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Abstract: The changes in crystallization characteristics of four polyesters were investigated during multiple 
processing. Two of these were petroleum-based materials: poly (ethylene terephthalate) (PET) and 
poly (butylene terephthalate) (PBT), and two were bio-based materials: poly (lactic acid) (PLA) and 
poly (butylene succinate) (PBS). We found that during non-isothermal crystallization the different 
type of polyesters shown different behaviour: the PET and PLA materials were more sensitive to the 
cooling rate than the PBT and PBS. Interestingly, at low cooling rates, the number of reprocessing 
steps had no significant effect on the crystallinity of PBT and PBS, but reduced it for PET, but 
increased it for PBT. 

Keywords: polyesters, bio-based polymer, petroleum-based polymer, crystallization, recycling 

 

I. INTRODUCTION 
Modern industries need materials that have 

properties which are not found among the traditional 
materials used, so the manufacture of materials with 
special specifications has raised the interest of 
researchers in recent years [1,2,3,4]. Different types 
of polyester materials have started to be widely used, 
since these polymers are commonly used in most 
applications due to their low cost, adaptability and 
high mechanical properties such as strength and 
moisture resistance. They are used as the main 
component in different industries and daily products 
such as textiles, clothes, backpacks, home furniture, 
pillows, napkins, air and water filters, packaging 
materials, computers and recording tapes, building 
and construction materials and electrical insulation 
as well as in the medical field. Also, biodegradable 
polyester materials are used in environmentally 
friendly products like compostable bags and food 
containers [1,2,3,5,6]. 

Polyester can be classified into two main types 
depending on the raw materials used in their 
production. One of them is bio polyester, which is 
extracted from renewable resources such as 
microorganisms and plants like sugarcane and corn, 
the most important of which are polylactic acid 
(PLA) and polybutylene succinate (PBS) [7,8]. The 
other type is called petroleum-based polyesters, 

which can be obtained from petrochemical raw 
materials, including polyethylene terephthalate 
(PET) and polybutylene terephthalate (PBT) [9,10]. 
In addition, bio-based polyesters are considered 
more environmentally friendly than their petroleum-
based counterparts because they reduce dependence 
on fossil fuels [7,8,9,10]. However, both types of 
polyesters have their advantages and disadvantages, 
and the selection of the most suitable option depends 
on the specific needs of a particular application 
[7,8,9,10].  

Polyester recycling has received great attention in 
recent years because it helps reduce the amount of 
waste, energy consuming and environmental impacts 
and conserve resources [7,9,11]. Also, the recycling 
process can have an effect on the structure of the 
polymer, including its crystallinity, thus affect the 
mechanical properties of polymer [11,12]. 

The present work was undertaken to study the 
effect of reprocessing on the non-isothermal 
crystallization behaviour of PET, PBT, PLA and 
PBS. This work is intended to provide a better 
insight into the crystallization kinetics of petroleum-
based and bio-based polyesters. 
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II. MATERIALS AND METHODS 

1. Materials 

The type and main properties of the two 
petroleum-based and two bio-based polyesters tested 
are presented in Table 1. 

For reprocessing the materials Labtech 26-44 
(Labtech Engineering, Thailand) twin screw 
extruder with a screw diameter of 26 mm and an L/D 
ratio of 48 was used. The main parameters of 
extrusion processing are summarized in Table 2. 
This step was repeated twice for the reprocessed 
samples. 

2.  Methods 

Intrinsic viscosity (IV) measurements were done 
by RPV-1 (PSL Rheotek, USA) automatic solution 
viscometer according to ASTM D4603 standard. 
The IV values were measured at 30 °C in a 60/40 
weight mixture of phenol/tetrachloroethane solvent 
with a concentration of 0.5 g/dl. 

Crystallization characteristics were investigated 
using a non-isothermal DSC program using a 
DSC131 EVO (Setaram, France) device. The 
measurements were performed in nitrogen 
atmosphere with a flow rate of 50 ml/min. Samples 
were heated from room temperature to melting 
temperature (Tm)+30 °C at a rate of 20 °C/min, held 
for 4 min to erase thermal history, and then cooled 

back to 0 °C temperature at different rates (40, 20, 
10, 5, and 2.5 °C/min). From the exothermic 
crystallization peak shown on the cooling curve the 
peak crystallization temperature was determined. 
Crystallinity (Xc) was calculated by Eq. (1) from the 
DSC heating scans at a heating rate of 20 °C/min, 
after specimens crystallized from a molten state to 
room temperature with different cooling rates. The 
area of each peak has been considered as the 
crystallization and melting enthalpy, ∆Hcc and ∆H m, 
respectively. 

𝑋𝑋𝑐𝑐 =  ∆𝐻𝐻𝑚𝑚−∆𝐻𝐻𝑐𝑐𝑐𝑐
∆𝐻𝐻𝑚𝑚0

            (1) 

The term ∆Hm
0 is a reference value corresponding 

to the heat of melting of a 100% crystalline polymer, 
the value of which is 140 J/g for PET [13]; 145 J/g 
for PBT [14]; 195 J/g for PBS [15] and 93 J/g for 
PLA [16]. 

III. RESULTS AND DISCUSSION 
The degradation of the polyesters during 

reprocessing was characterised by IV measurements. 
It was found that reprocessing had no remarkable 
effect on IV of PBS and PBT, while it led to a de-
crease in the viscosity of the rest of the types of poly-
esters used, especially PET as shown in Table 3. 

Non-isothermal crystallization was used to 
investigate how the crystallization of different 
polyesters changes during multiple processing. 
Typical DSC curves are shown in Fig. 1. It can be 
seen that as the cooling rate increases, the degree of 
undercooling increases and the crystallization peak 
shifts to a lower temperature. 

Table 1. Tested polyesters 

Name Origin Type (Producer) MFI parameters MFI  
value 

PET Petroleum-
based Neopet 80 (Neogroup) 260°C / 1.2 kg 21 g / 10 min 

PBT Petroleum-
based Pocan B1305 (Lanxess) 250°C / 2.16 kg 47 cm3 / 10 min 

PLA Bio-based Ingeo 3100HP (Natureworks) 210°C / 2.16 kg 24 g / 10 min 

PBS Bio-based BioPBS FZ91PM  
(PTT MCC Biochem) 190°C / 2.16 kg 6 g / 10 min 

 

Table 2. Processing parameters 

Name Drying Temperature 
zones 

Screw 
speed 

PET 160 °C / 
4 h 270 - 280 °C 34 rpm 

PBT 120 °C / 
4 h 250 - 260 °C 65 rpm 

PLA 90 °C / 
5 h 195 - 205 °C 52 rpm 

PBS 80 °C / 
5 h 160 - 170 °C 85 rpm 

 Table 3. Effect of reprocessing on the intrinsic 
viscosity of PET, PBS, PBT and PLA 

Name 0x 1x 2x 
PET 0.79 ± 0.01 0.69 ± 0.01 0.67 ± 0.01 
PBT 1.49 ± 0.01 1.49 ± 0.01 1.48 ± 0.01 
PLA 0.84 ± 0.01 0.83 ± 0.02 0.82 ± 0.01 
PBS 1.26 ± 0.02 1.20 ± 0.01 1.17 ± 0.02 
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Figure 1. DSC cooling curves with crystallization 

exotherm (Once-processed PET sample) 

The evaluations of the measurements are 
summarised in Fig. 2 and 3. The change in 
crystallinity as a function of the natural logarithm of 
the cooling rate is shown in Figure 2. For all samples, 
a logarithmic relationship between the crystallinity 
formed and the cooling rate is observed. It can be 
seen that the cooling rate has a marginal effect on 
crystallinity in PBS and PBT polymers. For the 
original PET, as well as for the original and recycled 
PLA materials, a significant change in crystallinity 
is observed for different cooling rates: faster cooling 
reduces the proportion of crystalline phase. The 
resulting crystallinity is generally in the range of 20-
30%, except for original PET, where crystallinity is 
lower at high cooling rates; for once and twice-
processed PLA, where the crystallinity is higher than 
this range at low cooling rates and for all PLA 
material lower at high cooling rates. 

In the case of PLA, the crystallinity increases with 
the number of processing steps as expected because 
a decrease in molecular weight results in less 
restricted chain mobility [17]. However, in the case 
of PET the reprocessed sample has lower 
crystallinity than the once-processed sample in the 
whole cooling rate range. This can be explained by 
the fact that in PET, the smaller the molecular weight 
of the fraction, the shorter the chain, which makes it 
more difficult to fold the chains, the activation 
energy increases and therefore the crystallization 
rate is lower [18]. 
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Figure 2. Effect of cooling rate on the 

crystallinity (a: PET; b: PBT; c: PLA; d: PBS; 0x: 
original material; 1x: once-processed materials; 2x: 

twice-processed (reprocessed) materials). 

Non-isothermal crystallization data can be 
analyzed in terms of the degree of undercooling 
(ΔTc) defined as the temperature difference between 
the equilibrium melting temperature (Tm0) and the 
peak temperature of crystallization (Tc,p) in the 
cooling scan [19]. The equilibrium melting 
temperatures used for calculation of the level of 
undercooling were: 280°C for PET [19], 245°C for 
PBT [20], 130°C for PBS [21] and 184°C for PLA 
[22]. It can be established that the degree of 
undercooling is in each case linearly related to the 
natural logarithm of the cooling rate (Fig. 3). It can 
be observed that for PET and PBS the original 
material crystallizes at significantly higher level of 
undercooling than the once and twice reprocessed 
variants, while no such big differences are seen for 
PBT and PLA. 

 

 

 

 
Figure 3. Effect of cooling rate on the degree of 

undercooling (a: PET; b: PBT; c: PLA; d: PBS;  0x: 
original material; 1x: once-processed materials; 2x: 

twice-processed (reprocessed) materials) 
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Based on Nadkarni et al. [23] the ΔTc with cooling 
rate can be fitted to a linear equation, however in the 
polyesters tested in our case these functions show 
logarithmic trends. Based on the function parameters 
on Fig. 2 and 3 we defined the ΔTc,1 as the degree of 
undercooling required in the 1 °C/min cooling rate 
which is related to the thermodynamic driving force 
for nucleation, and ΔXm,1 indicating crystallinity at 
a cooling rate of 1 °C/min. Fig. 4 shows the change 
of ΔTc,1 and ΔXm,1 after the processing steps in the 
case of the different polyester materials. It can be 
observed that reprocessing typically reduces the 
value of ΔTc,1, but the value of ΔXm,1 can vary in 
several ways during recycling, depending on the type 
of polyester. 

 

 
Figure 4. The change of the degree of 

undercooling (a) and the crystallinity (b) after the 
processing steps at a cooling rate of 1 °C/min; 0x: 

original material; 1x: once-processed materials; 2x: 
twice-processed (reprocessed) materials) 

IV. CONCLUSIONS 
Experiments were carried out to investigate the 

crystallization of different types of bio-based and 
petroleum-based polyesters at different cooling 
rates. Based on the measurement results the degree 
of undercooling and the crystalline fraction formed 
were determinate and compared between different 
polyester types and processing steps. 

Our experimental results reveal that the both 
overcooling and crystallinity are logarithmically 
related to the cooling rate. By extrapolating the fitted 
functions, we determined the ΔTc,1 and ΔXm,1 value 
corresponding to a cooling rate of 1 °C/min. ΔTc,1 is 
related to the thermodynamic driving force for 
nucleation and its value depends mainly on the type 
of polyester: the highest for PET and the lowest for 
PBT. ΔXm,1 is primarily influenced by the crystal 
growth rate, which is connected to the that mobility 
or diffusion of molecular chains. For PET and PLA. 
for which reprocessing has caused significant 
degradation, this value varies greatly during the 
recycling steps: While in the case of PET, 
degradation during reprocessing reduces the 
crystallinity formed, PLA, on the contrary, increases 
the crystalline fraction. For PBS and PBT, no 
significant change in crystallinity is observed at low 
cooling rates. 
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