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Abstract: The Los Angeles abrasion value (LAAV) of rocks is a critical mechanical aggregate property for 

designing road infrastructures and concrete quality. However, the determination of this critical 

aggregate property is labour-intensive and time-consuming and thus, in the literature, there are many 

predictive models to estimate the LAAV for different rock types. However, most of them are based 

on classical regression analyses, limiting their broader usage. In this study, several soft computing 

analyses are performed to develop robust predictive models for the evaluation of LAAV of rocks in 

the Ilıca region (Kütahya – Turkey). The main motivation for implementing soft computing analyses 

is that precise predictive models might be useful when exploring suitable rock types that are 

manufactured in crushing–screening plants. For this purpose, a comprehensive laboratory schedule 

was established to obtain some inputs for the evaluation of LAAV. As a result of the soft computing 

analyses, four robust predictive models are developed based on artificial neural networks (ANN), 

multiple adaptive regression spline (MARS), adaptive neuro-fuzzy inference system (ANFIS) and 

gene expression programming (GEP) methodologies. The performance of the proposed models is 

investigated by some statistical indicators such as R2 and RMSE values and scatter plots. As a result, 

the ANFIS-based predictive model turns out to be the best alternative to estimate the LAAV of the 

investigated rocks. 
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I. INTRODUCTION 

The construction and building sector, which are 

driving forces in expanding economies, creates a 

substantial demand for goods and services, including 

many subsectors [1, 2]. One of the subsectors that 

plays a crucial role in geoengineering projects is the 

rock aggregate industry. The demand for 

construction aggregates, in this regard, can be 

evaluated based on three different groups regarding 

their origin (i.e., igneous, metamorphic, and 

sedimentary rocks). For example, rock aggregates 

with specific size fractions are obtained from 

igneous rocks such as andesite, basalt, syenite, 

gabbro and granite [3, 4]. Rock aggregates suitable 

for technical requirements are used in some 

infrastructures, such as water storage filtration and 

distribution systems and waste collection-treatment 

plants, and in some superstructures, such as 

buildings, bridges, railways, highways, etc [5−7]. 

To overcome stability issues in aggregate-related 

engineering structures, rock aggregates should 

withstand crushing, fragmentation, and deterioration 

when stacked, compressed, and subjected to 

surcharge loads. [8].  

For this reason, the suitability of rock aggregates 

for use in the construction industry has been 

investigated through several testing methods such as 

aggregate impact value (AIV), aggregate crushing 

value (ACV), Los Angeles abrasion value (LAAV), 

Micro-Deval abrasion value (MDAV) [9–12].  

Of the above-mentioned testing methods, LAAV 

and MDAL are well-accepted rock aggregate 

properties for evaluating rock aggregate suitability 

[7, 13–15]. However, these tests are hard to perform 

and necessitate unique graded samples. It was also 

reported that the LAAV test is labour-intensive and 

time-consuming. Therefore, numerous theories have 

been postulated to estimate the LAAV for different 

rock types [10, 14, 16–22]. However, most of these 

studies are based on classical regression analyses, 

limiting their broader use.  

Nevertheless, it should be mentioned that artificial 

intelligence methods such as Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), Artificial Neural 

Networks (ANN), Multivariate Adaptive Regression 
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Splines (MARS), Support Vector Machine (SVR), 

and Gene Expression Programming (GEP) are more 

sensitive to large datasets. Thus, they can provide 

better results compared to classical regression 

analyses [23, 24].  

Based on the above comments, the present study 

aims to establish several predictive models to 

estimate the LAAV of rock aggregates in Ilıca region 

(Kütahya–Turkey). For this purpose, detailed 

laboratory studies are carried out to create a 

comprehensive database for soft computing 

analyses. Based on the ANFIS, ANN, MARS and 

GEP methodologies, four different predictive 

models are introduced in this study. The 

performance of these models is compared based on 

different statistical indicators.  

The details and critical notes on how to implement 

these methodologies used to estimate the LAAV of 

the investigated rocks can be found in this research 

paper.  

II. MATERIALS AND METHODS 

The investigated rock types are exposed in the 

northeast part of Kütahya, Turkey (Fig. 1). These 

rock types are identified in the Miocene aged 

Tavşanlı volcanites, and they are mainly andesites, 

basalts, and basaltic andesites in lithology [25]. 

The investigated rocks have been considered as 

dimension stones and rock aggregate resources in the 

region. For laboratory studies, representative rock 

blocks are obtained from several locations around 

the Ilıca region. 

During field observations, only unweathered rock 

blocks were obtained to mitigate the effects of 

weathering on rock engineering properties. While 

doing this, the qualitative approach suggested by the 

International Society of Rock Mechanics [26] was 

adopted to determine the weathering degree of rocks. 

 

 

Figure 1. Sampling locations and geological settings of the study area

A total of 29 representative rock blocks were 

obtained for laboratory studies. For each rock block, 

physical and mechanical rock aggregate properties 

were determined. The laboratory studies were 

performed under oven-dried conditions. Each test 

was repeated at least three times, and average values 

were presented in this study.  

III. LABORATORY STUDIES 

The physical properties of rock aggregate consist 

of dry density (ρd) and water absorption by weight 

(wa). These tests were performed by considering TS 

EN 1936 [27]. The mechanical rock aggregate 

properties considered in this study were AIV and 

LAAV.  

These tests were also performed according to BS 

812-112 [28] and TS EN 1097-2 [29], respectively. 

Laboratory test results are listed in Table 1. 

Accordingly, ρd, wa, AIV and LAAV values were 

found to be between 2.59–2.74 g/cm3, 1.19–3.80%, 

12.01–24.43% and 12.27–25.46%, respectively. 
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Based on the database given in Table 1, soft 

computing analyses were performed. 

Table 1. Laboratory test results 

Lithology 
ρd 

(g/cm3) 

wa 

(%) 

AIV 

(%) 

LAAV 

(%) 

Basalt 

2.72 1.69 17.67 18.58 

2.67 1.91 16.40 21.14 

2.71 1.48 16.46 13.46 

2.72 1.71 13.10 15.25 

2.69 1.80 17.56 18.48 

2.67 2.46 17.10 23.72 

2.73 1.65 16.27 20.08 

2.69 2.70 23.96 25.46 

2.70 1.87 13.21 13.49 

2.71 1.60 15.74 16.78 

2.74 1.57 15.47 13.10 

2.73 1.45 15.02 17.97 

2.74 1.43 12.01 15.16 

2.74 1.59 14.28 12.27 

2.70 1.96 17.01 18.90 

Basaltic 

andesite 

2.71 2.15 12.33 15.46 

2.70 1.62 13.48 14.67 

2.71 1.96 20.77 23.45 

2.73 1.52 14.12 17.13 

2.67 2.53 17.51 20.31 

2.74 1.19 15.45 16.51 

2.69 2.28 14.11 17.12 

2.72 1.35 18.57 16.88 

2.68 2.05 21.31 23.90 

Andesite 

2.59 3.80 24.43 25.22 

2.61 1.93 18.58 18.76 

2.69 1.83 19.98 21.13 

2.62 1.90 21.25 20.39 

2.62 2.47 18.98 24.35 

Explanations: ρd: dry density, wa: water absorption 

by weight, AIV: aggregate impact value, LAAV: Los 

Angeles abrasion value 

IV. SOFT COMPUTING ANALYSES 

In this section, different soft computing methods, 

such as ANN, MARS, ANFIS, and GEP 

methodologies, were introduced.  

For all methodologies, the input parameters are ρd, 

wa and AIV with several combinations. Brief 

explanations of the adopted methodologies are given 

in the following subtitles. 

1. Artificial neural networks (ANN) 

Artificial Neural Networks (ANN) have gained 

popularity for their ability to predict dependent 

variables based on complex datasets.  

Neural networks are commonly used in various 

engineering applications. In practice, they are trained 

through a feedforward backpropagation algorithm 

[30]. In this study, the neural network toolbox 

(nntool) was used to reveal a robust predictive model 

in the MATLAB environment. For this purpose, the 

dataset (Table 1) was randomly divided into training 

(70/100) and testing (30/100) datasets.  

Various ANN architectures have been attempted 

to obtain the best predictive model. Before 

performing the analyses, the dataset was normalized 

between −1 and 1 to overcome overfitting problems. 

This normalization process is performed using Eq 1. 

min

max min

2 1i
n

x x
V

x x


  


 (1) 

Where Vn is the normalized data, xi is the data to 

be normalized, xmin is the minimum value in the 

dataset, and xmax is the maximum value in the 

dataset. 

After the normalization process, the dataset was 

loaded into the MATLAB environment to perform 

the neural network analyses. The analyses remained 

until the minimum error was obtained. Herein, root 

means square error (RMSE) was adopted as an error 

metric. Based on the analysis results, the most 

feasible ANN model was formulated by using the 

weights and biases extracted from the ANN outputs. 

2. Multiple Adaptive Regression Spline 

(MARS) 

MARS was first proposed by Friedman [31] as a 

nonparametric regression model. There are two 

important components in typical MARS models. The 

first one is the forward pass, and the other one is the 

backward pass. In the forward pass, the analyses are 

initiated with constant terms called basis functions 

(BFs). In the second part, BFs are connected to each 

other by employing linear regression models. It is a 

simple but powerful methodology to deal with 

datasets with a number of independent variables. 

MARS analyses were performed using software R, 

and details on the MARS-based predictive model are 

introduced in the following section. 

3. Adaptive neuro-fuzzy inference system 

(ANFIS) 

ANFIS is a hybrid approach that combines the 

fuzzy logic inference system (FIS) and ANN to 

establish a more efficient and accurate system. 

In most ANFIS models, the Sugeno fuzzy 

reasoning algorithm is adopted based on numerous 
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membership functions [32, 33]. Similar to the ANN 

analyses, ANFIS models were run using MATLAB 

R2021b. Input parameters are represented by several 

Gaussian membership functions. Based on several 

if-then rules, a novel ANFIS-based predictive model 

is proposed in this study. 

4. Gene expression programming (GEP) 

GEP is another soft computing algorithm that uses 

evolutionary techniques to develop a mathematical 

formula which represents the relationship between 

the dependent and independent variables.  

The GEP was developed by Ferreira [34] and has 

gained popularity in most geoengineering 

publications [35–37]. The GEP analyses were 

performed using GeneXproTools. Several numbers 

of chromosomes, head sizes and gene sizes were 

attempted to obtain the most feasible GEP model.  

V. RESULTS AND DISCUSSION 

1. ANN analysis results 

Based on several ANN analyses, the best ANN 

architecture was found to be 3–4–1. It means that 

there were three inputs (ρd, wa and AIV), four hidden 

layers and one output (LAAV) (Fig. 2).  

 

Figure 2. ANN architecture adopted in this 

study. 

The mathematical formulations of the proposed 

ANN model were revealed by considering the 

deterministic approach provided by Das [38], which 

is given by Eq 2. 

0
1 1

n m

sig j sig hj ij i
j i

Y f b w f b w 
 

    
       

    
   (2) 

where Y is the output variable (LAAV), b0 is the bias 

in the output layer, n is the number of neurons in the 

hidden layer (n=4 in this study), j denotes a specific 

neuron in the hidden layer, wj is the weight of the 

connection between the jth hidden layer and the 

single output neuron, bhj is the bias in the jth neuron 

of the hidden layer, wij is the weight of the 

connection between the ith input parameter and the jth 

hidden layer, δi is the normalized input parameter, 

fsig is the nonlinear transfer function (tanh).  

Based on the above deterministic approach, the 

LAAV can be estimated by the equations (Eqs 3 – 

10). To estimate the LAAV of the investigated rocks, 

these equations can be easily implemented by coding 

them into any computational language. 

4

1

6.595tanh 0.2747 18.865
i

i

LAAV A


 
   

 
  (3) 

 1
1.2173tanh 2.8187 0.85004 3.6887 0.5154n n n

d a
A w AIV     (4) 

 2
1.2866tanh 0.15365 2.9709 0.06788 1.1679n n n

d a
A w AIV       (5) 

 3
2.1584tanh 1.891 1.507 2.1233 0.90154n n n

d a
A w AIV      (6) 

 4
1.9491tanh 3.5233 0.42358 5.3114 2.5011n n n

d a
A w AIV     (7) 

 

Normalization functions: 

13.333 35.533n

d d
    (8) 

0.7663 1.9119n

a a
w w   (9) 

0.161 2.934nAIV AIV   (10) 

2. MARS analyses results 

Based on four BFs, the LAAV can also be 

investigated considering the MARS methodology. 

Accordingly, the LAAV can also be estimated by the 

following equations. The BFs listed in Eqs 12 – 15 

are based on the global maxima (max function) in 

terms of different input parameters. 

15.19 0.89 1 121.55 6 133.58 9LAAV BF BF BF     

 (11) 

 1 max 0; 12.01BF AIV   (12) 

 6 max 0; 2.73 1
d

BF BF    (13) 

 7 max 0;2.73 1
d

BF BF    (14) 

 9 max 0;1.87 7
a

BF w BF    (15) 
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3. ANFIS analyses results 

In the context of the ANFIS analyses, three input 

parameters were considered (Fig. 3a). During the 

training process, RMSE was adopted as an error 

metric.  

The ANFIS analyses were performed until the 

minimum RMSE values were obtained (Fig. 3b). 

According to the ANFIS model structure (Fig. 3c), 

each input parameter was represented by five novel 

Gaussian membership functions. Consequently, five 

if-then rules activated the ANFIS model (Fig. 3d).

 

Figure 3. ANFIS outputs a) Input parameters b) Training process c) ANFIS model structure d) Rule viewer

4. GEP analyses results 

Based on GEP analyses, the last predictive model 

was proposed. The sub-expression trees (Sub-ETs) 

are given in Fig. 4. The mathematical expressions of 

these Sub-ETs are also listed in Eqs 16 – 19. 

3

1

0.9872 0.1719
i

i

LAAV A


   (16) 

  
2

1
max min 2.46, ,2.53

a
A w 

  
 

 (17) 

 
2

2 min ,2.47
2

2

a

a

w AIV
AIV

w
A






  

(18) 

   2

3

0.499 0.133

2

a
w AIV

A
   

  (19) 

By implementing the above equations, LAAV 

values can be easily estimated. The performance of 

the proposed predictive models is also investigated 

based on several statistical indicators, which are 

given in the following section. 
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Figure 4. Sub-ETs of the proposed GEP model  

(d0: ρd, d1: wa, d2: AIV, g1c0: 2.469, g1c3: 2.527,  

g1c4: 2.528, g2c0: 2.469, g3c4: −0.133,  

g3c5: −0.499). 

5. Performance Evaluation 

The performance of the proposed predictive 

models is investigated based on several statistical 

indicators, such as correlation of determination (R2) 

and RMSE values. The statistical indicators are 

calculated by the following equations: 

   

2

2 22 2

n xy x y
R

n x x n y y




 

  

   
 

(20) 

 
2

1

n

i i
i

y x

RMSE
n








 
(21) 

Where x is the predicted variable, y is the 

measured variable, and n is the number of datasets. 

Focusing on the training (70/100) and testing 

(30/100) datasets, the R2 and RMSE values are listed 

in Table 2.  

Table 2. Performance indicators of the proposed 

predictive models 

Methodology 

Training dataset Testing dataset 

R2 
RMSE 

(%) 
R2 

RMSE 

(%) 

ANN 0.81 1.624 0.98 0.296 

MARS 0.86 1.523 0.72 2.096 

ANFIS 0.92 1.042 0.98 0.468 

GEP 0.72 1.965 0.86 1.295 

Accordingly, for training and testing datasets, the 

R2 and RMSE values were found to be between 

0.72–0.98 and 0.296–2.096%, respectively (Table 

2). Based on the calculated performance indices, the 

ANFIS-based predictive model provides the best 

prediction performance when considering the whole 

dataset. On the other hand, the ANN-based 

predictive model, with its explicit mathematical 

formulations, can also be regarded as a concise 

model to estimate the LAAV of the investigated 

rocks. The scatter plots of the models are also given 

in Fig. 5. In Fig. 5, the performance of the predictive 

models is illustrated by focusing on the whole 

dataset (n=29). 

 

Figure 5. Scatter plots of the proposed 

predictive models a) ANN b) MARS c) ANFIS 

d) GEP 

Similar to what has been stated earlier, the scatter 

plots also suggest that the ANFIS-based predictive 

model provides concise LAAV values and, thus, this 

methodology can be regarded as a robust 

methodology for the evaluation of LAAV. However, 

this methodology can have some difficulties in that 

it is a black-box model, and there are no definite 

mathematical expressions as an output in the ANFIS 

analyses. It should be herein mentioned that the 

outputs were extracted from the ANFIS model based 

on some computational commands (e.g., evalfis) in 

the MATLAB environment. 

When explicit mathematical formulations are 

desired to estimate the LAAV of rocks, the ANN-

based predictive model (Eqs. 3–10) can also be a 

coherent choice.  

On the other hand, the GEP and MARS models 

should be improved by enhancing the number of 

datasets. These models often provide more accurate 

results by considering larger datasets.  

6. Conclusions 

In this study, robust predictive models are 

introduced to estimate the LAAV of the rocks in the 

Ilıca region (Kütahya–Turkey). For this purpose, a 
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comprehensive laboratory schedule was established 

to obtain some inputs for the evaluation of LAAV. 

Consequently, a database composed of 29 datasets 

was generated (Table 1). As a result of the soft 

computing analyses, four robust predictive models 

are developed. The performance of the proposed 

models is investigated by some statistical indicators 

such as R2 and RMSE values and scatter plots. As a 

result, the ANFIS-based predictive model turns out 

to be the best alternative to estimate the LAAV of 

the investigated rocks. Nevertheless, in this study, 

some explicit mathematical formulations are also 

provided based on the ANN methodology. This 

model can also be considered and coded into any 

computation language for its possible 

implementations. Last but not least, the MARS and 

GEP models should be improved by enhancing the 

database and adding some input parameters such as 

mineralogical features and/or quantitative 

knowledge on rock weathering.  

It is highly recommended to investigate the 

weathering degree of the rocks exposed in the Ilıca 

region. In this way, the physical and mechanical 

aggregate properties and their possible variations can 

be thoroughly revealed. The findings obtained from 

the present study and recommendations stated are 

believed to be beneficial for the evaluation of LAAV 

for the investigated rock types. 
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