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Abstract: The progressive integration of autonomous vehicle (AV) technology holds the potential to reshape 
the prevailing traffic landscape. AVs have different driving characteristics than human-driven 
vehicles, which manifests itself in the strict adherence to speed limit, in giving priority to pedestrians, 
and in the pre-set headways they can keep. A traffic simulation environment was built around an 
unsignalized pedestrian crossing to measure the energy consumption of vehicles in the presence of 
AVs. The simulation environment was modified to adhere pedestrian-accepted gaps between vehicles 
in case of crossing. Considered vehicle types are yielding or not yielding human-driven, and AVs. 
Scenarios were built to model the AV traffic share, the different headways kept by AVs, and the 
various traffic volumes in each direction. The different driving behaviour and traffic share of AVs led 
to energy consumption changes, which were modelled through scenario analysis. The maximum 
energy consumption reduction of human-driven vehicles was 10.67% for yielding vehicles and 
12.41% for non-yielding vehicles compared to the 0% AV traffic rate. Although, in case of AVs, the 
energy consumption increased in all scenarios compared to the basic version with only human-driven 
vehicles. In higher traffic scenarios, where only AVs were on the road, there was a substantial 35,92-
96.55% increase in energy consumption, compared to the 0% AV ratio case. Thereby speed of 
vehicles, following distance and the number of stops affected the overall system efficiency. The 
results of this study can contribute to the understanding the impact of AVs which can support their 
introduction. 
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I. INTRODUCTION 
The automotive industry has undergone significant 

changes in the past decade. New drive modes and 
advanced driving support technologies were 
introduced. Electric drive is one of the most 
dynamically developing vehicle propulsion 
techniques, which is clearly shown by the fact that 
the electric car market sales exceeded 10 million in 
2022 globally. The 14% of new cars sold were 
electric, up from 9% in 2021 and 5% in 2020. Also, 
a total increase of 35% in sales was forecast for the 
year 2023 [1]. The rise of battery electric vehicles in 
Europe is also remarkable, an increase of 83% was 

observed between 2019-2020 and 76% between 
2020-2021 [2]. To facilitate the transition from 
internal combustion engines to zero-emission ones, 
the European Commission has stipulated that from 
2035, only zero-emission new vehicles can be sold 
[3]. 

Besides the emergence of EVs, highly automated 
vehicles are spreading which can assist or even 
replace human driving operations [4]. Autonomous 
vehicles (AVs) have the potential to reduce human 
error due to the more accurate and faster 
environment sensing and control [5].  

Our research focused on energy consumption 
simulation at an unsignalized pedestrian crossing in 
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the era of autonomous and electric vehicles. The aim 
was to examine how energy consumption varies as a 
function of speed, acceleration, and deceleration 
according to simulation time steps. Energy 
consumption is influenced by many things, including 
the speed and weight of the vehicle, the elevation of 
the route, and the driving style. In the simulation, 
only electric vehicles (EVs) were modeled, which 
could be traditional human-driven or autonomous 
vehicles (AVs). AVs have a different driving 
behavior than traditional human-driven vehicles, 
which manifests itself in the strict adherence to the 
speed limit, in giving priority to pedestrians, and in 
the pre-set headways they keep. The rule-following 
behavior of AVs was achieved by modifying the 
simulation parameters. Scenarios were built to model 
the AV traffic share, the different headways, and the 
various traffic volumes in each direction. The 
different driving behavior and traffic share of AVs 
led to energy consumption changes, which were 
modeled through scenario analysis. 

The structure of the paper is the following: a brief 
literature review is followed by the description of 
previous related research in Section II. In Section III, 
the simulation methodology and the implemented 
scenarios are discussed. Section IV contains the 
results of the study. Finally, the conclusions were 
summarized. 

II. LITERATURE REVIEW 
Energy consumption was studied in different 

approaches in previous studies. These are either 
based on measurements in a real environment [6-9] 
or based on mathematical modelling and simulation 
[10-14]. Most of the research rely on VSP (Vehicle 
Specific Power) models, which estimates 
instantaneous power requirement based on vehicle 
kinematic parameters. Parameters that are frequently 
used to calculate VSP are vehicle speed, 
acceleration, frontal area of the vehicle, mass, rolling 
resistance coefficient, drag coefficient, and road 
grade. The first VSP model was defined by J. L. 
Jimenez-Palacios in 1998 [15]. An interpretation of 
the power-based model for electric vehicle 
consumption was discussed in a study by Fiori et al 
[16]. They modelled the instantaneous energy 
consumption of EVs using second-by-second vehicle 
speed and acceleration as input variables. Their 
proposed model had an average error of only 5.9% 
relative to the empirical data. Results also showed 
that a higher amount of energy is recovered in urban 
environments compared to higher-speed highway 
driving. Wu et al. examined real-time power 
consumption in relation to vehicle speed, 
acceleration, and road grade [17]. Other studies 
estimate the effects of ambient temperature [18-19] 
and road gradient [20] on vehicle energy 
consumption. Another important factor that can 
influence energy consumption is driver behaviour, 

which has also been addressed by several studies 
[21-22]. 

To increase the range of electric vehicles, 
regenerative braking is a frequently used solution. 
Several research focus on the issue of calculating the 
efficiency of regenerative braking. Some of these 
models consider constant regenerative braking 
efficiency [23-24], while others study regenerative 
braking as a linear function of vehicle speed [25] or 
its deceleration [16]. 

Fuel consumption reductions by AV traffic was 
also studied in some articles [35-36]. However, 
fewer studies focus on the energy consumption of 
electrically powered AVs. Most of them are 
researching the possibilities in optimizing the 
relocation of shared AVs [26-27] and connecting 
them with the smart grid [28]. Other studies in this 
field rather focus on vehicle-level energy 
consumption modeling [29-30]. 

Traffic simulation studies related to AVs are also 
getting more attention nowadays. Research indicates 
that AVs may enhance traffic characteristics in both 
on freeways [31-32] and in urban areas [33]. At the 
same time, we found only one example of simulating 
AVs in the environment of a pedestrian crossing 
[34].  

Based on our literature review, it can be stated that 
the simulation of energy consumption in a specific 
traffic situation, such as at a pedestrian crossing is a 
less researched area. The novelty of our research 
comes from modeling electric-powered AVs in the 
vicinity of a pedestrian crossing and analyzing the 
effects of their different behavior characteristics on 
energy consumption. 

III. SIMULATION METHODOLOGY 
An unsignalized pedestrian crossing on a 2x1 lane 

road was modeled in Vissim (2020) microsimulation 
software. The road section was characterized by 
straight alignment on a flat terrain, with lane widths 
of 3.5 meters. Overtaking was not permitted in the 
vicinity of the pedestrian crossing. 

Road-side video camera measurements were 
carried out in Budapest, Hungary to assess 
pedestrians’ vehicle distance-based crossing 
decisions. Data collection was conducted over four 
days, with time intervals typically set at 1.5-2 hour. 
Pedestrian traffic was normalized to 1 hour, which 
resulted in 87 pedestrians in west-to-east direction 
and 91 pedestrians in east-to-west direction. 
Pedestrian groups were formed according to gender 
and age categories. We found that the majority of 
pedestrians chose to cross if the vehicle distance was 
50 meters or more.  

The drivers’ yield ratio was measured 69%, which 
was also implemented in the model by separating 
yielding and not yielding human-driven vehicles in 
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the simulation model with different vehicle classes. 
Speed distributions remained at the default Vissim 
setting. However, for AVs, a fixed maximum speed 
limit of 50 km/h was enforced. 

Given that pedestrian behavior in the Vissim 
simulation environment does not inherently consider 
vehicle proximity, model calibration became 
necessary. To address this, we deployed detectors 
with 10 meters range to detect vehicle positions. 
Subsequently, signal heads were placed on both ends 
of the pedestrian crossing, permitting access to 
pedestrians based on their gender, age category, and 
the proximity of the approaching vehicle. The logic 
between the detectors and the signal control that 
handled the signal heads was set with the VisVAP 
module. 

 We defined mathematical formulas for energy 
consumption and regeneration, and subsequently 
provided these as input parameters to the Vissim 
software for energy calculations. To accomplish this, 
we employed the Vissim External Emission Model, 
and the energy model itself was programmed in the 
C++ language. Due to the substantial data volume, 
an Excel macro was written for data processing. 
Finally, to measure the impact of traffic volumes, 
AV traffic ratios, and the different headways 
maintained by AVs on energy consumption, various 
scenarios were built in the simulation framework. 

It is important to emphasize that present study 
focused on the pedestrian crossing area. 
Consequently, we examined the area within a 100 
meter radius in both directions. Vehicle data beyond 
this range was excluded with data filtering. 

The calibration processes of Vissim with the 
VisVAP module, incorporating energy consumption 
calculation formulas, and the development of the 
simulation scenarios are summarized in Fig.1. 

1. Scenario building 

The simulation model was constructed utilizing 
data derived from roadside observations. In 
accordance with the discerned patterns of pedestrian 
decision-making in response to varying vehicle 
distances, we established specific vehicle headway 
values of 50 meters, 60 meters, and 70 meters for 
AVs. Conversely, for conventional vehicles, we 
retained the default model parameters. 

These predefined vehicle headway values 
constituted the initial phase in scenario building. We 
adjusted the proportions of AV traffic, encompassing 
a spectrum from 0% to 100% in increments of 25%. 
Subsequently, we introduced five discrete levels of 
traffic flow rates for each direction, specifically 200, 
400, 600, 800, and 1,000 vehicles per hour. 
Accordingly, a total of 65 distinct scenarios were 
built. It is noteworthy to mention that the predefined 
headway settings were not applied if the AV traffic 
ratio is 0%.  

In each scenario, three simulation runs were 
performed and the average values of them were 
considered for further calculations. To model the 
stochastic variations of vehicle and pedestrian 
arrivals, different random seeds were implemented 
in Vissim. The chosen random seed values were 5, 7, 
9 and 11. Each simulation run lasted for 3600 
simulation seconds. 

 
Figure 1. Methodology overview 



Sz. Szigeti et al. – Acta Technica Jaurinensis, Vol. 16, No. 4, pp. 174-182, 2023 

177 

2. Energy consumption and regeneration 
calculation 

Since energy consumption of the EVs is not 
constant over time, a time step approach was used in 
the simulation. Vissim generated the speed, 
acceleration (deceleration), and position data for 
each vehicle in every t time step which was 0.25 
seconds. 

The energy consumption model was derived from 
vehicles’ kinematic parameters, with the summation 
of the forces acting on a moving vehicle by equation 
(1): 

�𝐹𝐹  =  𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 +  𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐹𝐹𝑎𝑎𝑎𝑎𝑟𝑟  (1) 

Where Facc is the acceleration force acting on the 
vehicle - equations (2), Froll is the rolling resistance 
force - equation (3), and Fair is the aerodynamical 
drag force - equation (4).  

𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑀𝑀 ∙ 𝑎𝑎𝑡𝑡  (2) 

Here M denotes the vehicle mass in kilograms, at 
is the acceleration in t time step of the EV in m/s2. 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = M ∙ 𝑔𝑔𝑡𝑡  ∙  𝐶𝐶𝑅𝑅 (3) 

Where gt is the gravitational acceleration in m/s2 in 
t simulation time step, and CR is the tires’ rolling 
resistance coefficient. 

𝐹𝐹𝑎𝑎𝑎𝑎𝑟𝑟 =
1
2

 ρ𝑎𝑎 ∙  𝐶𝐶𝐷𝐷  ∙  𝐴𝐴𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑡𝑡  ∙  𝑣𝑣𝑡𝑡2 (4) 

Where symbol ρa represents the air mass density 
in kg/m3, CD is the aerodynamic drag coefficient, 
Afront is the frontal area of the vehicle in m2, and vt is 
the vehicle speed in m/s in the t time step. 

The power requirement (measured in KWh) for 
moving the vehicle at a given velocity v was 
determined with equation (5): 

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  =  
∑𝐹𝐹 ∙ 𝑣𝑣

3,600,000
 (5) 

Regarding deceleration, the regenerated energy (in 
KWh) was determined by computing the alteration 
in kinetic energy by equation (6): 

 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎  =  
1
2

 𝑀𝑀∙�𝑣𝑣𝑡𝑡−12 −𝑣𝑣𝑡𝑡2�

3,600,000
  (6) 

The regenerated energy calculated within this 
expression has a negative sign, signifying the 
directional vector of energy transfer is opposite to the 
energy consumption. We note that, due to the 
inefficient regeneration at low vehicular speeds, data 
associated with EVs operating at velocities below 10 
km/h were omitted. 

The comprehensive energy equilibrium of the 
vehicle through the entire time frame can be 
evaluated by the difference of energy dissipation and 
energy regeneration by equation (7): 

𝑃𝑃𝑎𝑎𝑟𝑟𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 =  �𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 + �𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎  (7) 

The parameters employed in the emission 
modelling process are depicted in Table 1. The 
selected parameters fell within the range of values 
identified in the existing literature. 

IV. RESULTS AND DISCUSSION 

The energy consumption was calculated for 
vehicles giving priority, not giving priority, and 
AVs. Results are showcased for traffic volumes.  

In scenarios considering 800 and 1000 vehicles per 
hour, it was observed that not all vehicles could 
trespass the area. The resulted traffic congestion may 
have influential and distorting impact on the energy 
consumption results. Accordingly, the result of 
scenarios considering 200, 400, and 600 vehicles per 
hour are only further discussed in this paper. Table 
2, Table 3, and Table 4 shows the energy 
consumption per vehicle under the considered traffic 
volumes, respectively. 

Table 1. Parameters used in the energy consumption calculation 

Parameter Ref. 
[16] 

Ref. 
[24] 

Ref. 
[37] 

Ref. 
[38] 

Ref. 
[39] 

Chosen 
value Unit 

Mass of the vehicle (M) 1521 1500 2169 1480 2791 2000 [kg] 
Rolling resistance coefficient (CR) 0.0328 0.005 0.013 0.013 0.006 0.01 - 
Aerodynamic drag coefficient (CD) 0.28 0.25 0.23 0.34 0.8 0.3 - 
Frontal area (Afront) 2.3316 2.25 2.341 2.713 2.666 2.3 [m2] 
Air mass density (ρa) 1.2256 1.275 1.293 1.204 1.2 1.275 [kg/m3] 
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Besides the absolute energy consumption values, 
we illustrate the relative change compared to the 0% 
AV traffic ratio. These results are also presented with 
respect to headways kept by AVs and the level of AV 
traffic penetration. With the rise of AV traffic ratio, 
headway kept and the amount of road traffic, the 
energy consumption increased significantly, as 
presented in Fig. 2., Fig. 3., and Fig. 4. 

In the context of all three traffic scenarios, energy 
consumption exhibited an upward trend with the rise 
of AV traffic ration. In the case of 200 vehicles per 
hour traffic volume, a 100% AV ratio, and 70 m 
headway, the energy consumption was 14.57% 
greater than the scenario without AVs. As traffic 
density increased, this disparity further magnified. 
Specifically, in scenarios involving 400 vehicles per 
hour, the difference surged to 35.92%, and in the 
context of 600 vehicles per hour, it escalated to 
96.55%. This increase can be attributed to the rule-
following behavior of AVs, as they consistently 
yielded to pedestrians, while 31% of human drivers 
did not yield. Rule-following behavior results in 
more acceleration phase thus higher energy 

consumption. It is also noteworthy that the rise in 
energy consumption correlated with the 
augmentation of the headway maintained by AVs. 
This additional energy consumption is likely 
attributed to minor accelerations and decelerations 
required to uphold the desired inter-vehicle spacing. 
Furthermore, the lack of wind shadow may also 
cause an increase in energy consumption when AVs 
keep greater headways.  

In scenarios characterized by lower traffic 
volumes, the energy consumption of conventional, 
human-operated vehicles demonstrated a decline as 
the proportion of AVs increased. This phenomenon 
can be elucidated by a combination of factors, 

Table 2. Energy consumption per vehicle [KWh] 
(traffic volume: 200 veh./h) 

Headway/
AV ratio 

AV  
0% 

AV 
25% 

AV 
50%  AV 

75% 
AV 

100% 
50 m 

0.
12

0
5 

0.1200 0.1246  0.1279 0.1310 
60 m 0.1198 0.1254  0.1295 0.1350 
70 m 0.1212 0.1273  0.1317 0.1381 

 

Table 3. Energy consumption per vehicle [KWh]  
(traffic volume: 400 veh./h) 

Headway/
AV ratio 

AV  
0% 

AV 
25% 

AV 
50%  AV 

75% 
AV 

100% 

50 m 

0.
12

97
 0.1358 0.1453  0.1501 0.1607 

60 m 0.1376 0.1467  0.1546 0.1703 

70 m 0.1398 0.1498  0.1576 0.1762 

 

Table 4. Energy consumption per vehicle [KWh] 
(600 veh./h) 

Headway/
AV ratio 

AV  
0% 

AV 
25% 

AV 
50%  AV 

75% 
AV 

100% 

50 m 

0.
14

44
 0.1599 0.1765  0.1910 0.2098 

60 m 0.1639 0.1839  0.2115 0.2569 

70 m 0.1680 0.1909  0.2300 0.2838 

 

 
Figure 2. Energy consumption relative to 0% AV 

case (traffic volume: 200 veh./h) 

 
Figure 3. Energy consumption relative to 0% AV 

case (traffic volume: 400 veh./h) 

 
Figure 4. Energy consumption relative to 0% AV 

case (traffic volume: 600 veh./h) 
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including the speed limits followed by AVs and the 
behavior of pedestrians. The first factor results in a 
reduction of energy consumption as the number of 
speeding vehicles decreases. In the case of the 
second factor, due to the greater distances between 
vehicles, pedestrians tend to cross the road without 
requiring vehicles to come to a complete stop, which 
also results in reduced energy consumption. Table 5 
shows an example of such an alteration in energy 
consumption. With the increase of AV traffic rate, a 
noticeable decrease in energy consumption due to 
the adherence to speed limits was measured. 
Simultaneously, as the headway expands, a slight 
decrease in energy consumption was detected due to 
pedestrians transversing the road without the 
necessity of vehicles stopping at the pedestrian 
crossing. However, we have to admit that the rise in 
energy consumption was measured with the 
increased AV traffic. 

While energy consumption increased, potential 
enhancements could be realized through vehicle-to-
vehicle communication and pedestrian movement 
prediction. In both cases, electric vehicles could 
eliminate the necessity of forceful braking, rather 
applying regenerative braking and coasting mode. 
Moreover, it is imperative to note that while there 
may be a potential increase in energy consumption, 
the enhancement of traffic safety and pedestrians' 
sense of security is evident through the reduction in 
vehicle speeds and the provision of unconditional 
priority. 

V. CONCLUSIONS 
In this study, a simulation model was developed to 

measure alteration in energy consumption of 
conventional and autonomous vehicles in the 
vicinity of a pedestrian crossing. We calibrated the 
model to assess pedestrians’ crossing decisions 
based on vehicle distance. Additionally, the method 
for calculation energy consumption was provided as 
an external input. Various scenarios were formulated 
to examine the impact of different autonomous 
vehicle traffic ratio, their maintained headways, and 
varying traffic volumes.  

The results show that in case of low traffic, 
autonomous vehicles may have a slight advantage 

mainly on conventional vehicles’ consumption. In 
part, this is achieved through the adherence of speed 
limits, and, on the other hand, by the maintained 
headways by autonomous vehicles which may result 
in pedestrians crossing without the stopping of 
vehicles. Considering low traffic (200 or 400 vehicle 
per hour), results showed a maximum decrease of 
12.41% in energy consumption for not yielding, and 
10.67% for yielding vehicles, compared to 0% AV 
traffic ratio. 

However, with increased traffic, AV ratio and 
headways, the energy consumption increased 
significantly. Comparing with the 0% AV ratio, 
when reaching 100% AV traffic, the energy 
consumption rose by 35.92% and by 96.55% in case 
of 400 and 600 vehicles per hour traffic, respectively.  

Further research is needed to examine the 
operational aspect of the following distance set for 
autonomous vehicles and its consequent influence on 
energy consumption. This requires generating and 
then analysing short-term data series involving only 
2 vehicles. 
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