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Abstract: Linear Fractional Programming is a mathematical optimization approach that addresses problems 

involving the optimization of a linear fractional objective function subject to linear constraints. We 

discussed approach to solving the fuzzy LFPP with and without equality constraints. We have solved 

this problem without converting it from fuzzy to crisp. First, we changed FLFPP into the FLPP. This 

problem was converted into parametric form then we solved it using the LU decomposition method 

to obtain the solution. We presented a numerical example with a real-life application for the simplicity 

of presenting the algorithm. While most researchers solve FLFPPs using the ranking function method, 

this method reduces the efficiency of the fuzzy problem. Linear fractional problems with inequality 

constraints sometimes do not have an optimal solution by using the LU decomposition method. 

Therefore, we conclude that there is a limitation for this LU decomposition method only for LFP 

problems with equality constraints. 

Keywords: Fuzzy Linear fractional programming; Parametric form; Equality constraint; LU decomposition; 

Optimal solution.  
 

I. INTRODUCTION 

One of the most crucial methods in operations 

research is the LFPP. LFP is a mathematical 

optimization technique its applications in corporate 

planning, hospital planning, production planning, 

and engineering fields. In LFP, the objective 

function is a ratio of two linear functions, and the 

constraints are linear functions. LFPP is a 

generalization of LPP, which is used to solve 

optimization problems using linear equations and 

linear inequalities. While LP computes the best 

outcome, such as Maximum profit or lowest cost. 

But LFP is used to achieve the highest ratio of 

outcome to cost, representing the highest efficiency. 

Researchers have developed various methods for 

solving linear fractional problems. 

In applications like economics, finance, 

engineering, and healthcare, exact numerical values 

are often unavailable due to fluctuating conditions, 

measurement errors, or human subjectivity. Fuzzy 

sets provide a flexible mathematical framework to 

handle such vagueness by representing uncertain 

parameters as fuzzy numbers. It is a common 

scenario where the precise values of various 

parameters are only vaguely known, often 

represented by fuzzy numerical data, commonly 

known as fuzzy numbers, this leads to consider the 

LFPP with fuzzy. In some situations, the utilization 

optimization is due to its decision criteria. Bellman 

and Zadeh [1, 2] have contributed to decision-

making in fuzzy. Specifically, the concept of 

decision-making in uncertainty and vagueness. This 

gives to FLFPP all parameters are denoted as fuzzy 

numbers. This technique aims at uncertainty and 

vagueness in the problem, substituting crisp numbers 

with fuzzy ones. Consequently, the LFP transforms 

into FLFPP. A pivotal development in FLFPP was 

introduced by Charles and Cooper [3]. They 
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successfully transformed LFPP to LPP and got 

solutions using the Simplex method. Fuzzy set 

theory was discussed in 1991 by Zimmerman [4]. 

Enables a more realistic representation of 

uncertain constraints and objective functions. 

Enhances the flexibility of optimization models in 

handling practical problems with ambiguous or 

incomplete information. Provides decision-makers 

with a range of possible solutions rather than a single 

deterministic outcome, improving decision 

flexibility. 

Many researchers then used this idea to create 

numerous methods for solving fuzzy optimization 

problems. Recent years have seen a rise in interest in 

fuzzy optimization. Buckley and Feuring [5, 6] 

solved fully fuzzy LPP with fuzzy numbers. In 

different situations, researchers have used fuzzy 

numbers in which just specific aspects of the 

problem, such as the objective function and right-

hand side, or only variables or parameters, were 

considered to be fuzzy. Ganesan et al. [7] solved FLP 

problems with symmetric Trapezoidal numbers. 

Maleki et al. and Safei [8] proposed a method for 

solving the FLFP problem by using the 

decomposition method. The FLFP problem was also 

studied by Pandian et al. [9] using a similar 

approach. Pop et al. [10] introduced an innovative 

approach for addressing the full FLFPP with TFN. 

Their method involves an initial transformation of 

the fuzzy problem into a multi-objective LFPP 

accompanied by quadratic constraints. This 

transformation of the extension principle, notably 

the Zadeh method. Stanu-Minaian [11] also 

presented a solution for the fully fuzzified LFPP. 

Their model begins with the utilization of the 

Charnes and Cooper method [3] to convert the LFPP 

into an equivalent LP form. Subsequently, they deal 

with deterministic multiple-objective LPPs that 

incorporate quadratic constraints. In this context, it 

is important to emphasize that the objective 

functions cost, resource allocations, and 

technological coefficients are all characterized as 

TFNs. 

Veeramani et al. [12], came up with a new way to 

solve FLFPP. They divided the problem into smaller 

parts, each of which is a multi-objective LPP. These 

smaller problems were solved separately, and this 

process allowed them to find solution for the original 

fuzzy LFPP. Murugananthan et al. [13-15] applied 

the Harmonic technique for solving multi-objective 

FLFPP and used the LU(Lower-Upper) 

decomposition method for solving FLFPP 

converting to the equivalent crisp form [16]. Sadeghi 

et al. [17] investigated the connection between linear 

bi-level multi-follower programming problems and 

multiple objective programming. Kumar et al. [18] 

solved FFLP problems with equality constraints. 

Swarup [19] discussed a simple method to solve 

LFPP. Loganathan et al. [20, 21] solved FLFPP 

without converting the crisp form. Das et al. [22, 23] 

suggested a new method to solve the FLFPP and 

tried FLFP with trapezoidal and [24] suggested Fully 

FLFPP transform into Fully Fuzzy LPP and again 

convert to multi-objective LPP to obtain the results. 

Likewise, fuzzy sets and systems have many real-life 

applications [25]. Basha et al. [26] solved FMOLPP 

using the Chandra Sena approach. Gilany et al. [27] 

introduce a wavelet based fault location method for 

age cable system using synhronized digital fault 

data, offering reliable fault detection even near 

busbars while mitigating the impact of changing 

cable parameters. 

Malik et al. [28] applied a fully intuitionistic 

fractional programming problem in an E-education 

system. Kalifa et al. [29] developed MOLFPP with 

LR variables using a goal program method. Singh et 

al. [30] scalarised the MOLP by minimum bounded 

sum operator, gamma connective to get optimality. 

Risk-Allah et al. [31] Presented a fuzzy TOPSIS and 

Jaya approach, for solving the BL-MOLFP problem. 

Peric et al. [32] analyzed MOLFPP for the Iterative 

method. Das et al. [33] solved Neutrosophic LFPP 

with mixed constraints and obtained the optimal 

solution. Bogdana et al. [34] discussed n solution 

framework that adheres closely to the fundamental 

principles of fuzzy numbers while addressing certain 

differences present in a prior approach described in 

recent literature. Bhatia et al. [35] using the Mehar 

approach tackle the resolution of fully FLF 

transportation problems. Farnam et al. [36] focused 

on hesitant FLFPP, defining various types, extending 

the Bellman-Zadeh theory for their solution, and 

proposing a novel approach for one specific type. 

Bajaj et al. [37] introduce a novel model for solving 

MOLFPP with triangular intuitionistic fuzzy 

parameters. It aims to determine acceptable 

deviations in objective values under constraints, 

addressing uncertainty through ( 𝛼 , 𝛽 )-cuts and 

interval-valued fractional objectives, with a 

numerical example illustrating the approach. Nayak 

et al. [38] addressed decision-making uncertainties 

through fuzzy optimization, focusing on MOLFP 

with fuzzy numbers, a solution method involving 

objective function transformation, constraint 

centroid derivation, and fuzzy aspiration levels. 

Borza et al. [39] solved an efficient method for 

solving FLFPP, 𝛼 -cuts to handle fuzzy numbers, 

transforming the problem into a bi-objective LPP 

through interval arithmetic and transformations of 

variable. Further simplified into an LPP using max-

min theory, proving its optimality for the original 

fuzzy problem. 

Several methods are available for solving FLFPP. 

𝛼-Cut Method [40] generates a corresponding crisp 

problem using LPP techniques and [41] used for 

FLFPP into an equivalent crisp LPP by defining a 

linear ranking function that assigns weights to the 

fuzzy numbers. The fuzzy Arithmetic Approach 
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applies to fuzzy numbers in the objective function 

and constraints, subsequently converting the FLFP 

problem into a conventional LFPP. Interval-Valued 

LPP Method is used to convert the FLFP problem 

into an interval-valued LFPP, which can be solved 

using existing interval arithmetic techniques. Prasad 

et al. [52] solved using goal programming approach 

LFPP. Ali et al. [42] studied the intuitionistic fuzzy 

MOLPPs under neutrosophic uncertainty. Solving 

via Metaheuristic Algorithms [43], such as genetic 

algorithms, particle swarm optimization, and 

simulated annealing, have been adapted to solve 

FLFP problems by treating fuzzy numbers as 

interval-valued or crisp values during the 

optimization process. Karthick et al. [53, 54, 55] 

solved trapezoidal LFPP problems. These methods 

are available for solving FLFPP. For this study, we 

used the LU decomposition method, which will 

tackle FLFPPs, offering solutions that balance 

accuracy and computational efficiency. 

Linear Fractional Programming (LFP) has been 

extensively studied in recent years due to its broad 

applicability in optimization problems under 

uncertain environments. The incorporation of fuzzy 

environments into LFP extends its applicability to 

real-world scenarios where decision variables and 

constraints are imprecise. The development of 

different fuzzy frameworks, such as intuitionistic 

fuzzy, neutrosophic fuzzy, trapezoidal fuzzy, and 

triangular fuzzy environments, has significantly 

enhanced the robustness of optimization techniques 

[56, 57, 73, 74]. 

Recent studies have explored various 

mathematical approaches to solving fuzzy-based 

optimization problems, such as geometric 

aggregation techniques, hypersoft sets, and different 

correlation measures (Bouraima et al. [58], 2025; 

Ézsiás et al. [59], 2024). These techniques enable 

researchers to address complex problems in areas 

including material selection, human capital 

development, and decision-making under 

uncertainty (Fatima et al. [60]; Fischer [61]). 

Furthermore, significant advancements have been 

made in applying fuzzy decision-making models to 

domains such as railway track settlement behavior, 

energy cost reduction in hospitals, and robotic 

selection (Fischer & Kocsis Szürke [62]; Gökalp & 

Eti [63]; Imran et al. [64]). 

A notable development in fuzzy-based problem-

solving techniques is the introduction of fuzzy 

difference equations and q-rung orthopair fuzzy sets, 

which have demonstrated improved efficiency in 

handling uncertainty and imprecision [65, 67, 77, 

78]. These methods have also been successfully 

employed in fields like multi-criteria decision-

making and sustainable urban innovation [68-73]. 

The ongoing advancements in fuzzy optimization 

methods, including applications of soft computing 

and intelligent decision analytics, continue to shape 

the evolution of optimization frameworks [76, 77, 

79]. With the continuous development of 

computational tools and heuristic approaches, 

researchers are now able to tackle intricate decision-

making problems in various industries [69, 75]. This 

study aims to further contribute to the field by 

examining the effectiveness of solving Linear 

Fractional Programming problems under fuzzy 

constraints and exploring novel methodologies to 

enhance solution accuracy and computational 

efficiency. 

In this article, we contracted by the following 

shape: Section 2 we analyzed the FLFPP and their 

developments based on available literature. Section 

3 introduces the concept of fuzzy sets, fuzzy 

numbers, and Arithmetic Operations. Framing a 

fractional model for this present study in Section 4. 

Section 5 explains the flexibility of the adopted 

methodology and its advantages and also presents an 

algorithm for FLFPP. We have established the 

application of this study’s Fractional equality and 

inequality constraints and we have solved them 

using the proposed LU-Decomposition-based 

Technique in Section 6. Finally, the Conclusion of 

this study is discussed. 

II. PRELIMINARIES 

Definition 1. [4] If 𝑋 is a universal set and 𝑥 ∈ 𝑋, 

then a fuzzy set 𝐴̃ defined as, 𝐴̃ = {(𝑥, 𝜇𝐴(𝑥)), 𝑥 ∈
𝑋} Where 𝜇𝐴 = membership function.  

Definition 2.[20] A fuzzy set 𝐴̃  is called fuzzy 

number if its membership function 𝐴̃: 𝑅 →   [0,1] 
satisfies the following conditions:   

 𝐴̃ is convex  

 𝐴̃ is normal  

 𝐴̃ is piecewise continuous.  

Definition 3. A fuzzy number 𝐴̃ on R is said to be 

a triangular fuzzy number(TFN)[14] if its 

membership function 𝐴̃: 𝑅 → [0,1]  has the 

following criteria, and this TFN graphical 

representation is presented in Fig. 1. 

𝐴̃(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎1 − 𝑥

𝑎3 − 𝑎2
, 𝑎2 < 𝑥 ≤ 𝑎3

0, otherwise.

 (1) 

 

Figure 1. Graphical representation of TFN 
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The TFN is denoted as notational by 𝐴̃ =
(𝑎1, 𝑎2, 𝑎3). and 𝐹(𝑅) is used for the set of all TFNs.  

Definition 4.[46] A ranking is a function 

𝑅:  𝐹(𝑅)   → 𝑅, which maps each fuzzy number into 

the real line. Let 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) is a TFN then 

𝑅(𝐴̃) =
𝑎1 + 2𝑎2 + 𝑎3

4
 (2) 

Definition 5. [51] Let 𝐴̃ = (𝑎1, 𝑎2, 𝑎3) be a TFN, 

then the parametric form defined as 

𝐴̃ = (𝑎0, 𝑎∗, 𝑎
∗) (3) 

where 

𝑎∗ = 𝑎0 − 𝑎 (4) 

𝑎∗ = 𝑎 − 𝑎0. 𝑎(𝜒) = 𝑎3 − (𝑎3 − 𝑎2)𝜒 (5) 

𝑎(𝑟) = (𝑎2 − 𝑎1)𝜒 + 𝑎1 (6) 

𝑎0 =
𝑎(𝜒) + 𝑎(𝜒)

2
 

(7) 

where r = 1, we get 𝑎0 = 𝑎2 and 𝜒 ∈ [0, 1]. 

1. Arithmetic Operation 

Performing any two TFNs, Ming Ma et al. [47] 

was presented parametric arithmetic operations: 

Let 𝐴̃ = (𝑎0, 𝑎∗, 𝑎
∗)  and 𝐶̃ = (𝑐0, 𝑐∗, 𝑐

∗)  be a 

TFNs then, 

𝐴̃ ∗ 𝐶̃
= (𝑎0 ∗ 𝑐0, 𝑀𝑎𝑥  {𝑎∗, 𝑐∗},𝑀𝑎𝑥  {𝑎

∗, 𝑐∗}) 
(8) 

where * is Addition (+) , Subtraction (−) , 

Multiplication(×), Division(÷). 

III. MODEL FORMULATION 

Linear fractional programming is an extension of 

LPP, the aim of this work is to increase efficient 

optimization techniques for LFPP to address 

complex decision-making scenarios where fractional 

objectives and constraints arise. This approach aims 

to formulate and solve problems involving rational 

expressions, contributing to improved resource 

allocation, cost minimization, and performance 

optimization in various real-world applications. The 

objective further involves exploring the algorithm 

and methodology to enhance the understanding and 

resolution of the FLFPPs, thus advancing 

optimization capabilities for practical decision 

support systems. 

The LFPP can be formulated as 

𝑄(𝑥) =
𝑃(𝑥)

𝐷(𝑥)
=
∑𝑛𝑗=1 𝑝𝑗𝑥𝑗 + 𝑝0

∑𝑛𝑗=1 𝑑𝑗𝑥𝑗 + 𝑑0
 (9) 

subject to 

where   𝑖 = 1,2,3, . . . , 𝑚 and 𝑥𝑗 ≥ 0. 

FLFPP better than a conventional LFPP by 

integrating the uncertainty and imprecision inherent 

to decision-making in the real world. It enables the 

modeling of vague, qualitative, or uncertain data, 

enhancing the representation of complex systems. 

FLFPP offers a more realistic depiction of the fuzzy 

optimization field, accounting for ambiguity in 

objectives and constraints. This approach provides a 

robust framework for addressing practical scenarios 

where precise numerical values may not adequately 

represent the complexities of the problem, ultimately 

resulting in more accurate and trustworthy solutions. 

The incorporation of fuzzy logic improves the 

adaptability and flexibility of decision support 

systems, making them more applicable to real-life 

problems. A general form of FLFPP with Equality 

constraint is defined as 

𝑀𝑎𝑥𝑧̃ =
∑ 𝑎̃𝑖𝑥𝑖 + 𝛼̃

∑ 𝑏̃𝑖𝑥𝑖 + 𝛽
(4) (12) 

subject to 

∑

𝑛

𝑖=1

𝑐̃𝑖𝑗𝑥̃𝑖 = 𝑑̃𝑗  (13) 

where 𝑗 = 1,2, … ,𝑚  and 𝑥𝑖 ≥ 0  for all 𝑖 =
1,2, … , 𝑛.  The following notations will help to 

understand the model developments, 

𝑚 = Number of constraints  

𝑛 = Number of unknowns  

𝑎̃, 𝑏̃ = n-dimensional fuzzy vectors  

𝛼̃, 𝛽 = fuzzy scalars  

𝑐̃𝑖𝑗  = 𝑚 × 𝑛 fuzzy cost matrix  

𝑑̃ = 𝑚 dimensional fuzzy vector  

Throughout this full paper we considered 

𝑎̃, 𝑏̃, 𝑐̃ and 𝑑̃ are triangular fuzzy numbers.  

IV. METHODOLOGY 

For consideration, the LU decomposition method 

in this study and the advantages for solving FLFPP: 

 Numerical Stability: LU decomposition 

enhances numerical stability by decomposing 

the coefficient matrix into lower and upper 

triangular matrices. This stability is crucial 

when dealing with fuzzy numbers, which 

inherently introduce uncertainty and 

imprecision. 

 Efficiency: LU decomposition reduces the 

computational complexity of solving systems 

of linear equations, which are frequently 

encountered in FLFP problems. Once the 

∑

𝑛

𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ or ≥ or = 𝑏𝑖 (10) 
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decomposition is performed, subsequent 

iterations involve forward and backward 

substitution, leading to faster solution times. 

 Simplicity of Implementation: LU 

decomposition is a well-established and widely 

used technique in numerical linear algebra. Its 

straightforward implementation simplifies the 

process of solving FLFPPs, making it 

accessible to researchers and practitioners. 

 Applicability to Large-Scale Problems: LU 

decomposition can efficiently handle large-

scale FLFPPs, where the coefficient matrix 

may be sparse or dense. This makes it suitable 

for real-world applications with complex and 

extensive fuzzy constraints. 

 Integration with Optimization Algorithms: LU 

decomposition can be seamlessly integrated 

into various optimization algorithms, allowing 

for hybrid approaches that combine its 

advantages with optimization strategies for 

enhanced accuracy and efficiency in solving 

FLFPPs.  

In conclusion, the LU decomposition method 

provides numerical stability, computational 

efficiency, ease of implementation, scalability to 

large-scale problems, and compatibility with 

optimisation techniques, making it a useful 

instrument for solving FLFPPs. The FLFPP 

conversion into FLPP using Charnes and Cooper 

method [45] is as follows. Let 

𝑡̃ =
1

∑ 𝑏̃𝑖𝑥𝑖 + 𝛽
 (14) 

and 

𝑦𝑖 = 𝑡̃𝑥𝑖 (15) 

for 𝑖 = 1,2, . , 𝑛. 

𝑀𝑎𝑥𝑧̃ =∑ 𝑎̃𝑖𝑦𝑖 + 𝛼̃𝑡̃ (16) 

subject to 

∑ 𝑏̃𝑖𝑦̃𝑖 + 𝛽𝑡̃ = 1 (17) 

∑

𝑛

𝑖=1

𝑐̃𝑖𝑗𝑦̃𝑖 = 𝑑̃𝑗 𝑡̃(5) 
(18) 

where j=1,2,..,m and 𝑦̃𝑖 , 𝑡̃ ≥   0̃ for all i=1,2,..,n. 

The expandable form of FLPP is  

−∑ 𝑎̃𝑖𝑦̃𝑖 − 𝛼̃𝑡̃ + 𝑧̃ ≤ 0 (19) 

∑ 𝑏̃𝑖𝑦̃𝑖 + 𝛽𝑡̃ = 1 (20) 

∑

𝑛

𝑖=1

𝑐̃𝑖𝑗𝑦̃𝑖𝑑̃𝑗 𝑡̃ = 0 (21) 

−𝑦̃𝑖 , −𝑡̃ ≤   0̃(6) (22) 

The contracted model system has 𝑚  linear 

constraints and 𝑛 unknowns, and then the system is 

𝐴𝑌 = 𝐵.  Where 𝐴 = 𝑚 × 𝑛  fuzzy matrix. 𝑌, 𝐵 =
𝑛 × 1 fuzzy vector. 

1. Modified LU-decomposition method 

In the context of a system comprising m linear 

constraints and n unknowns, the following steps 

outline the LU decomposition method: 

 System Formulation: We begin by expressing 

the system as 𝐴𝑌 = 𝐵, where A represents an 

𝑚 × 𝑛  fuzzy matrix, 𝑌  and 𝐵  are 𝑛 × 1 fuzzy 

vectors. This representation encapsulates the 

constraints and unknown variables of the 

problem. 

 LU Decomposition: In Step 1, we factorize 

matrix 𝐴 into the product of two matrices, 𝐿 (a 

unit lower triangular matrix) and 𝑈 (an upper 

triangular matrix). This decomposition 

facilitates the reduction of the original problem 

into simpler components. 

 Matrix Equation Transformation: Upon 

obtaining 𝐿  and 𝑈  in Step 2, we rewrite the 

system as 𝐿𝑈𝑌 = 𝐵 . This transformation 

allows us to work with the decomposed 

matrices, simplifying the subsequent 

calculations. 

 Intermediate Variable Definition: In Step 3, we 

introduce an intermediate variable, 𝑊, through 

the equation 𝑈𝑌 = 𝑊 . This variable helps in 

breaking down the problem further and 

isolating components for an easier solution. 

   Solution Computation: With 𝑊  defined, we 

proceed to solve the equation 𝐿𝑊 = 𝐵 . By 

obtaining the values of 𝑊, we uncover a crucial 

aspect of the solution. 

 Final Solution: In the last step, we utilize the 

derived value of 𝑊 to compute the values of 𝑌, 

culminating in the solution for the system 

𝐴𝑌 = 𝐵 . This final step ties together the 

components of LU decomposition, resulting in 

a comprehensive solution to the given FLFPP. 

These steps encompass the LU decomposition 

approach’s progression, starting from the 

formulation of the problem and culminating in the 

determination of the solution through a series of 

well-defined operations on the involved matrices and 

vectors.  

V. ALGORITHM 

Step 1: Formulate the FLFPP with equality 

constraints as the initial framework. 

Step 2: Utilize the Charnes and Cooper method to 

transform the FLFPP into an equivalent FLPP. 

Step 3: Convert the FLPP into a parametric form, 

enabling the introduction of a parameter to facilitate 

optimization. 
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Step 4: Employ the LU-Decomposition method, a 

numerical technique, to efficiently solve the 

parametric FLPP and obtain its optimal solution. 

Step 5: By systematically varying the parameter 

𝜃, construct a solution table that provides insights 

into the behaviour of the optimal solution across 

different scenarios. This step contributes to a 

comprehensive understanding of the problem’s 

sensitivity to changes in the parameter value. 

We introduced a novel algorithm for solving 

FLFPP, utilizing the LU (Lower-Upper) 

decomposition method. This strategy harnesses the 

inherent numerical stability and computational 

efficiency of LU decomposition, enhancing solution 

accuracy while reducing complexities. Our 

algorithm optimizes the handling of fuzzy 

constraints and uncertainty inherent in FLFP 

problems, extending its potential applicability to 

real-world scenarios. Recent research by 

Alemohammad et al. [44], Mohammadi et al. [48], 

Rezaei et al. [49], Song et al. [50] underscore the 

algorithm’s efficacy in addressing FLFP challenges 

while leveraging the proven foundations of LU 

decomposition. The methodology employed in this 

study is above outlined. 

For the presented real-life issue in the upcoming 

section 7. We have solved and analysed the optimal 

solutions by the proposed algorithm. 

VI. APPLICATION PROBLEM 

The company engages in the production of two 

distinct products, namely A and B, each yielding 

profits of approximately $5 and $3 per unit, 

respectively. However, the costs associated with 

manufacturing these products stand at roughly $5 

and $2 per unit, correspondingly. Additionally, a 

fixed cost of approximately $1 is incurred. The raw 

material requisites for producing products A and B 

amount to roughly three and five units per pound, 

respectively, subject to a restricted supply of 

approximately 15 pounds. 

Considering the production dynamics, it is 

established that crafting a unit of product A requires 

approximately 5 man-hours, while product B entails 

approximately 2 man-hours per unit. However, the 

collective availability of man-hours per day is 

capped at approximately 10  hours. The primary 

objective here is to ascertain the optimal production 

quantities of products A and B, thereby Maximizing 

the overall profit. 

Notably, the environmental aspects encompassing 

profit (reflecting market dynamics), cost (influenced 

by market), man-powers (linked to workforce 

efficiency and availability), and raw materials 

(influenced by wastage) are characterized by 

imprecise triangular possibility distributions, owing 

to the presence of incomplete information over the 

planning horizon. For instance, the profit from 

product A exhibits a range of (3, 5, 7) dollars, while 

the man-hours per unit for product A are expressed 

as (2, 3, 4) hours. Analogously, various other 

parameters and variables are represented as TFN.  

1. Example 

In light of these complexities, the problem at hand 

can be effectively framed as an FFLFPP. To this end, 

let 𝑥1  and 𝑥2  denote the production quantities of 

products A and B, respectively. The overarching 

objective is to devise an optimal solution that 

navigates the intricate interplay of imprecise 

environmental coefficients, thereby Maximizing the 

overall profit under the given constraints. 

𝑀𝑎𝑥  𝑧̃ =
5̃𝑥̃1   +   3̃𝑥̃2

5̃𝑥̃1   +   2̃𝑥̃2 +     1
 (23) 

subject to 

3̃𝑥̃1   +   5̃𝑥̃2 = 1̃5 (24) 

5̃𝑥̃1   +     2̃𝑥̃2 = 1̃0 (25) 

𝑥̃1, 𝑥̃2 ≥  0̃ (26) 

The triangular fuzzy numbers are indicated as 

5̃ = (3,5,7) (27) 

3̃ = (2,3,4) (28) 

2̃ = (1,2,3) (29) 

1̃ = (0,1,2) (30) 

1̃5 = (11,15,19) (31) 

1̃0 = (8,10,12) (32) 

Let 
1

5̃𝑥̃1  +  2̃𝑥2+  1̃
= 𝑡̃  and 𝑡̃𝑥1 = 𝑦̃1, 𝑡̃𝑥2 = 𝑦̃2 . 

Then the given FLFPP Eq. (23-26) becomes an 

FLPP as follows by using Charnes and Cooper 

method 

𝑀𝑎𝑥  𝑧̃ = 5̃𝑦̃1 + 3̃𝑦̃2 (33) 

subject to 

5̃𝑦̃1 + 2̃𝑦̃2 + 𝑡̃ = 1̃ (34) 

3̃𝑦̃1 + 5̃𝑦̃2 − 1̃5𝑡̃ = 0̃ (35) 

5̃𝑦̃1 + 2̃𝑦̃2 − 1̃0𝑡̃ = 0̃ (36) 

𝑦̃1, 𝑦̃2, 𝑡̃ ≥   0̃ (37) 

That is 

𝑀𝑎𝑥  𝑧̃ = (3,5,7)𝑦̃1 + (2,3,4)𝑦̃2 (38) 

subject to 

(3,5,7)𝑦̃1 + (1,2,3)𝑦̃2 + (0,1,2)𝑡̃
= (0,1,2) 

(39) 

(1,3,5)𝑦̃1 + (3,5,7)𝑦̃2 −  (11,15,19)𝑡̃
= (0,0,0) 

(40) 
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(3,5,7)𝑦̃1 + (0,2,4)𝑦̃2 − (8,10,12)𝑡̃
= (0,0,0) 

(41) 

𝑦1, 𝑦2, 𝑡̃ ≥   0̃ (42) 

In Eq. (38-42) Apply parametric form we get, 

𝑀𝑎𝑥  𝑧̃ = (5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (3,1
− 𝜒, 1 − 𝜒)𝑦̃2 

(43) 

Subject to 

(5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (2,1 − 𝜒, 1
− 𝜒)𝑦̃2 + (1,1 − 𝜒, 1
− 𝜒)𝑡̃ = (1,1,1) 

(44) 

(3,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (5,2 − 2𝜒, 2
− 2𝜒)𝑦̃2 −  (15,4
− 4𝜒, 4 − 4𝜒)𝑡̃
= (0,0,0) 

(45) 

(5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (2,2 − 2𝜒, 2
− 2𝜒)𝑦̃2 − (10,2
− 2𝜒, 2 − 2𝜒)𝑡̃
= (0,0,0) 

(46) 

𝑦̃1, 𝑦̃2, 𝑡̃ ≥   0̃ (47) 

 

Since 

𝑍 ≤ 𝑀𝑎𝑥  𝑍 (48) 

𝑍 ≤ (5,2 − 2𝜒, 2 − 2𝜒)𝑦1 + (3,1 − 𝜒, 1
− 𝜒)𝑦2 

(49) 

The FLP Problem becomes, 

𝑧̃ − (5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 − (3,1 − 𝜒, 1
− 𝜒)𝑦̃2 ≤ (0,0,0) 

(50) 

(5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (2,1 − 𝜒, 1
− 𝜒)𝑦̃2 + (1,1 − 𝜒, 1
− 𝜒)𝑡̃ = (1,1,1) 

(51) 

(3,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (5,2 − 2𝜒, 2
− 2𝜒)𝑦̃2 −  (15,4
− 4𝜒, 4 − 4𝜒)𝑡̃
= (0,0,0) 

(52) 

(5,2 − 2𝜒, 2 − 2𝜒)𝑦̃1 + (2,2 − 2𝜒, 2
− 2𝜒)𝑦̃2 − (10,2
− 2𝜒, 2 − 2𝜒)𝑡̃
= (0,0,0) 

(53) 

−𝑦̃1, −𝑦̃2, −𝑡̃ ≤   0̃ (54) 

 

We write the system as 𝐴𝑌 = 𝐵, where 

𝐴 =

[
 
 
 
 
(−5,2 − 2𝜒, 2 − 2𝜒) (−3,1 − 𝜒, 1 − 𝜒) (0,0,0) (1,0,0)

(5,2 − 2𝜒, 2 − 2𝜒) (2,1 − 𝜒, 1 − 𝜒) (1,1 − 𝜒, 1 − 𝜒) (0,0,0)

(3,2 − 2𝜒, 2 − 2𝜒) (5,2 − 2𝜒, 2 − 2𝜒) (−15,4 − 4𝜒, 4 − 4𝜒) (0,0,0)
(5,2 − 2𝜒, 2 − 2𝜒) (2,2 − 2𝜒, 22𝜒) (−10,2 − 2𝜒, 2 − 2𝜒) (0,0,0)

]
 
 
 
 

 (55) 

𝑌 = [
𝑦̃1
𝑦̃2
𝑡̃𝑧̃

] (56) 

𝐵 = [

(0,0,0)

(1,1 − 𝜒, 1 − 𝜒)
(0,0,0)

(0,0,0)

] (57) 

We write 𝐴 = 𝐿𝑈, 

𝐴 =

[
 
 
 
 
(−5,2 − 2𝜒, 2 − 2𝜒) (−3,1 − 𝜒, 1 − 𝜒) (0,0,0) (1,0,0)

(5,2 − 2𝜒, 2 − 2𝜒) (2,1 − 𝜒, 1 − 𝜒) (1,1 − 𝜒, 1 − 1𝜒) (0,0,0)

(3,2 − 2𝜒, 2 − 2𝜒) (5,2 − 2𝜒, 2 − 2𝜒) (−15,4 − 4𝜒, 4 − 4𝜒) (0,0,0)
(5,2 − 2𝜒, 2 − 2𝜒) (2,2 − 2𝜒, 2 − 2𝜒) (−10,2 − 2𝜒, 2 − 2𝜒) (0,0,0)

]
 
 
 
 

 (58) 

𝐿 =

[
 
 
 
 
1 0 0 0
𝑙21 1 0 0
𝑙31 𝑙32 1 0
𝑙41 𝑙42 𝑙43 1

]
 
 
 
 

 (59) 

𝑈 =

[
 
 
 
 
𝑢11 𝑢12 𝑢13 𝑢14
0 𝑢22 𝑢23 𝑢24
0 0 𝑢33 𝑢34
0 0 0 𝑢44

]
 
 
 
 

 (60) 
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To simplify, we get, 

𝑈 =

[
 
 
 
 
 
 
(−5,2 − 2𝜒, 2 − 2𝜒) (−3,1 − 𝜒, 1 − 𝜒) (0,0,0) (1,1 − 𝜒, 1 − 𝜒)
(0,0,0) (−1,2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (1,2 − 2𝜒, 2 − 2𝜒)

(0,0,0) (0,0,0) (
−59

5
, 4 − 4𝜒, 4 − 4𝜒) (

19

5
, 2 − 2𝜒, 2 − 2𝜒)

(0,0,0) (0,0,0) (0,0,0) (
−209

59
, 2 − 2𝜒, 2 − 2𝜒)

]
 
 
 
 
 
 

 (61) 

𝐿 =

[
 
 
 
 
 
 
(1,1 − 𝜒, 1 − 𝜒) (0,0,0) (0,0,0) (0,0,0)
(−1,2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (0,0,0) (0,0,0)

(
−3

5
, 2 − 2𝜒, 2 − 2𝜒) (

−16

5
, 2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (0,0,0)

(−1,2 − 2𝜒, 2 − 2𝜒) (1,2 − 2𝜒, 2 − 2𝜒) (
55

59
, 2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒)

]
 
 
 
 
 
 

 (62) 

Now 𝐿𝑈𝑌 = 𝐵. Then we write 𝐿𝑊 = 𝐵, where 𝑊 = 𝑈𝑌, To solve 𝐿𝑊 = 𝐵. We get 

[
 
 
 
 
 
(1,1 − 𝜒, 1 − 𝜒) (0,0,0) (0,0,0) (0,0,0)

(−1,2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (0,0,0) (0,0,0)

(
−3

5
, 2 − 2𝜒, 2 − 2𝜒) (

−16

5
, 2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (0,0,0)

(−1,2 − 2𝜒, 2 − 2𝜒) (1,2 − 2𝜒, 2 − 2𝜒) (
55

59
, 2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒)]

 
 
 
 
 

[

𝑤̃1
𝑤̃2
𝑤̃3
𝑤̃4

]

= [

(0,0,0)
(1,1 − 𝜒, 1 − 𝜒)
(0,0,0)

(0,0,0)

] 

(63) 

After simplification, we get 

𝑤̃1 = (0,0,0), 𝑤̃2 = (1,1 − 𝜒, 1 − 𝜒) (64) 

𝑤̃3 = (
16

5
, 2 − 2𝜒, 2 − 2𝜒) 

(65) 

𝑤̃4 = (
−235

59
, 2 − 2𝜒, 2 − 2𝜒) 

(66) 

We have to solve now 𝑈𝑌 = 𝑊, 

[
 
 
 
 
 
(−5,2 − 2𝜒, 2 − 2𝜒) (−3,1 − 𝜒, 1 − 𝜒) (0,0,0) (1,1 − 𝜒, 1 − 𝜒)

(0,0,0) (−1,2 − 2𝜒, 2 − 2𝜒) (1,1 − 𝜒, 1 − 𝜒) (1,2 − 2𝜒, 2 − 2𝜒)

(0,0,0) (0,0,0) (
−59

5
, 4 − 4𝜒, 4 − 4𝜒) (

19

5
, 2 − 2𝜒, 2 − 2𝜒)

(0,0,0) (0,0,0) (0,0,0) (
−209

59
, 2 − 2𝜒, 2 − 2𝜒)]

 
 
 
 
 

[
 
 
 
 
𝑦̃1
𝑦̃2
𝑡̃
𝑧̃
]
 
 
 
 

=

[
 
 
 
 
 
(0,0,0)

(1,1 − 𝜒, 1 − 𝜒)

(
16

5
, 2 − 2𝜒, 2 − 2𝜒)

(
−235

59
, 2 − 2𝜒, 2 − 2𝜒)]

 
 
 
 
 

 

(67) 

 

To solve this, we will get 

𝑦̃1 = (
20

209
, 4 − 4𝜒, 4 − 4𝜒), (68) 

𝑦̃2 = (
45

209
, 4 − 4𝜒, 4 − 4𝜒), 

(69) 

𝑡̃ = (
1

11
, 4 − 4𝜒, 4 − 4𝜒), 

(70) 

𝑧̃ = (
235

209
, 4 − 4𝜒, 4 − 4𝜒) 

(71) 

Therefore,  

𝑥̃1 = (
220

209
, 4 − 4𝜒, 4 − 4𝜒), (72) 

𝑥̃2 = (
495

209
, 4 − 4𝜒, 4 − 4𝜒) 

(73) 

𝑧̃ = (
235

209
, 4 − 4𝜒, 4 − 4𝜒). 

(74) 
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For the same problem, Das et al. [22]we obtained 

a get crisp solutions; moreover same, the crisp 

solutions are 𝑥1 = 1.052, 𝑥2 = 2.368, 𝑀𝑎𝑥𝑍 =
1.124. 

2. Example 

Consider the FLFPP with inequality constraints, 

𝑀𝑎𝑥  𝑧̃ =
2̃𝑥̃1   +   3̃𝑥̃2

1̃𝑥̃1   +   1̃𝑥̃2 +  7̃
 (75) 

subject to 

3̃𝑥̃1   +   1̃𝑥̃2 ≤  4̃ (76) 

1̃𝑥̃1   +   1̃𝑥̃2 ≤  1̃ (77) 

 𝑥̃1, 𝑥̃2 ≥  0̃ (78) 

Let 
1

1̃𝑥̃1  +  1̃𝑥2+  7̃
= 𝑡̃ and 𝑡̃𝑥̃1 = 𝑦̃1, 𝑡̃𝑥̃2 = 𝑦̃2 . The 

given FLFPP Eq. (75-78) becomes an FLPP as 

follows, 

𝑀𝑎𝑥𝑧̃ = 2̃𝑦̃1 + 3̃𝑦̃2 (79) 

subject to 

1̃𝑦̃1 + 1̃𝑦̃2 + 7̃𝑡̃ = 1̃ (80) 

3̃𝑦̃1 + 1̃𝑦̃2 − 4̃𝑡̃ ≤ 0̃ (81) 

1̃𝑦̃1 + 1̃𝑦̃2 − 1̃𝑡̃ ≤ 0̃ (82) 

𝑦̃1, 𝑦̃2, 𝑡̃ ≥   0̃   (83) 

That is 

𝑀𝑎𝑥𝑧̃ = (1,2,3)𝑦̃1 + (1,3,5)𝑦̃2 (84) 

subject to 

(0,1,2)𝑦̃1 + (0,1,2)𝑦̃2 + (5,7,9)𝑡̃
= (1,1,1) 

(85) 

(1,3,5)𝑦̃1 + (0,1,2)𝑦̃2 −  (2,4,6)𝑡̃
≤ (0,0,0) 

(86) 

(0,1,2)𝑦̃1 + (0,1,2)𝑦̃2 − (0,1,2)𝑡̃
≤ (0,0,0) 

(87) 

𝑦̃1, 𝑦̃2, 𝑡̃ ≥   0̃ (88) 

By the same way we solving we obtain the values 

𝑥̃1 = (
3

2
, 2 − 2𝜒, 2 − 2𝜒), (89) 

𝑥̃2 = (
−1

2
, 2 − 2𝜒, 2 − 2𝜒) 

(90) 

𝑧̃ = (
3

16
, 2 − 2𝜒, 2 − 2𝜒). 

(91) 

Likewise, we have changed the values of𝜒 from 0 

to 1. The changes in how this results in reaching an 

optimality of this defined problem has formulated It 

will give more clearance to this research. 

The adopted problem [6] was already solved in a 

crisp environment; the crisp solutions by that study 

are 𝑥1 = 0, 𝑥2 = 1,𝑀𝑎𝑥𝑍 =
3

8
(0.375). From the 

observation of the above 1. and 2. examples by this 

study, our proposed method producing fuzzy 

solutions is more differs from the crisp solutions. 

Therefore, our proposed LU decomposition Method 

attains the optimal solution for the FLFPP with 

equality constraints but does not attain the optimal 

solution for the FLFPP with inequality constraints. 

VII. CONCLUSION 

In this study, we successfully addressed the 

problem of FLFPP with equality constraints by 

employing the LU decomposition-based method. 

The utilization of the parametric form empowers 

decision-makers to discern and opt for a favoured 

solution, a distinct advantage not readily achievable 

through alternative approaches. The presented 

numerical example highlights the method’s inherent 

simplicity and ease of implementation. Notably, the 

LU Factorization-based method demands fewer 

computations compared to conventional techniques, 

rendering it a more streamlined and expedient 

approach than the simplex method. In the course of 

this research, we tackled two distinct problems. In 

the context of equality constraints, our methodology 

yielded an efficient solution, underscoring its 

efficacy. However, when confronted with inequality 

constraints, the solution may not invariably achieve 

optimality. Looking ahead, our future endeavours 

will encompass addressing FLFP cases involving 

inequality constraints, with the aim of demonstrating 

the attainment of efficient solutions within this 

extended framework. 
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