clinical applications 

2.  Limitation  

One limitation of this study is the use of simulated 

material properties which may not capture the 

complexity of real world prosthetic applications. The 

selected criteria though comprehensive may miss out 

factors like long term durability or biocompatibility. 

Also the MCDM methods assume stable and 

consistent parameter weightings which may vary 

with user specific needs or evolving technologies 

and may affect the generalizability of the material 

selection results. 

3. Future Scope 

This work could be extended in future to evaluate 

durability, comfort and user acceptance under real 

use conditions. If more decision variable, such as 

environmental influence, recyclability, and bio-

compatibility are included, the selection of the 

material becomes more promising and robust.  
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