

ACTA TECHNICA JAURINENSIS
Vol. 16, No. 2, pp. 34-41, 2023

10.14513/actatechjaur.00689

34

Research Article

Data Integration Framework to Collect Data from OT/IT Systems

Balázs Szűcs

AUDI HUNGARIA Zrt
Audi Hungária út 1., 9027 Győr, Hungary

e-mail: balazs.szucs@audi.hu

Submitted: 27/02/2023 Accepted: 10/05/2023 Published online: 31/05/2023

Abstract: Industry 4.0 and industrial data processing, due to its inherent possibilities, is gaining more and more
emphasis in production companies these days. In a corporate environment, the age of equipment is
extremely heterogeneous, in addition to state-of-the-art equipment, legacy systems can also be found
in the machine park, which do not have appropriate communication protocols. Also, with the increase
in the number of data sources, the management of data is becoming more and more challenging. Not
only the operational technology, but also the connection of different IT systems and the extraction of
data pose challenges. The different data processing use-cases using partly or entirely the same data
sources, so it is necessary to extract and transmit the data to the target systems in a standard way, and
avoiding an increase in the number of point-to-point interfaces. In this work we present a possible
framework, to solve the above mentioned problems in industrial environment, with the introduction
of standardized naming conventions, OT/IT gateways, data integration and distribution layers.

Keywords: Data acquisition; data integration; industry 4.0; MQTT; operational technology

I. INTRODUCTION
Industrial data acquisition involves collecting and

analyzing data from various industrial sources such
as sensors and machines to improve productivity,
efficiency, and safety. Predictive maintenance,
lifetime prediction and intelligent quality assurance
systems represent an enormous opportunity for
manufacturing companies. Significant financial
savings can be achieved by reducing maintenance
and scrap costs and increasing quality. Advanced
technologies and methods are available to clean,
process and analyze data, but the data must first be
collected.

The data collection methods can include direct
connections between sensors and data acquisition
systems, as well as wireless or wired communication
protocols [1]. Data can also be collected and
processed using edge computing technologies,
where data is processed at the edge of the network,
closer to the data source [2]. Industrial data
acquisition methods also utilize data storage
systems, such as databases and data lakes, to store
and manage large volumes of data [3]. By
implementing effective industrial data acquisition
methods, organizations can improve their ability to
monitor and optimize industrial processes in real-
time. Message brokers such as Apache Kafka [4] and

RabbitMQ [5] are commonly used in industrial data
acquisition due to their high throughput and low
latency. These message brokers provide features
such as message persistence, fault tolerance, and
scalability, which are important for handling large
volumes of data in industrial settings. By using
message brokers in industrial data acquisition,
organizations can improve their ability to monitor
and optimize industrial processes in real-time[6].

Besides the challenges of data acquisition
methods, the age of equipment is extremely
heterogeneous. The life cycle of a product can reach
up to 10-15 years, and this often means the age of the
production line as well. In addition to state-of-the-art
equipment, the machine park also includes legacy
systems that do not have the necessary
communication capabilities for large-scale data
collection. One of the challenges is extracting data
from legacy systems and converting it into the
appropriate form described by data governance.

With the increasing number of data sources the
identification of the data and their sources becomes
challenging. The age of the machine park also has an
impact on the identification of machines. As a result
of poor change tracking of the naming of machines,
their physical identification and the identification of
the machines in the IT system can differ. On the
other hand, the ID of a specific machine can be

https://dx.doi.org/10.14513/actatechjaur.00689

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

35

different and ambiguous in different IT systems.
These factors have a great influence on the
identification and assignment of the related data
sources and datasets. Industrial equipment naming
conventions provide a standardized approach for
naming equipment in an organization. One method
is the use of a code or numbering system that
identifies equipment by type, function, and location
[7]. Another method is to use acronyms or
abbreviations that have meaning for members of a
group or organization [8]. A third method is the use
of a descriptive name that is based on the function of
the equipment [9]. A combination of these methods
can also be used to provide a unique and
standardized name for equipment [10]. The selection
of a naming convention method depends on the
specific needs of the organization and the industry it
operates in.

Another relevant aspect of the data collection is the
manageability of interfaces of the IT systems and the
network performance. Different types of datasets are
stored in different IT systems, like part tracking
systems, machine and process data systems, and
quality databases. The different data processing use-
cases use partly or entirely the same data sources. If
we use separate interface between every system and
use-case, the number of connections can grow
rapidly, according to equations (1), where n is the
number of nodes.

𝑛𝑛
(𝑛𝑛 − 1)

2

(1)

 To avoid the point-to-point interfaces between the
separate data processor applications and the different
IT systems, the data extraction and distribution need
to be standardized. In the next section we describe
the architecture and the rules of the data integration
framework.

II. DATA INTEGRATION FRAMEWORK
The data integration framework is a set of

architectural components and rules which propose a
solution to the collection, identification and
distribution of data. The main parts of the
architecture (Fig. 1.) are:

• Controller level
• Gateway level

• Distribution level
• Application level

Figure 1. Data integration framework architecture

The communication of the components can be
bidirectional, but this is not mandatory.

The controller level contains the source systems
like programmable logic controllers (PLCs),
numerical control units (NCUs), Internet of Things
(IoT) capable devices and other automation
hardware. The state-of-the-art (SOTA) components
are capable to communicate event driven, with
higher level protocols like MQTT, but in some cases
polling and transformation of the messages are
necessary.

The function of the gateway level is to physically
separate the operation technology network from the
corporate network. Besides security, this level can
have other responsibilities, like buffering the
incoming messages in a case of network failure, or
polling the legacy devices and hosting data
acquisition agents and translation of the protocols.

The goal of the distribution layer is to forward the
messages to the target systems. One advantage of
this architecture, that the source system does not
need to know the receiver, it has only send the
message to the distribution service and it forwards
the message to the designated system, which is
subscribed to the data source.

The application level contains the legacy IT
systems and other use-cases, which processes the
data from the controller level and related IT systems.
These components communicates through the
distribution layer, this way the point-to-point
interfaces between system can be avoided and the

Table 1. Standardised naming convention

Global ID
Business Unit

ID Domain Unit Subunit Component
01 P Domain A MG0012 MA001 MS01

02 L Domain B TU0123

01 F Domain C AE0200 CP012 SS01

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

36

data can be used by other systems as well, no need
the duplicate the data through distinct interfaces.

The architecture alone cannot guarantee the
reliable and manageable message flow between the
components, further rules are needed to manage the
communication. These rules are defined by the data
governance and are the following:

• Standardized naming convention of data
sources

• Standardized message structures
• Distinct channels for predefined message

types

1. Standardized Naming Convention

The source of the data needs to be clearly
identified[11][12] to forward the information to the
corresponding data processor and to connect the
related data. To achieve this behavior, we introduced
a standardized naming convention of the source
components. The nomination of the components not
only identifies the source, but contains additional
information like the location, hierarchy and type of
the unit. The naming convention capable to identify
other assets too, like buildings, halls, facility
equipment, logistical vehicles, storages. The asset
management is not scope of this work.

The coding consists of six level arranged to tree
structure (Fig. 2.), each level identifies a separate
entity of the hierarchy. The usage of every level is
not mandatory, but the notation must follow the top-
down structure, starting with the global ID. Table 1.
shows the structure of the standardized naming
convention and three examples (top-down, read left
to right):

• Measuring system 1 of Machine 1 in
Machine Group 12 of Domain A, Business
Unit: Production, Factory: 01.

• Tow unit 123 of Domain B, Business Unit:
Logistics, Factory: 02.

• Speed sensor 1 of Compressor 12 in Air
Engineering 200 of Domain C, Business
Unit: Facility Management, Factory: 01.

The notation of components is standardized in a
code library. The delimiter of the sections is
arbitrary, depends on the use-case or the system,
which processes the data.

Figure 2. Tree structure of the standardized

naming convention

2. Standardized Message Structure

In addition to the standard naming convention, a
standard message structure is strongly
recommended. The uniform structure of the
messages makes the data acquisition and the
message protocols independent, allows the exchange
of the underlying transmission protocol without
disrupting the data flow, and makes it easier to
manage the collected data.

To connect to the data distribution framework, the
participating system only have to utilize the
standardized message structure. If the source system
meet the requirements of the message structure, the
technology of the data collection and the
transmission protocol can be arbitrary.

The standardized message structure is based on the
JavaScript Object Notation [13] (JSON) format.
JSON is a lightweight, self-describing textual object.
The textual format makes it possible to interpret the
data in a programming language independent way,
therefore it is used to store or send data between
computers or programs.

The mandatory content of all of the messages are
the source identification, the message timestamp, the
message version and the counter of lost messages.
The related dataset are assigned to predefined
channels or topics, thus all other content depends of
the message type. An example of the JSON message
shown on Fig. 3.

Table 2. The use of standardised naming convention in message topics

Topic subscription Meaning
01/P/# Subscription to all elements and topics in Factory 1, Business Unit

Production

01/P/DomainA/#/#/Energy Subscription to Energy topic, all units and subunits in Factory 1,
Business Unit Production, Domain A

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

37

Figure 3. An example of the JSON message

Another good practice is to organize the message
topics in a way, which utilize the standardized
naming convention. With this method all hierarchy
level of the naming convention and all message types
are accessible. The selection of multiple elements is
possible with wildcards (#). Table 2. shows different
topic subscriptions and their meanings.

3. Data Distribution Layer

In order to transfer the collected data between the
source and the destination, a data distribution layer
is needed. The industrial use-cases requires scalable,
loosely coupled and dynamic network topology, thus
the publish–subscribe (pub-sub) messaging pattern
[14][15] is used.

In pub-sub messaging, the publisher (source) does
not need to know, who is the subscriber
(destination), it only has to publish the messages to
the data distributions layer in to the related topic,
then the service forwards the messages to the
corresponding subscribers who subscribed to that
specific topic. This features ensures loose coupling
and scalability of the pub-sub systems. Topics[4][5]
are logical channels of related datasets, a subscriber
receives all the data, which are published to the
subscribed topic. The participants can be publishers
and subscribers at the same time or only one of them.
Messaging actions are not restricted to one topic, as
well as publishing and subscribing can also be done
on different topics.

The main advantage of this architecture, that the
number of communicating system is highly scalable
without the introduction of further point-to-point
interfaces, thus the architecture remains transparent
and manageable. Fig. 4. shows conventional
interfacing (left) and an interfacing with pub-sub
data distribution layer.

Figure 4. Conventional interfacing (left) and
interfacing with data distribution layer (right)

III. PRACTICAL IMPLEMENTATION OF THE
FRAMEWORK

In this section we present a practical
implementation of the data acquisition method
described in the previous sections. In the
experimental setup we collected the number of the
working tool, the desired and remaining workpiece
count of the tool, the z-axis position, the main
spindle feed and current of an 3-axis turning
machine.

The framework is also usable with state of the art
and legacy IT systems. Some of the system are
natively capable to communicate with message
brokers, but there are cases when protocol translation
and interfacing required, thus the usage of agents
cannot be avoided.

There are other cases, when the source IT system
cannot provide the source ID in accordance to the
standardized naming convention, in this case the
translation of the source ID requires the usage of
agents too.

The following practical implementation presents
the framework usage in case of legacy OT systems,
but in case of legacy IT architectural setup of the
framework is the same except from the source
system. If the source IT system is capable to
communicate with the message broker and can also
provide the source ID in accordance to the
standardized naming convention, the usage of the
agents are avoidable.

1. Architecture of the Experimental Setup

The architecture of the experimental (Fig. 5.)
setups contains the elements described in Section II.

Figure 5. Architecture of the practical

implementation

In the controller level we used a Siemens 840D SL
[16] NCU with integrated S7-300 PLC. This device
is capable to communicate through Profinet on
Industrial Ethernet.

For the OT/IT Gateway we chose a SIMATIC IPC
427E [17] industrial PC with Ubuntu 20.04.5 LTS
operating system, which besides of the hosting of the
data acquisition agent, responsible for physical
separation of OT and IT systems. The OT/IT
Gateway can host multiple agents in different
containers like Docker or LXC containers, and the

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

38

gateway can be a remote server too. For the
simplicity, in this work we used one physical
hardware and one agent.

The data collection agent is a .NET [18]
application written in C#, for the communication we
used the Sharp7 [19] library, which implements the
S7 Protocol [20].

For the data distribution layer we used an Eclipse
Mosquitto MQTT broker [21] hosted on a Windows
application server.

To store the data we created a simple .NET
middleware, which subscribes to the specific topics
and stores the data to a Microsoft SQL Server 2019
[22]. The middleware runs on a separate Windows
server.

2. Data Collection

In the experimental setup we collected the tool
number of actual working tool, the desired and
remaining workpiece count of the actual tool, the
main spindle feed and current in percentages,
referring to the maximal current of the drive, and the
position of the Z-Axis. The collected variables [23]
shown in Table 3.

The sampling speed is based on the speed of the
communication, which depends on the hardware
type of the numerical control unit, and the user
program, but cannot be faster than the smallest
theoretical cycle time of the PLC. In this case, the
sampling rate of the data acquisition agent is 500
milliseconds. The agent sends the collected data to
the MQTT broker, the topic where the agent
publishes the messages are the subtopics of
“01/P/TestDomian/MG0001/MA001/…”, namely
“DesiredWorkpieceCount”,
“RemainingWorkpieceCount”, “MainSpindleFeed”,
“MainSpindleCurrent” and “ZAxisPos”.

3. Data Integration Layer

In the data integration layer we used an Eclipse
Mosquitto MQTT Broker, hosted on an application
server. For the simplicity of the setup, we only
utilized the minimally necessary settings of the
broker. We used the standard ports, 1883 for

unsecure, 8883 for secure connection with Transport
Layer Security. For the client to connect to the
broker, we created an username and a password, and
in the access control list (ACL) we defined which
topics can the client access. The broker operates in
retain mode, which means if a new client subscribes
to a topic, the broker sends the last received message
to the client in that topic. The quality of services
(QoS) is set to QoS 0, which means “fire and forget”,
the broker sends the messages to the clients exactly
once, without the need of confirmation if the
message is arrived. This setting enables to
communicate with the lowest latency. QoS 2 and
QoS 3 are also available, with QoS 2 the message
will be delivered at least once with the need of
confirmation, with QoS 3 the broker send the
message exactly once and requires a handshake
mechanism with the clients. To ensure transparency
and to help the debugging, logging is also enabled on
the broker.

4. Middleware and Database

The middleware is a .NET application written in
C#. For the MQTT connection we used the
MQTTnet [23] library. The middleware subscribes
to the corresponding topics and writes the data in an
Microsoft SQL Database. The application uses the
Entity Framework [25] and Data Transfer Objects
(DTOs) to map the classes of the application to the
database tables.

The database is “code first”, which means the
database tables are created based on the classes of
the application, this feature and the Entity
Framework also enables to the usage of the strongly-
typed access to the data with LINQ [26]. With LINQ
the data is easily accessible and manipulatable from
the code. In this case the application stores the data
without manipulation. The data from different topics
are stored in different tables in the SQL Database.
The database tables columns are ID (incremental ID
as primary key), SourceID (Client ID based on
standardized naming convention), TimeStamp (the
timestamp of the data from the MQTT message) and
the Value itself.

Table 3. Collected NC Data

Data Variable Parameter
Machine

Data Format
Actual tool number (ToolNo) /Channel/State/actTNumber - $P_TOOLNO UWord

Desired Workpiece Count /Tool/Supervision/data[x,y] ToolNo, 6 $TC_MOP13 Double
Remaining Workpiece Count /Tool/Supervision/data[x,y] ToolNo, 4 $TC_MOP4 Double

Main Spindle Feed /DriveHsa/State/actualSpeed - $MD_1701 Float
Main Spindle Current /DriveHsa/State/actualCurrent - $MD_1708 Float

Z-Axis Position /Nck/MachineAxis/measPos1[axis] 3 - Double

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

39

5. The Collected Data

As we previously stated in the beginning of section
three, we collected the number of the working tool,
the desired and remaining workpiece count of the
tool, the z-axis position, the main spindle feed and
current of an 3-axis turning machine. The following
diagrams shows the above mentioned dataset of the
tool T6013 during of four consecutive machining.

The main spindle feed is shown on Fig. 6. The X-
Axis of the diagram represents the timestamps of the
data in date and time format, the Y-Axis represents
the feed of the main spindle in mm/s.

Figure 6. Main spindle feed (X-Axis: date and

time, Y-Axis: feed [mm/s]

The absolute position of the Z-Axis is shown on
Fig. 7. The X-Axis of the diagram represents the
timestamps of the data in date and time format, the
Y-Axis represents the absolute position in
millimeters.

Figure 7. Z-Axis position (X-Axis: date and time,

Y-Axis: absolute position [mm])

The main spindle current in percentage of the
maximal drive current is shown on Fig. 8. The X-
Axis of the diagram represents the timestamps of the
data in date and time format, the Y-Axis represents
the spindle current in percentages of the maximum
current of the drive.

The count of the remaining workpiece count is
shown on Fig. 9. The X-Axis of the diagram
represents the timestamps of the data in date and time
format, the Y-Axis represents the remaining number
of machinable workpieces for the specific tool.

Figure 8. Main spindle current in percentage of
maximum current of the drive (X-Axis: date and

time, Y-Axis: % of maximal current)

Figure 9. Remaining workpiece count (X-Axis:

date and time, Y-Axis: remaining workpiece
count [pieces])

The desired workpiece count is a specific, constant
value for each tool, thus it is no depicted.

IV. RESULTS
Based on the results of the practical

implementation of the data integration framework,
we rolled out the solution to an entire production line
of the AUDI HUNGARIA Zrt. The pilot production
line includes 36 machines, each are connected to the
data distribution layer through agents as in the
previous section presented.

We collected the data of the machine states,
machine information like part counters and cycle
time measurements, workpiece movements, operator
identification information, error messages, the
energy consumption, feed override of the machines
and the MQTT State of the agent. The topics, where
the agents are publishing the data, are based on the
standardized naming convention. The base of the
topics is the machine ID within the hierarchical
structure of the factory, business unit, production
domain and the production line, which follows the
pattern: “Factory ID/Business Unit
/Domain/Production line/Machine ID/Topic”. The
average daily number of messages for each topic and
the size of each message are shown in Table 4.

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

40

Table 4. Collected NC Data

Topic Message Count Avg. size
(Byte)

MqttState 2 128
PartMovement 10010 234
Energy 42657 147
MachineState 15504 131
MachineInfo 10010 240
Messages 37053 93
Operator 2 188
Override 251 130

The average daily message count of the 36

machines is 115000 messages. The messages are
stored in an SQL Database for further analysis and
visualization tasks.

V. SUMMARY AND FUTURE WORK
In the previous sections we presented a data

collecting framework to collect data from OT/IT
systems and prevent interface jungle, thus simplify
the architecture of a corporate network and enable
new data processing use-cases. The framework
enables to collect data from legacy OT and IT
system, that are unable to use state-of-the-art
communication protocols or meet data governance
requirements.

With the proposed elements, like the standardized
naming convention and the usage of data collection
agent and the data distribution layer, the connection
of related data can be simplified and the difficulties
caused by the poorly managed system and the lack
of change management can be eliminated. The
standardized naming convention can also be used as
a part of asset management.

With the introduction of the data distribution layer,
the point-to-point interfaces can be avoided, thus the
network management and operations becomes
simpler. The data distribution layer also provide
transparency and traceability trough data access
policies, user management and logging. Specific
users or clients can only access to topics, which are
enabled in the access control list of the broker, read
and write privileges can be set up also, and the
connection attempts of client are also logged. These
functionalities also enable the conformity to IT
security rules.

The framework enables the data collection from
legacy systems, thus the operational and process data
can be collected from heterogenous systems in a
standardized way. The standardized message
structure makes the data handling and storage easier,
the newly connected clients only have to meet the
requirements of the standardized naming convention
and message structure to send data to the broker.
This feature enables data storage without any further
customization of the data sources. The standardized
message structure also specifies the topic for the
data. This property enables the clients to subscribe
only to that topics, what it really needs. This function
also eliminates the need for data lakes, each use-case
only have to collect the data, what they really need.

In case of a new use-case needs access to the data
which available on the message broker, a new user
must be created on the broker and after the access
right granted on the topic which the new client needs,
it can subscribe to the topic and can start the data
collection from the broker. This feature enables fast
on-boarding of new data processing use-cases, such
as machine learning models, artificial intelligence
(AI) based data processors and predictive systems.

The data integration framework provides a good
starting point for industrial artificial intelligent
applications through simplifying the data collection,
management and distribution of process and
machine data, and new data collections can be easily
introduced to the data distribution layer.

Further research in the processing of the collected
data, for example predictive maintenance systems
and AI backed quality assurance systems strongly
advised.

AUTHOR CONTRIBUTIONS
B. Szűcs: conceptualization, proof of concept setup,
programming, writing and editing.

DISCLOSURE STATEMENT
The author declare that he has no known

competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.

ORCID
B. Szűcs https://orcid.org/0000-0002-2273-027X

REFERENCES

[1] Verma, N., Jain, M., & Agrawal, R. (2018).
Wireless sensor networks for industrial
automation: Challenges and solutions. Journal
of Sensor and Actuator Networks, 7(3), 33.
https://doi.org/10.1002/dac.4074

[2] Shi, W. et al. (2016). Edge computing: Vision
and challenges. IEEE Internet of Things

Journal, 3(5), 637-646. https://doi.org/
10.1109/JIOT.2016.2579198

[3] Oussous, A. et al. (2018). Big data
technologies: A survey. Journal of King Saud
University - Computer and Information
Sciences, 30(4), 431-448.
https://doi.org/10.1016/j.jksuci.2017.06.001

https://orcid.org/0000-0002-2273-027X
https://doi.org/10.1002/dac.4074
https://doi.org/10.1002/dac.4074
https://doi.org/%2010.1109/JIOT.2016.2579198
https://doi.org/%2010.1109/JIOT.2016.2579198
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1016/j.jksuci.2017.06.001

B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023

41

[4] Apache Kafka. (2021). Retrieved from
https://kafka.apache.org/ [cited 2023-01-22]

[5] RabbitMQ. (2021). Retrieved from
https://www.rabbitmq.com/ [cited 2023-01-22]

[6] Riedel, E. (2022). MQTT protocol for SME
foundries: potential as an entry point into
industry 4.0, process transparency and
sustainability. Procedia CIRP. 105.
https://doi.org/10.1016/j.procir.2022.02.100.

[7] Li, Z., Li, B., & Li, J. (2019). Research on
equipment coding and naming system for
power plants based on the characteristics of the
equipment. IOP Conference Series: Materials
Science and Engineering, 664(1), 012138.

[8] Das, A., & Akbar, R. (2019). A comprehensive
naming convention for industrial components.
In Advances in Manufacturing and Mechanical
Engineering (pp. 281-289). Springer,
Singapore.

[9] Gómez, J. A., & Santana, R. (2020).
Development of a descriptive naming
convention for industrial equipment. Industrial
Management & Data Systems.

[10] Chung, T. W., Chen, C. M., & Yeh, C. T.
(2015). Development of a rule-based naming
convention for equipment in a semiconductor
manufacturing fab. IEEE Transactions on
Semiconductor Manufacturing, 28(3), 307-
314.

[11] Berners-Lee, Tim, RFC 3986: Uniform
Resource Identifier (URI): Generic Syntax
(2005) DOI:10.17487/RFC3986

[12] Libes, D., Choosing a name for your computer,
FYI 5, RFC 1178, (1990). https://www.rfc-
editor.org/info/rfc1178

[13] Bray, T., Ed., The JavaScript Object Notation
(JSON) Data Interchange Format, STD 90,
RFC 8259 (2017). https://www.rfc-
editor.org/info/std90

[14] K. Birman, T. Joseph, Exploiting virtual
synchrony in distributed systems. In
Proceedings of the eleventh ACM Symposium
on Operating systems principles (SOSP '87).
Association for Computing Machinery, New
York, NY, USA, 123–138. (1987)
https://doi.org/10.1145/41457.37515

[15] Yusuf, S., Survey of publish subscribe
communication system, Advanced Internet
Application and System Design (2004)

[16] Technical Documentation for SINUMERIK
840D sl, Version 4.92, Retrieved from
https://support.industry.siemens.com/cs/docu
ment/109768584/technical-documentation-for-
sinumerik-840d-sl-version-4-92?dti=0&lc=en-
DE [cited 2023-01-22]

[17] SIMATIC Industrial PC SIMATIC IPC427E
Operating Instructions A5E37454814-AE,
Siemens (2021)

[18] .NET, Retrieved from
https://dotnet.microsoft.com/en-us/
[cited 2023-01-22]

[19] Sharp7 Library, Retrieved from
https://snap7.sourceforge.net/sharp7.html
[cited 2023-01-22]

[20] S7 Protocol, Retrieved from
https://wiki.wireshark.org/S7comm
[cited 2023-01-22]

[21] R. A. Light, "Mosquitto: server and client
implementation of the MQTT protocol," The
Journal of Open Source Software, vol. 2, no.
(2017) https://doi.org/10.21105/joss.00265

[22] Microsoft SQL Server 2019, Retrieved from
https://www.microsoft.com/en-us/sql-
server/sql-server-2019
[cited 2023-01-22]

[23] SINUMERIK 840D sl/840Di sl, SINUMERIK
840D/840Di/810D List of System Variables,
Parameter Manual (2006), Retrieved from
https://cache.industry.siemens.com/dl/files/27
2/28713272/att_92132/v1/PGA1_1106_en.pdf
[cited 2023-01-22]

[24] MQTTnet Library, Retrieved from
https://github.com/dotnet/MQTTnet
[cited 2023-01-22]

[25] Entity Framework, Retrieved from
https://learn.microsoft.com/en-us/ef/
[cited 2023-01-22]

[26] Language Integrated Query (LINQ), Retrieved
from https://learn.microsoft.com/en-
us/dotnet/csharp/programming-
guide/concepts/linq/
[cited 2023-01-22]

This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution NonCommercial (CC BY-NC 4.0) license.

https://kafka.apache.org/
https://www.rabbitmq.com/
http://dx.doi.org/10.1016/j.procir.2022.02.100
http://dx.doi.org/10.1016/j.procir.2022.02.100
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc1178
https://www.rfc-editor.org/info/rfc1178
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/std90
https://doi.org/10.1145/41457.37515
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://dotnet.microsoft.com/en-us/
https://snap7.sourceforge.net/sharp7.html
https://wiki.wireshark.org/S7comm
http://dx.doi.org/10.21105/joss.00265
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://cache.industry.siemens.com/dl/files/272/28713272/att_92132/v1/PGA1_1106_en.pdf
https://cache.industry.siemens.com/dl/files/272/28713272/att_92132/v1/PGA1_1106_en.pdf
https://github.com/dotnet/MQTTnet
https://learn.microsoft.com/en-us/ef/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://creativecommons.org/licenses/by-nc/4.0/

	I. Introduction
	II. Data Integration Framework
	1. Standardized Naming Convention
	2. Standardized Message Structure
	3. Data Distribution Layer

	III. Practical Implementation of the Framework
	1. Architecture of the Experimental Setup
	2. Data Collection
	3. Data Integration Layer
	4. Middleware and Database
	5. The Collected Data

	IV. Results
	V. Summary and Future Work
	author contributions
	Disclosure statement
	ORCID
	References

