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Abstract: The aviation industry significantly contributes to global warming through the formation of contrails, 

which trap heat in the atmosphere and exacerbate climate change. To mitigate this effect, sophisticated 

models have been developed to predict contrail formation and its associated warming effects, but 

these require empirical validation for accuracy. This project leverages satellite imagery to validate 

contrail prediction models, enabling effective contrail avoidance strategies for airlines.  U-Net 

variants, a convolutional neural network architecture, is utilized for image segmentation to identify 

contrails in satellite imagery. By optimizing the threshold for the softmax layer, contrail detection 

accuracy, and validating model predictions with real-world data had been enhanced. This enables 

pilots to minimize contrail formation during flights, aiming to reduce the aviation industry's 

environmental impact. The research offers a scalable and cost-effective solution for enhancing 

aviation sustainability and aligns with global efforts to combat climate change. 
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I. INTRODUCTION 

The aviation industry has long been recognized as 

a significant contributor to global warming, 

primarily due to the formation of contrails – those 

line-shaped clouds of ice crystals emitted from 

aircraft engine exhaust. These contrails have been 

identified as a key player in climate change 

dynamics, exacerbating the environmental impact of 

air travel by trapping heat in the atmosphere. As 

concerns over climate change intensify, it becomes 

imperative for the aviation sector to address its 

environmental footprint. 

Contrails, which are essentially artificial clouds, 

are formed whenever hot, moist exhaust from 

aircraft engines mixes with cold air at high altitudes. 

They not only contribute to the visual pollution of 

the skies but also play a crucial role in altering the 

Earth's radiation balance, leading to increased 

warming of the atmosphere. This phenomenon is 

particularly concerning given the exponential 

growth of air travel worldwide, with projections 

indicating continued expansion in the coming 

decades. Recognizing the urgency of mitigating the 

aviation industry's impact on climate change, 

researchers have devoted significant efforts to 

understanding and predicting contrail formation. 

Sophisticated models have been developed to 

simulate the complex interactions between aircraft 

emissions, atmospheric conditions, and contrail 

formation processes. These models serve as valuable 

tools for assessing the environmental impact of air 

travel and devising strategies to minimize it. 

However, despite advancements in modelling 

techniques, there remains a critical need for 

empirical validation to enhance the accuracy and 

reliability of contrail prediction models. While 

laboratory experiments and field measurements 

provide valuable insights, they are often limited in 

scale and scope. Moreover, conducting extensive 

observations in the atmosphere poses logistical 

challenges and may not capture the full complexity 

of contrail formation dynamics. To address this gap, 

this project proposes leveraging satellite imagery as 
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a complementary approach to validate contrail 

prediction models. Satellites offer a unique vantage 

point from which to observe contrail formation on a 

global scale, providing comprehensive coverage of 

flight paths and atmospheric conditions. By 

correlating model predictions with real-world 

observations obtained from satellite imagery, 

researchers can validate and refine their 

understanding of contrail formation processes. 

The integration of satellite data into contrail 

prediction models holds promise for enhancing the 

accuracy of forecasts and improving the 

effectiveness of contrail avoidance strategies. Armed 

with validated models, airlines can empower pilots 

to make informed decisions during flight planning 

and operations, taking into account factors such as 

optimal altitude, route selection, and engine settings 

to minimize contrail formation. By doing so, the 

aviation industry can mitigate its contribution to 

climate change while ensuring the sustainability of 

air travel. In alignment with global efforts to combat 

climate change, this research aims to provide a 

scalable and cost-effective solution for reducing the 

environmental impact of the aviation sector. By 

leveraging satellite imagery to validate contrail 

prediction models, this project seeks to enable more 

informed decision-making and promote sustainable 

practices within the aviation industry. Through 

collaborative efforts between researchers, 

policymakers, and industry stakeholders, it is aimed 

to work towards a future where air travel is both 

efficient and environmentally responsible. 

II. RELATED WORK 

Contrails, or condensation trails, form behind 

aircraft and significantly contribute to aviation-

induced climate change. The mitigation of their 

impact through contrail avoidance strategies is 

considered a cost-efficient method to reduce 

aviation's climate footprint. The introduction of the 

Open Contrails dataset aims to facilitate the 

development and evaluation of contrail detection 

models. This dataset, comprising manually labelled 

imagery from the GOES-16 Advanced Baseline 

Imager (ABI), is designed to train models capable of 

identifying contrails with high accuracy [1]. A 

proposed contrail detection model incorporates 

temporal context, enhancing detection accuracy by 

integrating temporal information into 

CNN(convolution neural network)-based models. 

This approach shows promise for better 

understanding contrail dynamics. The study also 

suggests leveraging self-supervised and semi-

supervised learning techniques to further improve 

model performance. Expanding the research to 

include data from geostationary satellites like 

Himawari-8 and Meteosat-11 could extend 

coverage, especially over Europe and the Asia-

Pacific region, highlighting the importance of 

satellite data and CNN models in addressing 

aviation-induced climate change [1]. 

A comprehensive study focuses on the detection, 

tracking, and matching of linear contrails using 

geostationary satellite infrared images, weather data, 

and air traffic data. The primary objective is to create 

a dataset that captures the complete lifecycle of 

contrails and identifies the aircraft responsible for 

their formation. This innovative methodology 

simultaneously addresses tracking and identification 

challenges, providing a holistic and integrated 

approach to contrail analysis. The integration of 

satellite data with air traffic information offers a 

robust platform for investigating the environmental 

impact of contrails, enabling real-time monitoring 

and improved air traffic management [2]. Machine 

learning techniques have been applied to identify 

contrails in images captured by the United States 

Department of Energy's Atmospheric Radiation 

Management (ARM) user facility. A deep 

convolutional neural network trained on 1600 photos 

from the Total Sky Imager (TSI) achieved high 

accuracy rates. Another study used a CNN to 

distinguish contrail cirrus clouds from regular cirrus 

clouds, employing Python packages for 

implementation and achieving notable performance 

through binary cross-entropy loss and adaptive 

momentum optimization [3]. 

A novel method for contrail identification in 

satellite images employs semantic segmentation, 

utilizing the UPerNet architecture with ConvNeXt 

configurations. This model effectively handles class 

imbalances and uses the AdamW optimizer for fine-

tuning, achieving outstanding performance. This 

approach underscores the potential for improved 

contrail identification in satellite imagery through 

advanced segmentation techniques [4]. Researchers 

developed a CNN specifically tailored for contrail 

detection in satellite imagery, yielding promising 

results with a probability of detection at 0.51, a false 

alarm ratio of 0.46, and an F1 score of 0.52. The 

CNN's impressive performance, evidenced by an 

AUC-PR of 73.9, highlights its potential for large-

scale contrail monitoring and a better understanding 

of their climate impacts [5].The need for accurate 

and automated contrail detection algorithms has led 

to the development of deep segmentation models for 

contrail detection in Landsat-8 imagery. UNet with 

Xception 71 as the encoder backbone performed 

best, achieving an IoU of 0.4395. Despite 

challenges, this study represents significant progress 

in using advanced segmentation methods for contrail 

detection [6].  

To address label bias in contrail identification, a 

probabilistic deep learning approach using P-UNet is 

proposed. This method shows resilience to label 

biases and improves recall, suggesting robustness 

and generalizability across diverse satellite image 

datasets. Future research could enhance precision 



B. S. Chandana et al. – Acta Technica Jaurinensis, Vol. 18, No. 1, pp. 23-37, 2025 

25 

while maintaining high recall, potentially 

incorporating additional contextual information or 

refining labelling methodologies [7]. A novel 

approach based on few-shot transfer learning, using 

pre-trained segmentation models and the SR Loss 

function, significantly improves contrail detection 

performance. This method overcomes challenges 

posed by limited labelled datasets and varied image 

conditions, offering a robust solution for contrail 

detection in remote sensing imagery [8]. Research on 

sky imaging for solar radiation estimation 

emphasizes cloud segmentation as a crucial step. A 

high-resolution cloud segmentation dataset created 

using sky images can facilitate future research in 

meteorology, weather forecasting, and solar energy 

forecasting. This dataset, consisting of 825 manually 

labelled sky photographs, enhances segmentation 

accuracy and supports various studies in related 

fields [9]. Contrail avoidance strategies require 

reliable models to be effective. This study compares 

two models, CoCiP (contrail cirrus prediction) and 

APCEMM (Aircraft Plume Chemistry, Emissions, 

and Microphysics Model), under various conditions 

to evaluate their accuracy and sensitivity. The 

findings highlight the need for more validation data 

and simple models that meet the minimum accuracy 

required for contrail prediction and avoidance, 

crucial for reducing aviation's environmental impact 

[10]. 

Recent studies have explored complementary 

approaches to contrail detection and analysis. For 

instance, radiosondes, widely used in atmospheric 

research, provide critical data for validating satellite-

based contrail models. Improved radiosonde 

technology enhances atmospheric measurements, 

indirectly supporting contrail detection efforts [11]. 

Combining radiosonde-based atmospheric 

measurements with machine learning models can 

further refine contrail detection algorithms [12]. 

Additionally, safer radiosonde deployments reduce 

risks associated with atmospheric data collection, 

ensuring consistent and reliable inputs for contrail 

analysis [13]. These advancements underscore the 

importance of integrating multiple data sources to 

improve the robustness of contrail detection systems. 

Another area of interest involves aerospace 

sustainability efforts. Recent research highlights the 

role of machine learning in optimizing flight paths to 

minimize contrail formation [14]. Such studies 

emphasize the need for interdisciplinary approaches 

that combine aerospace engineering, atmospheric 

science, and machine learning to address aviation-

induced climate change. Furthermore, innovations in 

high-resolution imaging and sensor technologies 

have enabled more precise contrail detection, 

particularly in challenging environments [15]. These 

developments align with the broader goal of creating 

sustainable aviation practices. 

 

In summary, the reviewed studies highlight 

significant advancements in contrail detection and 

mitigation strategies using satellite imagery and 

machine learning techniques. These approaches, 

from developing comprehensive datasets to 

leveraging advanced neural network architectures, 

contribute to reducing the aviation industry's 

environmental impact. Future research should focus 

on enhancing model accuracy, expanding datasets, 

and integrating additional contextual information to 

improve contrail detection and avoidance strategies. 

By drawing inspiration from related work and 

incorporating insights from complementary fields 

such as atmospheric science and aerospace 

engineering, higher accuracies can be achieved, and 

the robustness of contrail detection models can be 

enhanced. 

III. SYSTEM DESIGN 

A. High-Level Architecture 

The contrail detection system is designed to 

process raw imagery data, which undergoes 

preprocessing steps such as normalization, noise 

reduction, and format conversion to ensure 

compatibility with the detection model. At the core 

of the system lies a U-net CNN and its variants, 

known for their effectiveness in image segmentation 

tasks. These models are trained on preprocessed 

imagery along with corresponding ground truth data, 

specifying the locations of contrails. 

To address specific challenges and enhance 

performance, the system incorporates several 

variants of the U-net. These include the Attention 

UNet, Residual UNet, Attention Residual UNet, 

Attention Residual UNet with ELU(Exponential 

linear unit) Activation, and Attention Residual UNet 

with PreLU(parametric rectified linear unit) 

Activation. Each variant offers unique advantages 

such as attention mechanisms, residual connections, 

and advanced activation functions. 

During the training phase, multiple iterations 

occur, with each U-Net variant trained on 

preprocessed data and ground truth labels. 

Evaluation metrics such as the dice score and pixel-

wise accuracy are monitored to assess segmentation 

effectiveness. Visualizing model predictions aids in 

understanding performance and identifying areas for 

improvement. Following training, softmax 

thresholding is applied in post-processing to 

generate clear segmentation boundaries for contrail 

predictions, ensuring precise and accurate results. 

Trained models undergo testing on unseen imagery 

to validate performance across diverse datasets. 

This comprehensive system leverages U-Net 

variants for automated contrail detection, integrating 

attention mechanisms, residual connections, and 

advanced activation functions to enhance model 

performance. Visualization, softmax thresholding, 
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rigorous training, and testing contribute to the 

system's robustness in detecting contrails in various 

imagery datasets. Figure 1 illustrates the high-level 

architecture of the contrail detection system.  

 

Figure 1. High-Level architecture 

B. Low-Level Architecture 

The low-level architecture of the contrail detection 

model encompasses a series of intricately designed 

components, each contributing to the model's 

efficacy and robustness. It begins with the data 

loading process, where a dataset comprising images 

and corresponding labels (masks) is imported into 

the system. Once the data is loaded, the next step 

involves preprocessing, which includes 

normalization and resizing of the images to ensure 

consistent input across all UNet variants. After 

preprocessing, the data is partitioned into training 

and validation sets. Having a separate validation set 

allows for the evaluation of the model's accuracy and 

facilitates informed decisions regarding its design 

and training process. This step is crucial to prevent 

overfitting to the training data, ensuring that the 

model generalizes well to unseen data. 

The model architecture is then devised, 

incorporating the base UNet and various UNet 

variants tailored to enhance performance and address 

specific challenges. The Attention UNet integrates 

attention mechanisms within the skip connections to 

focus on relevant features while suppressing noise. 

This design improves information flow between the 

down-sampling and up-sampling paths, enabling the 

model to prioritize important areas. 

Another variant, the Residual UNet, employs 

residual blocks in both the contracting and expansive 

paths. These residual connections enable the 

architecture to delve deeper, mitigating issues 

related to gradient flow and enhancing training 

stability. The Attention Residual UNet combines 

attention mechanisms with residual connections, 

resulting in a robust architecture capable of 

capturing complex structures while maintaining 

focus on pertinent details. 

Additionally, the Attention Residual UNet with 

ELU Activation incorporates ELU activation 

function to expedite convergence and enhance 

training stability. ELU's positive output retention 

aids in preventing dead neurons, leading to smoother 

and faster training. Similarly, the Attention Residual 

UNet with PReLU Activation utilizes PReLU to 

provide trainable negative slopes for more flexible 

activations, offering adaptability in complex image 

segmentation tasks. Each architecture variant 

undergoes training using the training dataset, with 

regular evaluations on the validation set to monitor 

progress and make necessary adjustments. Post-

processing techniques like softmax thresholding are 

applied to generate clear segmentation boundaries 

for contrail predictions. Following training, the 

models are assessed using a separate test dataset to 

evaluate their generalization to unseen data. 

Ultimately, the architecture's effectiveness is 

determined based on evaluation metrics, with a 

comparative analysis conducted to identify the most 

suitable variant. This meticulous design process 

ensures that the contrail detection model achieves 

optimal performance and reliability in real-world 

applications. Figure 2 illustrates the low-level 

architecture of the contrail detection system. 

 

Figure 2. Low-Level architecture 

IV. SYSTEM IMPLEMENTATION 

The U-Net architecture, conceptualized by Olaf 

Ronneberger, Philipp Fischer, and Thomas Brox in 

2015, represents a pivotal milestone in the domain of 

biomedical image segmentation within the ambit of 

deep learning. It was specifically devised to 

surmount the challenges posed by sparse annotated 

data and the imperative to retain intricate spatial 

details in segmentation tasks, where conventional 

CNN architectures often faltered in preserving 

spatial coherence during the down-sampling process.  
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U-Net's innovative design circumvents these 

constraints through a symmetric encoder-decoder 

architecture endowed with skip connections, thus 

ensuring the seamless integration of both low-level 

and high-level features across varying spatial 

resolutions. The architecture is composed of three 

fundamental constituents: skip connections, the 

contracting path (encoder), and the expansive path 

(decoder). 

The contracting path, constituting convolutional 

and pooling layers, progressively diminishes the 

spatial dimensions of the input image while 

concurrently augmenting the number of feature 

channels. Each convolutional block within the 

contracting path typically encompasses multiple 

convolutional layers, complemented by rectified 

linear unit (ReLU) activations and batch 

normalization, thereby facilitating feature extraction 

across hierarchical levels of abstraction. 

Conversely, the expansive path leverages 

upsampling layers to restore the spatial dimensions 

of the feature maps while concomitantly reducing 

the number of channels. This restoration process is 

facilitated by transposed convolutional layers, 

colloquially referred to as deconvolution layers, 

which are intricately concatenated with feature maps 

originating from the contracting path. Such 

concatenation enables the faithful reconstruction of 

high-resolution feature maps while concurrently 

preserving crucial spatial contextual cues. 

The quintessential feature of the U-Net 

architecture lies in its skip connections, which forge 

direct connections between analogous spatial 

resolutions within the encoder and decoder paths. By 

virtue of this architectural peculiarity, U-Net 

facilitates the fusion of localized spatial details 

gleaned from the contracting path with the holistic 

contextual information extracted by the expansive 

path, thereby endowing the model with the requisite 

acumen for precise and contextually informed 

segmentation. 

In the realm of spatial dimension augmentation 

techniques, two prevailing methodologies 

predominate: up-sampling and convolution 

transpose. The former entails employing 

interpolation techniques such as nearest neighbor or 

bilinear interpolation, thereby obviating the need for 

additional learnable parameters. Conversely, 

convolution transpose entails executing an inverse 

convolution operation, necessitating the learning of 

an additional set of trainable parameters. 

Up-sampling garners favor within the domain of 

image segmentation tasks by virtue of its inherent 

simplicity, computational efficiency, and efficacy in 

artifact mitigation. Unlike convolution transpose, 

up-sampling methods do not engender the pernicious 

phenomenon of checkerboard artifacts, rendering 

them especially well-suited for tasks predicated upon 

accurate localization and delineation of object 

boundaries.  

The salient advantages underpinning the efficacy 

of the U-Net architecture encompass its innate 

capability to preserve spatial information across the 

hierarchical depth of the network, its inherent 

adaptability to an eclectic array of segmentation 

tasks spanning diverse domains, and its modular 

design ethos, which endows it with the flexibility 

requisite for facile extension and customization in 

accordance with the exigencies of specific 

segmentation tasks and input modalities. These 

distinctive attributes collectively underscore the 

indelible imprint of U-Net as a preeminent 

architecture for image segmentation endeavors 

across a panoply of domains and applications. 

Here are the key points explaining each layer of 

the U-Net architecture shown in Figure 3. 

1. Input: 

   - Input images with dimensions 256x256 and 24 

channels. 

2. DoubleConv (inc): 

   - Applies two 3x3 convolutions with ReLU 

activation and batch normalization. 

   - Input: 256x256x24 

   - Output: 256x256x64 

3. Down1: 

   - Downsampling via max-pooling followed by a 

DoubleConv block. 

 

Figure 3. UNet architecture 
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   - Input: 256x256x64 

   - Output: 128x128x128 

4. Down2: 

   - Down sampling via max-pooling followed by a 

DoubleConv block. 

   - Input: 128x128x128 

   - Output: 64x64x256 

5. Down3: 

   - Down sampling via max-pooling followed by a 

DoubleConv block. 

   - Input: 64x64x256 

   - Output: 32x32x512 

6. Down4: 

   - Down sampling via max-pooling followed by a 

DoubleConv block. 

   - Input: 32x32x512 

   - Output: 16x16x512 

7. Up1: 

   - Up sampling followed by concatenation with 

corresponding feature maps from Down3. 

   - Input: 16x16x512 (from Down4), 32x32x512 

(from Down3) 

   - Output: 32x32x256 

 

8. Up2: 

   - Up sampling followed by concatenation with 

corresponding feature maps from Down2. 

   - Input: 32x32x256 (from Up1), 64x64x256 

(from Down2) 

   - Output: 64x64x128 

9. Up3: 

   - Up sampling followed by concatenation with 

corresponding feature maps from Down1. 

   - Input: 64x64x128 (from Up2), 128x128x128 

(from Down1) 

   - Output: 128x128x64 

10. Up4: 

    - Upsampling followed by concatenation with 

corresponding feature maps from inc. 

    - Input: 128x128x64 (from Up3), 256x256x64 

(from inc) 

    - Output: 256x256x64 

11. Output: 

    - Final convolution to map to the desired 

number of output channels (1 for binary 

segmentation). 

    - Input: 256x256x64 

    - Output: 256x256x1 

This breakdown highlights the operations 

performed at each layer, including down sampling, 

up sampling, concatenation, and convolution, along 

with the changes in input and output dimensions. 

The tabular form of the layers is shown in Table 1. 

Table 1. UNet layers architecture 

Layer  Input Size Output 

Size 

Input 

Channels 

Output 

Channels 

Input  256x256x24 - 24 - 

Inc 256x256 256x256 24 64 

Down1 256x256 128x128 64 128 

Down2 128x128 64x64 128 256 

Down3 64x64 32x32 256 512 

Down4 32x32 16x16 512 512 

Up1 16x16 32x32 512 256 

Up2 32x32 64x64 256 128 

Up3 64x64 128x128 128 64 

Up4 128x128 256x256 64 64 

Output 256x256 256x256 64 1 

The U-Net architecture presented above 

encompasses several key parameters and a dedicated 

trainer class is essential for its effective training. At 

the core of the architecture lie parameters that define 

its behavior and performance during the training 

process. These parameters include the configuration 

of the neural network itself, defined within the U-Net 

class. The architecture of the U-Net comprises 

various convolutional layers, down-sampling 

blocks, up-sampling blocks, and skip connections, 

all of which play crucial roles in capturing 

hierarchical features and preserving spatial 

information. Additionally, hyper parameters such as 

learning rate, batch size, and loss function are vital 

in guiding the optimization process and determining 

the model's convergence and performance. 

Complementing the architecture, the custom 

trainer class orchestrates the training process by 

managing the flow of data, optimization, and 

evaluation. The class encapsulates essential 

functionalities such as forward pass computation, 

loss calculation, gradient computation, and 

parameter updates. It interfaces with the provided 

optimizer, loss function, and learning rate scheduler 

to optimize the U-Net model's parameters iteratively. 

Throughout the training process, the class keeps 

track of various metrics, including batch losses, 

epoch losses, learning rates, and validation losses, 

providing insights into the model's performance and 

convergence. 

Furthermore, the class enables seamless 

integration with PyTorch's Data Loader module, 

facilitating efficient data loading and batching for 
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both training and evaluation. By iterating over the 

training and validation datasets, the trainer updates 

the model's parameters iteratively, adjusting the 

learning rate dynamically based on the specified 

schedule. Additionally, the trainer periodically 

evaluates the model's performance on the validation 

dataset, allowing for model checkpointing and 

monitoring of training progress. 

In essence, the U-Net architecture and its 

associated trainer class form a cohesive framework 

for training and evaluating semantic segmentation 

models. Together, they leverage the power of deep 

learning to tackle complex image analysis tasks, 

offering a robust and adaptable solution for a wide 

range of applications, from medical imaging to 

remote sensing and beyond. 

The Attention U-Net architecture builds upon the 

traditional U-Net model as shown in Figure 4, 

introducing attention mechanisms to enhance the 

effectiveness of skip connections. The core idea is to 

improve segmentation by emphasizing critical 

features during the merging of information between 

the encoder and decoder paths. 

The base structure of U-Net includes two main 

pathways: an encoder for down-sampling and a 

decoder for up-sampling. To maintain high-

resolution details, U-Net employs skip connections, 

where features from the encoder are concatenated 

with those of the decoder. 

In the Attention U-Net, these skip connections are 

enhanced with attention mechanisms. The attention 

gates are introduced to refine the merging of encoder 

and decoder features by allowing the model to focus 

on specific regions that are most pertinent to the 

current work. This focus is achieved by learning a 

weighting function that assigns different levels of 

importance to various parts of the feature maps. The 

attention gates take as input a combination of 

encoded features and up-sampled decoded features, 

creating an "attention signal." This signal is 

processed to produce attention coefficients, typically 

using linear transformations followed by non-linear 

activation functions like Sigmoid, resulting in a 

spatial map that indicates the significance of each 

region as shown in Figure 5. 

These attention coefficients are then used to scale 

the features from the encoder before they're 

concatenated with the decoder's output in the skip 

connections. By doing this, the Attention U-Net can 

selectively highlight important features while 

suppressing less relevant or noisy data. This 

mechanism contributes to a more efficient and 

focused merging process, improving the model's 

ability to capture intricate structures and complex 

relationships within the data. 

The benefits of this approach are substantial. 

Additionally, the attention mechanisms help reduce 

noise and unnecessary information, leading to 

improved generalization and robustness. Overall, 

this selective attention strategy provides the 

Attention U-Net with an edge in terms of 

performance and accuracy, especially in scenarios 

where detailed structures need to be accurately 

segmented from complex backgrounds.  

The Residual U-Net architecture extends the 

standard U-Net by incorporating residual 

connections, a concept popularized by Res-Net. In 

traditional CNNs, deep architectures can lead to 

issues such as vanishing gradients and difficulty in 

training. Residual connections address these 

problems by adding a "shortcut" or direct path that 

skips one or more layers, allowing the gradient to 

flow more easily during backpropagation as shown 

in Figure 6. This can enable deeper networks with 

improved training dynamics. 

 

Figure 4. Attention Unet architecture 

 

Figure 5. Attention mechanism 
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In Residual U-Net, each block in the encoder and 

decoder contains residual connections. This means 

that rather than simply stacking convolutional layers, 

the input to each block is added to the output, 

creating a direct path for information flow. The 

encoder in Residual U-Net compresses the input 

through a series of convolutional blocks followed by 

down-sampling, usually with max-pooling. The 

decoder mirrors this structure but in reverse, using 

up-sampling techniques like transposed 

convolutions. The residual connections allow the 

model to focus on learning the residual changes 

rather than complete transformations, thereby 

promoting training stability and ease of learning. 

Skip connections are a hallmark of U-Net, allowing 

high-resolution features from the encoder to be 

directly linked with the corresponding stages of the 

decoder. In Residual U-Net, these skip connections 

can also contain residual connections, ensuring 

consistent information flow and reducing 

degradation in performance as the network gets 

deeper.  

The Attention and Residual U-Net architecture 

shown in Figure 7 combines the benefits of residual 

connections with those of attention mechanisms. The 

attention mechanisms, typically implemented 

through attention gates, let the model concentrate on 

the most relevant features in the skip connections, 

enhancing significant parts of the feature maps while 

downplaying less important areas. In this 

architecture, the encoder and decoder use residual 

connections, providing stability and deeper 

networks. The attention gates are integrated into the 

skip connections, where they take as input both the 

encoded features and the corresponding up-sampled 

features from the decoder. The attention gate then 

produces a spatial attention map, indicating where 

the model should focus its attention. This map is 

used to scale the features from the encoder, allowing 

the model to selectively emphasize the most relevant 

information before concatenating with the decoder 

features. 

This combination creates a powerful architecture 

for segmentation tasks. The residual connections 

ensure that the model can be trained efficiently 

without significant loss in performance as the 

network depth increases, while the attention 

mechanisms help the model focus on the most 

important aspects of the data.  

The Attention and Residual U-Net with the ELU 

activation function enhances the architecture's 

stability and gradient flow. ELU is an activation 

function that introduces a smoother transition for 

negative inputs, allowing for small negative outputs. 

This characteristic can help reduce the vanishing 

gradient problem and improve training dynamics, 

especially in deep architectures like U-Net. 

𝐸𝐿𝑈(𝑥) = {
𝑥, 𝑖𝑓   𝑥 ≥ 0

𝛼(𝑒𝑥 − 1),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The ELU is an activation function used in neural 

networks to improve learning. 

ELU stands out because it is smooth and 

differentiable everywhere, aiding in smooth gradient 

descent optimization. Unlike ReLU, which only 

outputs positive values, ELU allows negative values 

for negative inputs, helping balance the activations 

and reduce bias shifts. This feature, along with 

maintaining a small gradient for negative inputs, 

helps mitigate the vanishing gradient problem, 

making ELU particularly beneficial for deep 

 

Figure 6. Residual UNet architecture 

 

Figure 7. Attention Residual UNet architecture 
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networks. Although ELU requires slightly more 

computational power due to the exponential 

calculation and necessitates tuning the 

hyperparameter 𝛼, it leads to faster and more stable 

learning, making it a valuable tool for training deep 

neural networks. 

In this variant, the ELU activation function 

replaces the traditional ReLU in the convolutional 

layers. The encoder and decoder blocks, as well as 

the residual connections, use ELU, which leads to 

smoother gradients and improved stability during 

training. Combined with the attention mechanisms, 

this architecture can better focus on important 

features and maintain consistent gradient flow. This 

is particularly beneficial in scenarios requiring deep 

networks and high segmentation accuracy. 

The Attention and Residual U-Net with PReLU 

activation function adds flexibility and adaptability 

to the architecture. An activation function called 

PReLU adds a learnable parameter to regulate the 

slope of the function's negative portion. Because of 

its adaptability, the model can change the activation 

function while training in response to the data. 

 The PReLU is an activation function used in 

neural networks, introduced to address some 

limitations of the standard ReLU. It enhances the 

learning capability by allowing a small, learnable 

slope for negative inputs, which helps to prevent the 

"dying ReLU" problem, where neurons can become 

inactive and stop learning. The PReLU activation 

function is defined as: 

𝑃𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑖𝑓   𝑥 > 0
𝑎𝑥, 𝑖𝑓 𝑥 ≤ 0

 

PReLU is particularly useful in deep learning 

architectures where flexibility in activation functions 

can help the network adapt better to the data. It is 

commonly used in CNNs and other deep networks 

where mitigating the risk of dead neurons and 

improving gradient flow are crucial. 

In this variant, the PReLU activation function is 

used in the convolutional layers, providing greater 

adaptability to the architecture. This flexibility can 

be useful in dealing with a variety of data 

distributions and training dynamics. Combined with 

the residual connections and attention mechanisms, 

PReLU enables the model to adjust activation 

patterns dynamically while maintaining stability and 

robust training dynamics. This can be particularly 

useful in complex segmentation tasks, where 

adaptability and precision are critical. 

The use of PReLU in this context allows the model 

to better adapt to different training scenarios, 

offering a balance between ReLU's simplicity and 

ELU's smoother gradient flow. The attention 

mechanisms ensure the model focuses on the most 

relevant features, and the residual connections 

maintain stability, creating an architecture that is 

robust, adaptable, and accurate. 

V. RESULTS 

The evaluation of various models designed for 

contrail detection in satellite images involved a 

thorough testing phase to assess their performance, 

improvements, and the impact of different 

techniques such as thresholding and advanced 

activation functions. The following sections detail 

the results of each model's testing phase, along with 

numerical metrics as shown in Table 2 and 

explanations for their performance. 

A. UNet 

The UNet model demonstrated an initial batch loss 

reduction from 0.45 to 0.15 over 50 epochs, 

indicating effective learning. The average training 

loss decreased consistently, showcasing the model's 

ability to minimize errors over time. Validation loss 

mirrored this trend, decreasing from 0.48 to 0.18, 

suggesting good generalization to new data. The 

learning rate, controlled via an exponential 

scheduler, started at 0.001 and gradually decreased 

to 0.0001. The UNet model achieved an average 

accuracy of 98.73, reflecting its effectiveness in 

recognizing contrail patterns in satellite images. 

The observed improvements can be attributed to 

UNet's robust architecture, which effectively 

captures and processes multi-scale features. This 

ability is crucial for detecting contrails, which can 

vary greatly in size and shape. 

B. UNet with Threshold 

Applying softmax thresholding at an optimal 

threshold of 0.95 significantly improved the UNet 

model's performance. This adjustment enhanced the 

model's prediction accuracy, particularly in handling 

soft edges and ambiguous regions. The average dice 

score is 55.7, demonstrating more precise and 

reliable predictions due to reduced false positives 

and negatives. 

The application of thresholding helps in focusing 

on high-confidence predictions, effectively reducing 

noise and improving the clarity of detected contrails, 

thereby enhancing the overall accuracy of the model. 

C. Residual UNet 

Incorporating residual connections into the UNet 

architecture resulted in a more pronounced decrease 

in batch loss, from 0.40 to 0.12. The average training 

loss decreased from 0.42 to 0.13, while validation 

loss dropped from 0.45 to 0.14, indicating the 

model's robustness and ability to generalize. The 

Residual UNet achieved an average accuracy of 

98.97, benefiting from improved learning efficiency 

and preserved information across layers. 
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Residual connections help mitigate the vanishing 

gradient problem, allowing for deeper network 

training. This results in better feature extraction and 

higher accuracy in identifying contrails. 

D. Residual UNet with Threshold 

SoftMax thresholding applied to the Residual 

UNet, with an optimal threshold of 0.97, further 

enhanced performance. This adjustment improved 

the average dice score to 99.81, reducing false 

positives and negatives and leading to more accurate 

predictions. 

Thresholding on a residual-based architecture 

sharpens the decision boundary for contrail 

detection, focusing the model's predictions on the 

most confident regions and thereby increasing 

overall precision. 

E. Attention UNet 

Introducing attention mechanisms in the Attention 

UNet model allowed for better focus on relevant 

features during training. This approach led to a 

decrease in batch loss from 0.38 to 0.10. Training 

loss decreased from 0.40 to 0.11, and validation loss 

from 0.43 to 0.12, showcasing robust performance 

and good generalization. The Attention UNet 

achieved an average accuracy of 99.1, with the 

attention mechanisms improving accuracy by 

concentrating on the most relevant features. 

Attention mechanisms enhance the model's ability 

to focus on critical regions within the input data, 

improving its capacity to distinguish between 

contrail and non-contrail areas, thus boosting 

detection accuracy. 

F. Attention UNet with Threshold 

Applying SoftMax thresholding at an optimal 

threshold of 0.96 to the Attention UNet resulted in 

an average accuracy improvement to 99.83. This 

enhancement led to more precise predictions, 

particularly in handling ambiguous regions and soft 

edges. 

The combined effect of attention mechanisms and 

thresholding helps the model in making more 

confident and accurate predictions by focusing on 

the most relevant features and excluding less certain 

regions. 

G. Attention Residual UNet 

The Attention Residual UNet, combining residual 

connections and attention mechanisms, achieved a 

significant batch loss decrease from 0.36 to 0.08. 

Training loss decreased from 0.38 to 0.10, and 

validation loss from 0.41 to 0.11. The model 

excelled with an average accuracy of 98.82, 

capturing complex features more effectively through 

the hybrid approach. 

The integration of residual connections with 

attention mechanisms allows for more efficient and 

focused feature extraction, improving the model's 

ability to detect intricate contrail patterns. 

H. Attention Residual UNet with Threshold 

Table 2. Comparative results of UNet and its variants 

Model Accuracy Precision Recall F1 Dice Score 

UNet (without threshold) 98.73 10.52 87.87 18.44  

UNet (with threshold) 98.81 43.28 48.27 49.94 55.70 

Residual UNet (without 

threshold) 
98.97 12.48 82.70 21.32  

Residual UNet (with 

threshold) 
99.81 44.31 48.20 45.44 56.30 

Attention UNet (without 

threshold) 
99.1 11.21 61.22 18.11  

Attention UNet (with 

threshold) 
99.83 37.44 34.33 33.03 56.88 

Attention Residual UNet 

(without threshold) 
98.82 10.80 84.26 18.78  

Attention Residual UNet (with 

threshold) 
99.82 44.83 48.41 45.05 58.40 

Attention Residual UNet with 

ELU (without threshold) 
98.95 12.42 87.00 21.40  

Attention Residual UNet with 

ELU (with threshold) 
99.83 49.58 50.84 48.52 59.70 

Attention Residual UNet with 

PReLu (without threshold) 
99.01 15.4 80.49 25.33  

Attention Residual UNet with 

PreLu (with threshold) 
99.84 53.33 46.63 48.38 59.08 
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Applying SoftMax thresholding to the Attention 

Residual UNet, with an optimal threshold of 0.97, 

improved the average accuracy to 99.82. This 

adjustment refined the focus on high-confidence 

areas, enhancing accuracy and reducing false 

positives and negatives. 

Thresholding in combination with the attention-

residual architecture ensures that the model makes 

highly confident and precise predictions, filtering 

out noise and improving overall detection 

performance. 

I. Attention Residual UNet with PReLU 

Incorporating the PReLU activation function into 

the Attention Residual UNet addressed the 

limitations of standard ReLU, such as the dying 

ReLU problem. Batch loss decreased from 0.35 to 

0.07. Training loss decreased from 0.37 to 0.09, and 

validation loss from 0.40 to 0.10. The model 

achieved an average accuracy of 99.01, with PReLU 

improving flexibility in learning and capturing subtle 

variations in the data. 

PReLU offers more flexibility in learning 

compared to ReLU by allowing the model to 

adaptively learn the parameters of the activation 

function, leading to improved feature extraction and 

model performance. 

J. Attention Residual UNet with PReLU and 
Threshold 

Softmax thresholding applied to the Attention 

Residual UNet with PReLU, at an optimal threshold 

of 0.98, significantly improved precision and 

reliability, achieving an average accuracy of 99.84. 

The combination of PReLU and thresholding 

provided enhanced focus on relevant features, 

leading to superior performance. 

The adaptability of PReLU combined with the 

refined focus provided by thresholding ensures that 

the model accurately captures and predicts contrail 

patterns, resulting in high precision and reliability. 

K. Attention Residual UNet with ELU 

The Attention Residual UNet with the ELU 

activation function aimed to improve learning by 

addressing the vanishing gradient problem. Batch 

loss decreased from 0.34 to 0.06. Training loss 

decreased from 0.36 to 0.08, and validation loss from 

0.39 to 0.09. The model achieved an average 

accuracy of 98.85, with ELU helping maintain a 

smoother learning process and reducing the 

likelihood of dead neurons. 

ELU provides a smoother and more effective 

learning process by allowing negative values in the 

activation, which helps maintain a stronger gradient 

and prevents the dying neuron problem, enhancing 

overall model performance. 

L. Attention Residual UNet with ELU and 
Threshold 

Applying softmax thresholding to the Attention 

Residual UNet with ELU, at an optimal threshold of 

0.97, significantly improved the average accuracy to 

99.83. This adjustment enhanced precision and 

reliability, leading to highly accurate contrail 

detection. 

The combination of ELU’s effective learning 

process and the precise focus provided by 

thresholding results in a highly accurate and reliable 

model for contrail detection. 

Each metric offers unique insights into different 

aspects of the model's performance: 
1. Average Accuracy: 

   - A key indicator of the general accuracy of the 
model's predictions across all classes is accuracy. 

   -Out of all the examples, it shows the 
percentage of accurately predicted instances (true 
positives and true negatives). 

   -An average accuracy of 0.987349 indicates 
that, on average, the model correctly classified 
approximately 98.73% of instances across all 
classes. 

2. Average Precision: 

   - The accuracy parameter determines how well 
the model is able to identify positive cases out of all 
the cases that are predicted to be positive.  

-Out of all the cases that are predicted to be 
positive, it displays the percentage of real positive 
predictions, including both true positives and false 
positives.  

   -An average precision of 0.105213 suggests 
that, on average, only approximately 10.52% of 
instances predicted as positive were actually true 
positives. 

3. Average Recall: 

   -Recall, sometimes referred to as sensitivity, 
quantifies how well the model can distinguish true 
positive instances from all real positive instances.  

-It shows the percentage of genuine positive 
predictions (true positives and false negatives) 
among all true positive cases.  

 -An average recall of 0.878733 indicates that, on 
average, the model correctly identified 
approximately 87.87% of actual positive instances. 

4. Average F1 Score: 

   -The F1 score offers a fair assessment of a 
classifier's performance since it is the harmonic 
mean of precision and recall. 

   -It represents the balance between precision 
and recall, with higher values indicating better 
overall performance. 
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   -An average F1 score of 0.184416 suggests 
that, on average, the model achieved a balanced 
performance in terms of both precision and recall. 

Overall, these metrics collectively provide a 

comprehensive assessment of the model's 

performance in terms of accuracy, precision, recall, 

and the balance between precision and recall (F1 

score). While high accuracy and recall values 

indicate effective overall performance, the relatively 

low precision highlights potential issues with false 

positive predictions. This information can guide 

further analysis and refinement of the model to 

improve its performance, particularly in scenarios 

with imbalanced classes. 

A.  Comparative Performance Analysis 

1) Accuracy Comparison 

Our model achieved a remarkable accuracy of 

99.84%, surpassing the performance reported 

inSiddiqui et al. [3], which documented an accuracy 

of 98.5%. This significant improvement of 1.34% 

underscores the robustness and precision of our 

UNet-based model in detecting contrails. The 

superior accuracy can be attributed to the refined 

architecture and optimized hyperparameters used in 

our approach. 

2) Dice Score Comparison 

In terms of the Dice score, which is a crucial 

metric for evaluating the quality of segmentation 

models, our approach achieved a score of 59.7. This 

marginally outperformed the model presented in 

Wang et al. [4], which reported the second-highest 

Dice score of 59.6. While the improvement appears 

modest, it is important to highlight the context of this 

comparison. The competing model utilized a 

ResNet50 backbone, which is substantially larger 

with 22 million parameters. In contrast, our model, 

leveraging the UNet architecture with ELU 

(Exponential Linear Unit) activation functions, 

achieved this performance with only 14.5 million 

parameters. 

  

Figure 8. Batch loss plot of attention residual UNet 

(ELU) 

The x-axis of the graph in Figure 8 represents the 

number of training iterations of Attention residual 

UNet with ELU, and the y-axis represents the batch 

loss. The graph shows that the batch loss decreases 

over time comparatively with UNet, which is a 

promising sign. This means that the model is 

developing and improving its performance on the 

training data more than UNet. 

  

Figure 9. Training loss plot of attention residual 

UNet (ELU) 

Figure 9 depicts the average training loss over 

epochs (not batch loss) over training iterations. In 

general, the goal is to minimize validation loss. The 

graph in Figure 10 shows that the epoch loss 

decreases over time, which is a promising sign. This 

means that the model is developing and learning its 

performance on the training data. 

  

Figure 10. Validation loss plot of attention residual 

UNet (ELU) 

The x-axis of Figure 11 represents the number of 

epochs, which refers to the number of times the 

entire training dataset has been passed through the 

model. The y-axis represents the learning rate over 

epochs, which is changed by the exponential LR 

scheduler. 

The Figure 12 depicts the ground truth and 

predicted probability mask for an image from the 

validation dataset. In comparison, the model has 

predicted the absence of contrails accurately. 
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The Figure 13 depicts the ground truth and 

predicted probability mask for an image from the 

validation dataset. In comparison, the model has 

predicted the contrail quite accurately. 

  

Figure 11. Learning rate plot of attention residual 

UNet (ELU) 

 

Figure 12. No Contrail prediction by attention 

residual UNet model (ELU) 

  

Figure 13. Contrail prediction by attention residual 

UNet model (ELU) 

The metrics provided in Figure 14 represent 

performance measures commonly used to evaluate 

the effectiveness of classification models, 

particularly in scenarios where class imbalance is 

prevalent. Compared to UNet, attention residual 

UNet with ELU performed better. 

SoftMax thresholding is then applied to the 

attention residual UNet with ELU. 

The threshold for the SoftMax layer has been 

found by considering the DICE score as a parameter 

shown in Figure 15. The best average dice score is 

obtained at the 0.97 threshold. 

Figure 16 shows the effect of threshold in 

attention residual UNet with ELU. The soft edges in 

the prediction are vanished. 

Figure 17 shows the effect of the threshold in the 

attention residual UNet with ELU. The soft edges in 

the prediction have vanished. 

 

 

Figure 14. Evaluation metrics of attention residual 

UNet (ELU) 

  

Figure 15. SoftMax thresholding and dice score of 

Attention Residual UNet (ELU) 

  

Figure 16. No contrail prediction after changing 

threshold for attention residual UNet (ELU) 

  

Figure 17. Contrail prediction after changing 

threshold for attention residual UNet (ELU) 

The metrics provided in Figure 18 represent 

performance measures commonly used to evaluate 

after applying the threshold. The effectiveness of 

classification models, particularly in scenarios where 

class imbalance is prevalent. Compared attention 

UNet metrics got improved after applying threshold 

which shows the better performance. 
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Figure 18. Evaluation metrics for Attention 

residual UNet (ELU) after changing threshold. 

VI. CONCLUSION 

In this study, the focus was given on identifying 

contrail formation using U-Net and its variants, 

leveraging satellite imagery to validate contrail 

prediction models. The produced results demonstrate 

a significant improvement over the existing model. 

Specifically, our U-Net-based model achieved an 

accuracy of 99.84%, surpassing the 98.5% accuracy 

reported in previous studies [3]. Furthermore, our 

model attained a Dice score of 59.7, which, although 

marginally higher than the 59.6 achieved by models 

using ResNet50, does so with a substantially reduced 

number of parameters (14.5 million compared to 22 

million) [4]. 

The use of the U-Net architecture with the ELU 

activation function has proven effective in 

maintaining high accuracy and efficiency, 

highlighting the potential of our approach in 

practical applications. By optimizing the threshold 

for the SoftMax layer and utilizing a less complex 

network architecture, it is demonstrated that it is 

possible to achieve superior performance without the 

need for excessively large models. 

This research contributes to the broader goal of 

mitigating the environmental impact of aviation. By 

enhancing the accuracy and reliability of contrail 

detection and prediction models, airlines can 

implement more effective contrail avoidance 

strategies, ultimately reducing their contribution to 

global warming. Our findings underscore the 

importance of continuous innovation in machine 

learning techniques and their application to real-

world environmental challenges. 

Future work will focus on further refining the 

model, exploring additional data sources, and 

expanding the scope of validation to include diverse 

atmospheric conditions. By doing so, it is aimed to 

support the aviation industry in its efforts to adopt 

more sustainable practices and reduce its 

environmental footprint. 
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