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Abstract: This research emphasizes the visualization of spatial data for statistical modelling and analysis of the 

relative risk associated with the COVID-19 pandemic in Alabama, USA. We used Bayesian analysis 

and the Integrated Nested Laplace Approximation (INLA) approach on data ranging from March 11, 

2020, to December 31, 2022, which included observed COVID-19 cases, the population for each of 

the Alabama counties, and a Geographical map of the state. The geographical distribution of COVID-

19’s relative risk was determined using various spatial statistical techniques, indicating high-risk 

locations. The study used Besag-York-Mollié (BYM) models to assess the posterior relative risk of 

COVID-19, and it found a statistically significant average decrease in COVID-19 case rates across 

the 67 counties evaluated. These findings have practical implications for evidence-based 

policymaking in pandemic prevention, mitigation, and preparation. 
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I. INTRODUCTION 

Spatial statistics revolves around the fundamental 

concept of spatial processes, which involves com- 

prehending and modelling the variations of variables 

or phenomena across different spatial locations [46]. 

This concept is essential for capturing and analysing 

spatial dependencies and patterns exhibited by the 

variable of interest. In the context of the global 

COVID-19 pandemic, understanding the spread and 

impact of the virus is crucial for effective decision-

making, resource allocation, and public health 

interventions [26]. Spatial data and modelling 

techniques provide a powerful approach to gaining 

insights into the dynamic nature of the pan- demic 

[49]. Spatial data about COVID-19 goes beyond 

temporal trends by considering the geographic 

location and spatial relationships of cases, deaths, 

and other relevant variables [31]. This encompasses 

data on COVID-19 cases, hospitalizations, deaths, 

testing rates, and vaccination coverage collected at 

various geographical resolutions, such as countries, 

states, counties, or smaller administrative units. By 

incorporating the spatial dimension, analysts can 

examine patterns, clusters, and disparities in the 

spread and impact of the virus across different 

regions [16]. Spatial modelling techniques enable re- 

searchers to explore and analyse spatial data, 

facilitating the identification of underlying patterns, 

assessing spatial dependencies, and predicting. 

These models consider spatial relationships and 

autocorrelation, recognizing that nearby locations are 

likely to exhibit similar values due to shared 

characteristics or proximity [29, 50]. By considering 

spatial effects such as the spatial spread of infections 

or the influence of local contextual factors, spatial 

models improve prediction accuracy and offer 

valuable insights for policymakers, healthcare 

professionals, and the general public [23]. COVID- 

19 spatial modelling encompasses a wide range of 

approaches [14].   One commonly used technique is 

spatial clustering analysis, which identifies areas 

with concentrated high or low COVID-19 incidence, 

aiding in targeted interventions and resource 

allocation. Other modelling approaches include 

graphically Weighted Regression, which accounts for 

spatial heterogeneity in the relationship between 

Covid-19 outcomes and potential predictors, and 

spatial auto-regressive models such as spatial lag or 

spatial error models, which capture spatial 

dependencies among neighbouring regions [18, 30, 

48]. In addition to analysing the spread of the virus, 
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spatial modelling can also assess the impact of 

interventions and policies. By integrating spatial 

data on containment measures, vaccination 

campaigns, or mobility restrictions, researchers can 

evaluate their effectiveness and explore spatial 

variations in out- comes. Spatial statistics, at its 

essence, entails com- prehending and modelling the 

variations of variables or phenomena, while also 

capturing and representing the outcomes or 

observations linked to spatial locations [28]. The 

data can be represented as measurements conducted 

at spatial units within a fixed spatial domain. This 

domain can be either a continuous surface or a 

countable collection of spatial units, such as census 

tracts or ZIP codes [6]. Areal data is generated 

through the division of a fixed geographic region into 

smaller sub-regions, which act as units for 

aggregating diverse outcomes or events [7]. This type 

of data finds applications across various fields, 

including the assessment of cancer cases in different 

counties [32], the docu- mentation of road accidents 

in various provinces [38], and the measurement of 

the proportion of individuals living below the 

poverty line in census tracts [40]. Researchers can 

analyse and understand patterns and trends within 

specific sub-regions by utilizing areal data, enabling 

insights and informed decision-making in these 

respective domains. 

In this study, we focus on examining the spatial 

pattern of Standardized Incidence Rate of COVID- 

19 observed across the 67 Alabama Counties rather 

than individual points. The variable of interest rep- 

resents a suitable summary, such as the number of 

case rates within each respective area. Fig. 1 presents 

the Population distribution of Alabama in 67 

counties in, the USA. 

1. Related works 

The COVID-19 pandemic demanded the quick 

development and implementation of new statistical 

approaches for modelling and predicting viral 

propagation [1]. Bayesian analysis and the INLA 

method have emerged as useful techniques for 

dealing with complicated spatial and spatio-temporal 

data [36, 44, 52]. 

Bayesian analysis and the INLA method have 

proven essential in tackling the complex spatial and 

spatio-temporal data associated with COVID-19. 

These techniques enable the incorporation of prior 

information and hierarchical structures, offering 

robust frameworks to handle the uncertain- ties and 

variability in epidemiological data. For instance, 

hierarchical Bayesian models have been applied to 

COVID-19 case data in Bangladesh to account for 

spatial autocorrelation, thus identifying clusters of 

high prevalence and providing more accurate risk 

assessments [22]. 

Figure 1. Population distribution of Alabama per 

county 

Similarly, in Europe, spatio-temporal Bayesian 

models have been utilized to study the spread and 

control measures’ impact across Spain, Italy, and 

Germany, demonstrating how these models can 

inform public health decisions by capturing the 

temporal dynamics and spatial heterogeneity of the 

pandemic [20]. Furthermore, addressing data 

reporting issues, hierarchical Bayesian models 

correct misreporting in the U.S., enhancing the 

reliability of spatial risk estimates [10]. As far as the 

authors are aware, this research represents the 

pioneering effort in utilizing visualization 

techniques for spatial data in the con- text of 

statistical modelling and analysis of the relative risk 

linked to the COVID-19 pandemic specifically in 

Alabama, USA, using Bayesian analysis coupled 

with the INLA method. 

2. Spatial Data 

Spatial data can be described as outcomes or 

observations of a random process that is associated 

with specific spatial locations [5, 46]: 

𝑌 ≡ {𝑦(𝑠), 𝑠 ∈  𝐷} (1) 

where Y represents a set of measurements 

conducted at the spatial units’ s D . The subset D in Rd 

(d = 2 in this context) establishes the spatial domain. 

Using the characteristics of the domain D, spatial data 

can be categorized as areal (or lattice) data, geo 

statistical data, or point patterns data. 

Areal or lattice data is a type of spatial data that 

emerges when a specific geographic region, known 

as a fixed domain, is divided into a finite number 
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of sub-regions [3]. These sub-regions serve as units 

for aggregating various outcomes or events. Areal 

data find applications in a range of fields and can 

be found in diverse contexts. Understanding the 

data’s structure is crucial because specific 

analytical methods are better suited for certain data 

types. Being aware of the data’s characteristics helps in 

selecting the most suitable analytical approaches. 

In                     the case of data referring to areas, the location 

of each object needs to satisfy an agreed convention 

[19]. If the areas are irregular shapes, then one 

options is to select a representative point such as 

the area or population-weighted centroid, and then 

use the same procedure as for a point object to 

provide        si. Alternatively, each area can be labelled, 

and a lookup table can be provided to match rows of 

the data matrix to the corresponding areas on the 

map. 

In disease mapping, the fundamental situation in- 

volves utilizing spatial data specifically related to 

distinct, non-overlapping n sub-regions [12]. A few 

examples of areal data include the count of cancer 

cases in different counties, the number of road accident 

reported in various provinces, and the proportion of 

people living below the poverty line in census tracts 

[34], etc. In each case, the fixed domain, such as a 

county, province, or census tract, is divided into 

smaller sub-regions, enabling the aggregation of 

relevant information within those subregions. In 

general, data related to a specific area are often 

observed and recorded within spatially aggregated 

domains, such as administrative geographies like 

postcodes, counties, or districts. 

Rather than focusing on specific locations, Our 

study encompasses all 67 counties in Alabama, 

utilizing a dataset obtained from the official Kag- gle 

repository source. The dataset contains daily- 

updated information on reported cases and deaths in 

the United States, documented at both state and 

county levels. The dataset consists of two primary 

CSV files: ’covid_us_county.csv,’ containing 

columns such as fips, county, state, latitude, long, 

date, cases, state-code, and deaths; and 

’us_county.csv,’ featuring columns like fips, county, 

state, state-code, male, female, median-age, 

population, female-percentage, latitude, and long. 

Addition- ally, the collection includes US county 

shape files for geospatial plots in formats like 

’us_county.shp,’ ’dbf,’ ’prj,’ and ’shx’.  

However, the earliest reported incidents in the 

original dataset traced back to January 22, 2020. For 

the scope of our study, which centred on the state of 

Alabama, we rigorously filtered the information, 

yielding a total of 1,024 records. During the 

preprocessing and cleaning step, certain entries were 

eliminated, notably those with duplicate geo- 

identifier fields and unsigned county values. Our 

investigation is limited to the period between March 

11, 2020, and December 31, 2022, encapsulating the 

period with the first nonzero values. The refined 

dataset will be employed in our analysis, 

emphasizing key fields such as county (the English 

name for the county), longitude, latitude (geographic 

co- ordinates of the region’s centroid), cases 

(number of confirmed COVID-19 cases), population 

(population of the county), and geometry (polygon 

de- scribing the geographical area). 

3. Data Processing and plot Generation for 

COVID-19 Dataset Analysis 

In the data processing and categorization phase of 

our COVID-19 dataset analysis, we utilized the R 

programming language, leveraging key packages 

like "Simple Features in R" (sf), more over a set of 

packages called "tidyverse" that share a high-level 

design philosophy and low-level grammar and data 

structures [54]. The "sf" package facilitated spatial 

data manipulation, notably through the st_sf() 

function, creating spatial data frames with seamless 

geographic integration. Functions like st_read() 

and st_write() ensured efficient reading and writing 

of spatial data in various formats. Concurrently, the 

"tidyverse" package, encompassing vital R packages, 

streamlined general data manipulation tasks. 

Functions from "dplyr" within the tidyverse, such as 

filter (), mutate (), and summarize (), played a crucial 

role in non-spatial data processing, ensuring a 

consistent and efficient methodology. The technical 

integration of "sf" and "tidyverse" contributed to a 

well-structured approach in handling both spatial and 

non-spatial aspects of the COVID-19 dataset. 

Understanding the organization of COVID-19 data 

frames is crucial for accurately analysing and 

interpreting pandemic-related information. Fig. 2 

illustrates the fundamental structure of the COVID-

19 data frame and the method for man- aging 

Alabama county shapefiles.  

 

Figure 2. Structure of Covid-19 Data frame 

and Alabama county shapefile process. 

Additionally, it highlights the key statistical 

functions utilized for data analysis. In this process, 

we merge these two tables using a shared key aligned 

with our research objectives. This merging approach 

https://www.kaggle.com/datasets/headsortails/covid19-us-county-jhu-data-demographics
https://www.kaggle.com/datasets/headsortails/covid19-us-county-jhu-data-demographics
https://www.kaggle.com/datasets/headsortails/covid19-us-county-jhu-data-demographics
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allows us to integrate  pertinent data from both 

sources, facilitating a more comprehensive 

investigation and interpretation of COVID-19 trends 

at the county level. By amalgamating data from the 

COVID-19 data frame with Alabama county 

shapefiles, we are equipped to get insights into the 

geographical distribution of cases, demographics, 

and other relevant factors influencing the 

pandemic’s trajectory. 

To enhance the presentation of selected data such 

as COVID-19 cases, expected cases, SIR, and 

relative risk, we apply a statistical technique:  

𝑔𝑟[1] = 𝑚𝑖𝑛 +
𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑚𝑖𝑛

2.5
  

(2) 

𝑔𝑟[2] = 𝑚𝑖𝑛 + 2 (
𝑚𝑒𝑑𝑖𝑎𝑛 − 𝑚𝑖𝑛

2.5
) 

(3) 

𝑔𝑟[3] = 𝑚𝑎𝑥 − 2 (
𝑚𝑎𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛

2.5
) 

(4) 

𝑔𝑟[4] = 𝑚𝑎𝑥 −
𝑚𝑎𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛

2.5
 

(5) 

following the consolidation of all data frames. This 

technique involves defining groups (denoted as gr) 

using quartile splits, incorporating statistical 

measures like minimum (min), maximum (max), and 

median. 

The vector "gr" plays a pivotal role in capturing 

these quartile breakdowns, facilitating more de- tailed 

data segmentation and analysis. Quartile borders are 

determined systematically as follows: - The lower 

boundary of the first quartile, gr[1], is computed by 

adding a fraction of the range between the lowest and 

median to the minimum value. The up- per boundary 

of the first quartile, gr[2], expands proportionally on 

that range. Similarly, the lower boundary of the third 

quartile, gr[3], is calculated by subtracting twice the 

proportion of the range be- tween the maximum and 

median from the highest value. In contrast, the upper 

boundary, gr[4], is determined by deducting the 

fraction of that range. The resulting rounded values 

of gr (rounded to three decimal places) lead to the 

segmentation of the dataset into five distinct groups: 

"Very Low," "Low," "Medium," "High," and "Very 

High," based on the distribution of "confirmed cases" 

versus "expected cases". This approach ensures a fair 

and meaningful classification, contributing to a 

comprehensive understanding of the variables’ 

distribution                              within the dataset. 

II. METHODOLOGY 

The dataset, sourced from Kaggle, underwent 

initial filtration to focus specifically on Alabama 

counties ties. Subsequently, relevant information 

about population, COVID-19 cases, and counties 

was systematically extracted and organized. To 

enhance data interpretability, temporal 

considerations were integrated, limiting the dataset 

to the period from March 11, 2020, to December 31, 

2022. This inspection will endorse the statistical 

analysis method that will be useful in summarizing 

the information in the data set. 

In Table 1 statistical summary of the data is 

presented. From 2020-03-11 to 2022-12-31, for 147 

weeks an average of 23417 people were infected 

with COVID-19 in different counties of Alabama, 

USA. According to the data, the maximum number 

of cases is 225876 and the minimum is 2196 

registered in counties Jefferson and Greene 

accordingly. It is worth mentioning that these latter 

statis- tics also depend on the counties’ population. 

These counts are influenced by both the size and 

demographic makeup of the populations residing in 

each area. The relative COVID-19 cases ri= Yi/Popi 

provide more specific information according to the 

counties where Popi is the population of county i. 

Now let us assume that the COVID-19 has uniformly 

spread throughout the state. Then the number of 

cases in the state is proportional to the population of 

the state with the ratio 

ρ = ∑ 𝑌𝑖/

67

𝑖=1

∑ 𝑝𝑜𝑝𝑖

67

𝑖=1

 

(6) 

i.e., the rate ρ is calculated by dividing the total 

number of cases by the state’s total population. We 

have ρ = 0.32%. To address the influence of the 

counties, the expected numbers of dis- ease risk E1, 

..., E67 are determined through indirect 

standardization. The expected counts Ei for each 

county i, where i = 1, ..., 67 is computed as: 

𝐸𝑖 = ρ × 𝑝𝑜𝑝𝑖  (7) 

We normalize the relative cases such that we divide 

it with ρ, i.e. ri/ρ = Yi/ (ρPopi), this latter quantity 

is Yi/Ei and is called Standard Incidence Rate (SIR) 

[44]. We concentrate on modelling and investigating 

the SIR of COVID-19. The SIR is a straight- forward 

metric used to assess disease risk in specific areas 

[33, 34]. It is calculated as the ratio between the 

number of observed cases Yi and the number of 

expected cases Ei in the ith area,  

𝑆𝐼𝑅𝑖 = 𝑌𝑖/ E𝑖 (8) 

Thus, an area with an SIRi > 0.893 corresponds to 

a high-risk area as there are more cases observed 

than expected. On the other hand, an area with an 

Table 1. Summary for COVID-19 cases data per county in Alabama State 

Min. 1st Qu. Median Mean 3rd Qu. Max. Var 

2194 5634 10357 23417 28833 225876 225876 
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SIRi < 0.708 corresponds to a low-risk area. Figure 4 

and 5. provides a visual representation of the SIR 

map. However, the SIR becomes an unreliable 

measure of disease risk, particularly when dealing 

with rare diseases or small populations at risk, 

resulting in small values for the expected number of 

cases Ei. Due to this instability, researchers often opt 

for an alternative approach to estimate risk by 

utilizing model-based methods [11, 13]. 

To visually represent each group, a custom colour 

palette was defined. Utilizing the ggplot2 pack- age, 

we crafted an informative choropleth map, 

employing distinct colours to distinguish and 

delineate geographical locations based on their 

respective value of case groups. 

Improved interpretability was achieved by adding 

labels to the map using the  geom_sf_text function. 

This methodology facilitated the creation of 

insightful plots, as exemplified by Fig. 3 and Fig. 4, 

offer a comprehensive dataset representation. 

Fig. 3a and 3b provide insightful visualizations of 

the pandemic’s impact across diverse counties in 

Alabama. Each county is represented by a shaded 

area, with colours indicating the disparity between 

actual confirmed actual cases and expected cases. 

The accompanying legend serves as a reference, 

establishing a connection between colours and 

specific categories of cases and expected cases. 

Counties shaded in green, like Choctaw, 

Washington, Wilcox, and Clay, indicate a "Very 

Low" number of expected cases compared to the 

actual confirmed cases. Conversely, yellow areas, 

covering counties such as Pickens, Randolph, and 

Geneva, signify a "Low" number of actual cases 

compared to the expected ones. White regions, 

encompassing counties like Chilton, Lee, Coffee, 

and others, signal a "Medium" difference between 

observed and expected cases. Counties shaded in 

light blue, such as Madison, Tuscaloosa, Shelby, and 

others, demonstrate a "High" difference, while 

areas shaded in pink, including counties like 

Jefferson and Mobile, are associated with "Very 

High" disparities in the numbers of actual confirmed 

and expected cases. 

The visual presentation depicted in Fig. 4 offers a 

comprehensive overview, facilitating the 

identification of regions exhibiting heightened SIR 

on the left Fig. 4a and, juxtaposed with the posterior 

relative risk on the right Fig. 4b, about COVID-19. 

This aids in grasping the spatial spread of disease 

prevalence and plays a pivotal role in pinpointing 

hotspots or areas of particular concern. Specifically, 

nine counties: -Colbert, Franklin, Morgan, Winston, 

Cullman, Walker, St. Clair, Clay, and Hale have 

been classified as hotspots due to their SIR values 

exceeding 0.893 on the SIR map. Similarly, al- most 

identical results were achieved using the same 

classification threshold value, except for two 

counties Choctaw and Russe which were classified 

as low-risk counties based on SIR but as high-risk 

hotspots in the posterior risk maps. 

 

(a)       (b)  

Figure 3. Map of Alabama: Covid-19 Confirmed cases (a) and Expected cases (b) per Counties. 
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This highlights the effectiveness of utilizing both 

SIR and posterior relative risk in tandem for dis- ease 

surveillance and hotspot identification. The SIR 

values provide insight into the standardized 

incidence rates, enabling comparisons across regions 

while considering population differences. 

Conversely the posterior relative risk offers a 

nuanced understanding of the risk of disease 

occurrence in one area compared to a reference 

group, allowing for a more localized assessment of 

risk. In this case, the discrepancies between SIR 

and relative risk classifications for Choctaw and 

Russe counties underscore the importance of 

considering multiple metrics for a comprehensive 

understanding of disease distribution and risk 

assessment. 

1. Model 

In epidemiology, disease mapping has a long his- 

tory, and one of its main objectives is to look into the 

spatial distribution of disease burden [15, 27].  At 

the county level, the BYM model [2, 4, 39] was 

utilized to investigate the geographical 

distribution of the SIR of COVID-19 connected to 

Relative risk It is a widely used spatial model that 

acknowledges the spatial correlation of data and 

recognizes that neighbouring areas exhibit greater 

similarity than distant areas [6, 10, 44, 49]. 

This model incorporates a spatial random effect 

that smooths the data based on a neighborhood 

structure. Additionally, it includes an unstructured 

exchangeable component that captures uncorrelated 

noise [34,51]. To visualize and understand the 

relationships between variables and COVID-19 

relative risk, we consider COVID-19 dataset with 

spatially referenced dataset with spatially referenced 

observations Yi at location i, and let S be the set of 

all locations in Alabama state. The Poisson 

distribution is commonly employed as a standard 

model for count data [21, 47]. It serves as the 

foundation for many of the count models utilized by 

analysts today within a hierarchical Bayesian 

framework [9, 35]. The Bayesian spatiotemporal 

model is critical for assessing disease propagation 

and identifying places with high incidence rates 

across time and space [25]. This model, which 

incorporates the susceptibility infection recovery 

paradigm, enables a complete examination of illness 

trends within populations. It successfully considers a 

variety of factors that influence illness prevalence, 

including physical geographical components such as 

temperature, rainfall, and air pollution, as well as 

socioeconomic elements such as economic 

indicators, healthcare accessibility, and 

demographic characteristics. The applications of 

Bayesian spatiotemporal models are numerous and 

important [53]. Firstly, in dis- ease surveillance, 

these models provide real-time risk assessments and 

dynamically monitor disease spread. Secondly, they 

 

(a)        (b)  

Figure 4. Visualization of SIR (a) and postier risk ζ (b) for cases per Counties, Alabama. 
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assist in epidemic forecasting by simulating 

spatiotemporal disease patterns, enabling accurate 

predictions and timely interventions. Numerous case 

studies have validated the effectiveness of these 

models [42, 43, 45]. The BYM model assumes that 

the observed counts follow a Poisson distribution: 

𝑌𝑖 ∼ poisson (𝜆𝑖) (9) 

where λi is the expected rate at location i. The key 

feature of the BYM model is the decomposition of 

the expected rates λi = ρiEi where ρi corresponds to 

the relative risk in area i. Here Ei denotes the 

expectation of the number of cases for each area and 

acts as an offset to the Poisson model. In this case, 

the linear predictor is defined on the logarithmic 

scale 

𝜂𝑖 = log(ρ𝑖) =  𝑎0 + 𝑢𝑖 + 𝑣𝑖 (10) 

such that ρi = exp (α + ui + vi). In this equation α 

represents the average rate across all areas, ui is the 

spatially structured residual, and vi is an 

unstructured exchangeable component that is 

modeled as independent and identically distributed 

normal variables with zero mean and variance σ 2. In 

the BYM model, the spatially structured residual, ui, 

of (6) is modeled using the intrinsic conditional on 

neighbors u−i autoregressive (iCAR) specification 

𝑢𝑖⎹ 𝑢−𝑖 ∽ 𝑁𝑜𝑟𝑚𝑎𝑙 (µ𝑖 +  ∑ 𝑟𝑖𝑗(𝑢𝑖 − 𝑢𝑗)

𝑛

𝑗=1

, s𝑖
2  ) 

(11) 

In the context of equation (6), µi represents the 

mean value for area i, and s2 = σ 2/Ni corresponds to 

the variance within the same area. The variance de- 

pends on the number of neighbours Ni that an area 

has, meaning that if an area has a larger number of 

neighbours, its variance will be smaller [37]. This 

variance structure acknowledges that when there is a 

strong spatial correlation, areas with more 

neighbours contain more information in the data 

regarding the value of their random effect. The 

variance parameter σ 2 controls the amount of 

variation be- tween the spatially structured random 

effects. The value of ri j represents the spatial 

proximity between areas and can be computed as: 

𝑟𝑖𝑗 = {
1/𝑁𝑖 , 𝑖𝑓 𝑎𝑟𝑒𝑎𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

It is important to note that rii is set to 0. County 

specific relative risks of cases are estimated as ζi = 

eα+ ui + vi. The above formulae of the BYM model 

are used for mapping COVID-19 incidences and are 

implemented using R-INLA see [24, 36, 45]. 

2. Integrated Nested Laplace Approximation 

The INLA is a powerful computational approach 

designed for approximate Bayesian inference in 

complex hierarchical models, particularly when 

dealing with latent Gaussian models [41]. The core 

idea behind INLA is to use a combination of nested 

Laplace approximations to efficiently compute 

posterior distributions without resorting to 

traditional, often computationally expensive, 

Markov Chain Monte Carlo (MCMC) methods [17]. 

INLA has gained popularity due to its ability to 

handle high-dimensional problems and provide 

accurate approximations quickly [34, 41]. It is 

particularly well-suited for spatial and 

spatiotemporal models, allowing for the analysis of 

complex data structures in fields such as 

epidemiology, environmental science, and disease 

mapping. INLA’s flexibility and efficiency have made 

it a valuable tool in various application areas, 

including risk assessment, ecology, and public 

health, where researchers of- ten needs to model 

intricate dependencies and un- certainty in data. 

A practical example of INLA’s application is in 

analysing the spread of infectious diseases like 

COVID-19 [36]. For instance, public health officials 

seeking to understand the geographic distribution of 

COVID-19 cases within a state like Alabama might 

consider factors such as population density, 

healthcare access, and socioeconomic conditions. By 

employing the INLA model, they can construct a 

spatial regression framework that incorporates these 

variables while accounting for spatial relationships 

between neighbouring regions. 

3.  Dataset Analysis 

In this study, the BYM model [8] was used to 

explore the spatial distribution of COVID-19 risk in 

Alabama. We estimated the relative risk (RR) of 

COVID-19 incidence for each county in Alabama 

state and compared it to the SIR and RR, which were 

used as the baseline reference, and calculated 95% 

credible intervals (CrI). The RR was significantly 

higher than 1 when the 95% CrI was over 1.  A map 

of the incidence patterns or probability risk was then 

generated using the RStudio 2023.06.2 version. 

III. RESULTS 

This study was initiated to investigate the relative 

risk of COVID-19 cases in Alabama counties and 

yields significant findings. 

This outcome implies an average decrease of 4.3% 

in the COVID-19 cases rate across the 67 surveyed 

counties. The incorporation of a 95% credibility 

interval enhances precision, supplying a range 

within which we can confidently assert that the ex- 

potentiated intercept’s true value exists. The interval, 

ranging from 0.927 to 0.987, corresponds to a 95% 

probability that the real impact lies within this 

bracket. To be more specific, the interval suggests a 

potential reduction in the COVID-19 cases rate, 

spanning from 7.3% to 1.3%. In essence, the 

combined implications of the posterior mean and 

credibility interval indicate a statistically 

substantiated average decline in the relative risk of 
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COVID- 19 across Alabama counties, providing 

valuable insights for shaping public health decisions 

and policies. In the risk classification process, it is 

crucial to prioritize areas for intervention and 

address heightened morbidity and mortality in future 

outbreaks by examining the geographic spread of 

extreme relative risks. To achieve this goal, we 

utilize a combination of data manipulation and 

visualization techniques to develop an informative 

and visually captive risk. To pinpoint regions with 

increased, occurrence of a specific phenomenon, we 

adopt criteria rooted in exceedance probability. The 

probability that the relative risk of area i is higher 

than a value c can be written as P (ρi > c). This 

probability can be calculated by subtracting P (ρi c) 

to 1 as follows: 

P (ρi > c) = 1 − P (ρi ≤ c) (13) 

To compute the probability P (ρi c) in R-INLA, use 

the inla.pmarginal() function with ρi’s marginal 

distribution and c as the threshold value. The spatial 

exceeding probability is calculated using the 

posterior distribution of the relative risk. This 

analytical metric gives useful information about the 

likelihood of the calculated posterior relative risk 

exceeding a predefined threshold value inside a 

specific area.  

Fig. 5 illustrates the COVID-19 county SIR 

(Standard Incidence Rate) trends about Alabama 

mortality rates from March 11, 2020, to December 

31, 2022. This graphic has five unique color-coded 

groups. Some Alabama counties, including Walker, 

Etowah, Hale, Lowndes, and Crenshaw, have 

considerably higher relative risks of COVID-19 

incidence and mortality rates, above the baseline 

reference of > 1, placing them in the orange category. 

In contrast, about four counties, including Madison, 

Shelby, Lee, and Russell, had much reduced relative 

risks in both COVID-19 instances and mortality 

rates and so were allocated to the green group. It’s 

worth noting that the remaining counties typically 

fell somewhere in between these extremes, as 

indicated by the plot’s legendary different colour 

ranges. Identifying hotspots or regions of danger is 

crucial for evidence-based policymaking since these 

sites act as epicentres, playing an important role in 

the spread of phenomena, such as diseases or other 

occurrences. 

Fig. 6 presents hotspots with posterior prob- 

ability P (eρi > 1 y) of relative risk of COVID-19 

cases versus deaths. The figure shows that the bulk 

of relative cases hotspots emerged in the Northern 

and central counties of Alabama, including 

Lauderdale, Madison, Jackson, Franklin, Jefferson, 

and Shelby, to mention a few.  

Furthermore, certain northern and central counties 

nearby (though not neighboring) continued to be 

identified as hotspots for death risk, albeit in fewer 

numbers. These counties include Pickens, Greene, 

Lawrence, Etowah, Calhoun, Covington, among 

others. Fig. 6 shows the discrepancy between 

counties where the relative risk and likelihood of 

death are greater than one. 

 

(a)        (b) 

Figure 5. Visualization of SIR (a) and posterior risk ρ (b) of deaths per Counties, Alabama. 
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Using relative risk as an illustration, Fig. 6a and 6b 

demonstrates that the county at the center has a 

relative risk surpassing one (depicted in orange), yet 

it is not classed as a hotspot (marked by a green hue). 

This is because its exceedance probability is less 

than 0.398, hence it does not qualify as a hotspot. 

IV. DISCUSSION 

The fundamental goal of disease mapping is the 

identification of high-risk locations, which is 

essential for formulating effective public health 

strategies. The consequences of a disease mapping 

model inaccurately predicting cases or deaths in 

these high-risk regions could lead to misaligned re- 

source allocation decisions that do not address the 

actual health needs. Additionally, understanding 

areas with distinctly low risk is crucial, not only for 

optimizing resource allocation but also for 

discerning environments that foster a reduction in 

health risks.  

This study was centred on spatial data processing 

for statistical modelling and visualization, 

specifically utilizing the BYM model in R-INLA 

package for COVID-19 in the case of Alabama. We 

focused on estimating the relative risk of COVID-

19 across 67 counties, underscoring the critical 

importance of accurate disease mapping in public 

health endeavours. The results of our analysis, 

particularly the posterior mean of the exponentiated 

intercept, revealing a substantial 4.3% decrease in 

the COVID-19 case rate, offer indispensable in- 

sights. The 95% credibility interval of 0.927 to 0.987 

linked with our findings enhances the robust- ness of 

our estimations, presenting a nuanced range of 7.3% 

to 1.3%. 

V. CONCLUSION 

In conclusion, this study leveraged spatial data 

processing, Bayesian analysis, and advanced 

statistical modeling, specifically employing the 

INLA model, to investigate the relative risk of 

COVID-19 cases across Alabama counties. The 

calculated posterior mean of the exponentiated 

intercept α value for relative risk indicated a 

statistically significant average decrease of 4.3% in 

the COVID-19 risk rate. The incorporation of a 95% 

credibility interval (0.927 to 0.987) added precision to 

the findings, providing a range within which the true 

value of the exponentiated intercept is likely to 

exist, suggesting a potential reduction in the COVID-

19 cases rate ranging from 7.3% to 1.3%. It is worth 

noting that the posterior mean of the exponentiated 

intercept α = 1.1126 with credibility interval 

(1.0387 to 1.1903). This implies that α > 1 is 

significant, contrary to the cases when it is smaller           

than 1. 

These results hold substantial implications for 

public health decision-making, guiding 

policymakers in prioritizing areas for intervention 

based on the relative risk distribution. The 

classification of risk, depicted in the visual 

representation of COVID- 19 relative risk patterns 

  

(a)        (b)  

Figure 6. Visualization of posterior probability P (eρi > 1 y) of relative risks, per Counties, Alabama. 
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across Alabama counties from March 11, 2020, to 

December 31, 2022, revealed notable disparities. 

Counties such as Colbert, Franklin, Morgan, 

Winston, Cullman, Walker, St. Clair, Clay, and Hale 

exhibited significantly higher relative risks, 

categorizing them in the orange color group. In 

contrast, several counties with a relative risk range 

below 0.398 were designated as green, indicating 

lower risk. Notably, counties like Lowndes and 

Butler fell within the moderate risk range (0.398 to 

0.796), as depicted by the white                hue. 

This comprehensive analysis, combining statistical 

insights with visual representations, contributes 

valuable information for proactive public health 

measures. By identifying regions with elevated risk, 

authorities can strategically allocate resources, 

implement targeted interventions, and mitigate the 

im- pact of future epidemics. The integration of 

spatial data processing and visualization techniques 

enhances our understanding of the geographic 

distribution of relative risk, fostering informed 

decision- making for effective public health 

management. 

NOMENCLATURE 

ρ The autocorrelation 

BYM Besag, York, and Mollié 

E Expected value of a random variable, 

in unite of a random variable. 

GIS  Geographical Information Systems 

POP Population of county. 

RR Relative Risk. 

SIR Standardized Incidence Rate. 
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