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Abstract: A theoretical mathematical model on vibration of rectangular plate is discussed. In this study, the 

vibration of the bi-parabolic tapered rectangular plate is analyzed under two different boundary 

conditions i.e. clamped (C-C-C-C) and simply supported (SS-SS-SS-SS). Also, the author 

considered bi-parabolic variation in the temperature field which occurs due to thermally induced 

vibration in rectangular plate. Results of frequency for the first two modes of vibration are obtained 

by using Rayleigh-Ritz method. Variations in frequency for first two modes of vibration at different 

values of structural parameters (thermal gradient, taper constants, and aspect ratio) and boundary 

conditions are well explained with the help of graphs. 
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I. INTRODUCTION 

Tapered rectangular plates made-up of composite 

materials are vigorously used to prevent 

uncontrolled vibration of structures and machines. 

These materials not only control excessive and 

unpleasant stresses of thermally induced vibration 

but also provide high strength, low cost, and 

reliability to the structure.  

Research in the field of vibration of plates is 

continuously motivating scientists and engineers to 

develop more realistic theoretical mathematical 

models for future aspects. A lot of theoretical and 

practical research work in the form of literature is 

already available in this field but still pre-

information about first few modes of the frequency 

of vibration are always required to make more 

efficient, reliable, and authentic structures, 

especially; when structure work under the influence 

of temperature.  

Linear free vibrations analysis of rectangular 

plate resting on translational and rotational supports 

at all edges is performed by Babahammou and 

Benamar [2]. Behera and Chakarvarty [3] used 

Boundary characteristic orthogonal polynomials as 

shape functions in the Rayleigh–Ritz method for 

static analysis of nanobeams. This method can 

handle any set of classical boundary conditions 

(viz., clamped, simply supported and free) with 

ease. The free-flexural vibration analysis of circular 

plates over point supports, partial internal curved 

supports, and with mixed-edge boundary conditions 

is analyzed by Liew [4]. Wang [5] investigated 

vibration analysis and optimization of a rectangular 

plate with a flanging hyperellipse cutout, 

numerically. In this study, finite element method 

(FEM) is applied to perform parametric studies on 

various plates in different boundary conditions. 

Farsani et.al. [6] analyzed the free vibrations of 

rectangular sandwich plates with compressible core 

bu using extended higher-order sandwich plate 

theory.  In this paper, effects of the plate side-to-

thickness ratio, in-plane aspect ratio, and core-to-

face sheets thickness ratio on the natural 

frequencies are discussed. Since the finite element 

analysis of deformations for plates made of 

functionally graded materials cannot be carried out 

with the use of commercial FE packages, a 

consistent method of analytical analysis is proposed 

by Aleksander Muc [7]. The effect of the non-

homogeneity present in plate’s material of 

orthotropic rectangular plate in the form of density 

is explained by Lal [8]. Buckling analysis of 

rectangular plates having two opposite edges (x=0 

& x=a) simply supported and others two edges (y=0 

and y=b) may be clamped, simply supported or free 

is formulated by Kang and Leissa [9]. Gupta et.al. 

[12] analyzed forced vibrations of linearly tapered 

rectangular plate with non-homogeneity present in 

density of the plate’s material. Results for simply 

supported-free-simply supported- free boundary 
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condition are obtained and shown in graphical 

form. Khanna and Kaur [14] obtained the frequency 

of visco-elastic tapered non-homogeneous 

rectangular plate under bi-parabolic thermal 

condition by using Rayleigh-Ritz technique. Kaur 

[17] employed Rayleigh-Ritz method to discuss 

vibrations of different triangular plates having fully 

clamped boundary with bi-linear tapering in 

thickness. 

By using classic Rayleigh-Ritz method, results 

are calculated for various values of plate parameters 

i.e. thermal gradient, taper constants, and aspect 

ratio with respect to two boundary conditions 

(Clamped and Simply Supported). Vibrational 

behavior of frequency for both the modes is 

explained with the help of graphs. Developments of 

this model are written in the form of conclusions. 

II. MATERIALS AND METHODS 

1. Geometry of the plate 

Rectangular plate with bi-parabolic tapering in 

thickness along X- & Y- axis is shown in Fig. 1. 

The plate lies along the X-Y plane with the Z-axis 

representing the thickness. Here OC=H0. The 

parabolic tapering effect creates a smooth curvature 

with a gradual increase in thickness as one moves 

from point C towards point B or F. 

 

Figure 1. Rectangular Plate with Bi-parabolic 

Tapering 

2. Analysis of Motion 

Fourth-order differential equation of motion for 

tapered rectangular plate in Cartesian coordinate is 

[15]: 

 

 

 

 

 

(1) 

where, D1 is the flexural rigidity of the plate’s 

material, W = W(x, y) is the deflection function,   

is poisson ratio, ρ is mass per unit volume, and H is 

the thickness of the plate. 

Unwanted vibrations in the plate generate a 

thermal effect within the structure, which directly 

alters the material's vibrational properties. In the 

present study, the authors assumed bi-parabolic 

variation in thermal effect as [13]: 
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(2) 

where   denotes the temperature excess above 

the reference temperature at any point on the plate 

and 
0  denotes the temperature at any point on the 

boundary of plate.  

Relation between modulus of elasticity ( )Y with 

temperature variation in plate is expressed as 

follows [1]: 

(1 )oY Y    (3) 

where Y0 is the value of the Young’s modulus at 

reference temperature i.e.  = 0 and  is the slope of 

variation of Y and . On using equation (2) in 

equation (3), one obtains: 
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where,    (0 ≤  ≤ 1) is thermal gradient. 

Tapering in the thickness of the rectangular plate 

is considered bi-parabolically in the present study 

as [10]: 

2 2
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(5) 

Here a & b are the dimensions of the rectangular 

plate and β1 & β2 are taper constants in x-direction 

and y-direction respectively. Taper constants range 

from 0 to 1 i.e. 0≤β1≤1 & 0≤β2≤1. Also, H0 is the 

thickness of the plate at x = y = 0.  

Flexural rigidity of any material indicates the 

bending stiffness of the material. In other words, 

the flexural rigidity shows ‘how much a plate is 

rigid against bending’. In this study, flexural 

rigidity is considered as [10]: 
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Using the values of Y and H from equations (4) 

and (5), the flexural rigidity becomes: 
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3. Solution of Frequency Equation 

To solve the frequency equation, the authors 

applied Rayleigh-Ritz technique which states that 

maximum strain energy (SE) and maximum kinetic 

energy (KE) must be taken equally. So the following 

consideration is mandatory for solving the problem 

[11]: 
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( ) 0E ES K    (8) 

The mechanical properties of the vibrating 

structures are directly affected by the boundary of 

the structure. Therefore, it is necessary to analyze 

the effect of boundary conditions on the vibration 

of the plate. In this paper, two different boundary 

conditions are studied and their effects on the 

frequency of the vibrating plates are examined by 

using the latest computational technique.  

Two term deflection function for clamped 

boundary (9) and simply supported boundary (10) 

is taken as follows [8]: 

 2
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where A1 and A2 are arbitrary constants. 

Now, assuming the non-dimensional variables as 

[15]: 
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The expressions for kinetic energy (KE) and strain 

energy (SE) are [13]: 

1 2 2
22 5 2

0 1 2 2

0 0

1
[(1 )(1 ) ]

2

b
a

E

a Z
K p H a X W dZdX

b
     

 
(12) 

 1 2 2
3 3 2 3 30

0 1 22 2

0 0

2 2 2 2
2 2

2 2 2 2

2
2

[(1 ) (1 )
24(1 )

        [( ) ( ) 2 ( )

                                2(1 )( ) ]                   (11)

b
a

E

Y a Z
S H a X

b

W W W W

X Z X Z

W
dZdX

X Y

 






   


   
   

   




 

 

 

(13) 

   
 Using equations (12) and (13) in equation (8), 

one gets 
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Here, 
 
  is a frequency parameter. 

Equation (14) consists of two unknown constants 

i.e. A1 and A2 arising due to the substitution of W 

(for both Models). These constants can be obtained 

easily as [10]: 
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From equation (15), the author obtains 

1 1 2 2 0,  1,2n nb A b A n    (18) 

where bn1 and bn2 involve plate’s parameters. 

For a non-trivial solution, determinant of the 

coefficient of equation (18) must be zero. So, one 

gets the frequency equation as [16]: 

11        12

21 22

0
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With the help of equation (19), one can obtain a 

quadratic equation in 2  from which the two 

values of frequency parameter for both the modes 

of vibration can be evaluated easily.  

III. RESULTS AND DISCUSSION 

First two modes of frequency are obtained for 

both mathematical models for different values of 

the structural parameters i.e. thermal gradient, taper 

constants, and aspect ratio of rectangular plate. 

Numerical findings are computed for an alloy 

“Duralium” which is frequently used in the making 

of parts of ships, submarines etc. Due to an alloy of 

aluminium and copper, duralumin becomes as 

strong as steel along with light weight and cheap in 

cost. Here poisson ratio is considered as constant 

i.e. 0.345 and thickness of the plate at X = Y = 0 is 

taken as 0.01 M.  

Variations in the frequency for both the modes of 

vibration are cautiously observed and elaborately 

presented in Fig. 2 to Fig. 13 for both boundary 

conditions as follows. 

In Fig 2 and 3, variation in the first mode of the 

frequency for zero thermal effect is plotted with 

respect to increasing values of the taper constant 

along x-direction (1) at different values of the 

second taper constant along y-direction (2) for both 

boundary conditions respectively. Similarly, in Fig. 

4 and 5, second mode of the frequency with respect 

to increasing values of 1 at different values of 2 

are shown for both boundary conditions at  =0.0. 

From Fig. 2 to 5, a continuous increment in both 

the modes of frequency for both boundary 

conditions is observed with respect to varying taper 

constants. Authors also noticed that first mode of 

frequency for simply supported boundary condition 

is slightly greater than the frequency for clamped 

boundary condition at corresponding values of 

structural parameters. It is interesting to see that 

mode 2 for simply supported boundary condition is 

quite lesser than the mode 2 for clamped boundary 

at corresponding values of taper constants. 
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Figure 2. Frequency (Mode 1) Vs β1 & β2 at 

 a/b=1.5for clamped boundary 

 

Figure 3. Frequency (Mode 1) Vs β1 & β2 at 

a/b=1.5 for simply supported boundary 

 

Figure 4. Frequency (Mode 2) Vs β1 & β2 at 

a/b=1.5for clamped boundary 

 

Figure 5. Frequency (Mode 2) Vs β1 & β2 at 

a/b=1.5for simply supported boundary 

In Fig. 6 to 9, variations in frequency for both the 

modes of vibration are presented at non-zero 

thermal gradient i.e. α = 0.6 for various values of 

taper constants and fixed aspect ratio (=1.5). 

Surprisingly both the modes of frequency are 

reported lesser in Fig. 6 to 9 as compared to Fig. 2 

to 5 for corresponding values of structural 

parameters while both the modes increase with 

increasing values of taper constants. 

 

Figure 6. Frequency (Mode 1) Vs β1 & β2 at 

a/b=1.5 for clamped boundary 

 

Figure 7. Frequency (Mode 1) Vs β1 & β2 at 

a/b=1.5 for simply supported boundary 

 

Figure 8. Frequency (Mode 2) Vs β1 & β2 at 

a/b=1.5 for clamped boundary 

 

Figure 9. Frequency (Mode 2) Vs β1 & β2 at 

a/b=1.5 for simply supported boundary 
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For increasing values of aspect ratio, frequency 

for first two modes of vibration are calculated at 

different combinations of structural parameters for 

both boundary conditions and represented with the 

help of Fig. 10 to 13. At each fixed value of aspect 

ratio, both the modes of frequency increase 

continuously with increasing values of structural 

parameters. As aspect ratio increases, a rapid 

increment in both the modes of frequency is 

noticed. Again mode 1 of frequency for clamped 

boundary condition is lesser than mode 1 for simply 

supported boundary condition but mode 2 of 

frequency for clamped boundary condition is 

greater than mode 2 for simply supported boundary 

condition.  

The author also observed that the frequency for 

both modes is lowest when the structural 

parameters (
1 2,  &     ) are zero, compared to 

when they are non-zero. The rate of change in 

frequency with increasing aspect ratio is 

significantly higher compared to the rate of change 

with increasing taper constants. 

 

Figure 10. Frequency (Mode 1) Vs Aspect Ratio for 

increasing values =1=2 for clamped boundary 

 

Figure 11. Frequency (Mode 1) Vs Aspect Ratio for 

increasing values =1=2for simply supported 

boundary 

 

Figure 12. Frequency (Mode 2) Vs Aspect Ratio for 

increasing values  = 1 = 2 for clamped 

boundary 

 

Figure 13. Frequency (Mode 2) Vs Aspect Ratio for 

increasing values  =1= 2 for simply supported 

boundary 

IV. CONCLUSIONS 

On the basis of results & discussion, author 

finally concluded the present investigation with the 

following remarks: 

1. Tapering in the thickness of the rectangular plate 

directly affects the frequency for first two modes 

of vibration. Frequency is minimum for 

homogeneous (non-tapered) rectangular plate for 

both the modes of vibration.  

2.  Higher tapering shows higher values of 

frequency.  With the help of the figures, 

intermediate values of frequency for both the 

modes can be obtained for any value of taper 

constants.  

3. A sensible monitoring of thermal gradient may 

help to get the desired values of frequency at 

corresponding values of structural parameters. 

Present study proves that frequency is maximum 

in the absence of thermal effect i.e. α =0.0. 

4. Vibration of rectangular plate can be regulated 

by changing its dimensions i.e. aspect ratio. It 

shows that significance of aspect ratio may not 

be neglected. 
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5. Conditions on boundary of rectangular plate 

also impact on vibrational characteristics of the 

plate. The present mathematical model proves 

that first mode of frequency for simply 

supported boundary condition is greater than the 

first mode of frequency for clamped boundary 

condition; on the other hand, the second mode 

of frequency for simply supported boundary is 

lesser than the second mode of frequency for 

clamped boundary at fixed aspect ratio. 
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