
 

ACTA TECHNICA JAURINENSIS 

Vol. 16, No. 2, pp. 34-41, 2023 

10.14513/actatechjaur.00689 
 

 

34 

Data Integration Framework to Collect Data from OT/IT Systems 

Balázs Szűcs 

AUDI HUNGARIA Zrt 

Audi Hungária út 1., 9027 Győr, Hungary  

e-mail: balazs.szucs@audi.hu 

Submitted: 27/02/2023 Accepted: 10/05/2023 Published online: 31/05/2023 

Abstract: Industry 4.0 and industrial data processing, due to its inherent possibilities, is gaining more and more 

emphasis in production companies these days. In a corporate environment, the age of equipment is 

extremely heterogeneous, in addition to state-of-the-art equipment, legacy systems can also be found 

in the machine park, which do not have appropriate communication protocols. Also, with the increase 

in the number of data sources, the management of data is becoming more and more challenging. Not 

only the operational technology, but also the connection of different IT systems and the extraction of 

data pose challenges. The different data processing use-cases using partly or entirely the same data 

sources, so it is necessary to extract and transmit the data to the target systems in a standard way, and 

avoiding an increase in the number of point-to-point interfaces. In this work we present a possible 

framework, to solve the above mentioned problems in industrial environment, with the introduction 

of standardized naming conventions, OT/IT gateways, data integration and distribution layers. 

Keywords: Data acquisition; data integration; industry 4.0; MQTT; operational technology 

 

I. INTRODUCTION 

Industrial data acquisition involves collecting and 

analyzing data from various industrial sources such 

as sensors and machines to improve productivity, 

efficiency, and safety. Predictive maintenance, 

lifetime prediction and intelligent quality assurance 

systems represent an enormous opportunity for 

manufacturing companies. Significant financial 

savings can be achieved by reducing maintenance 

and scrap costs and increasing quality. Advanced 

technologies and methods are available to clean, 

process and analyze data, but the data must first be 

collected.  

The data collection methods can include direct 

connections between sensors and data acquisition 

systems, as well as wireless or wired communication 

protocols [1]. Data can also be collected and 

processed using edge computing technologies, 

where data is processed at the edge of the network, 

closer to the data source [2]. Industrial data 

acquisition methods also utilize data storage 

systems, such as databases and data lakes, to store 

and manage large volumes of data [3]. By 

implementing effective industrial data acquisition 

methods, organizations can improve their ability to 

monitor and optimize industrial processes in real-

time. Message brokers such as Apache Kafka [4] and 

RabbitMQ [5] are commonly used in industrial data 

acquisition due to their high throughput and low 

latency. These message brokers provide features 

such as message persistence, fault tolerance, and 

scalability, which are important for handling large 

volumes of data in industrial settings. By using 

message brokers in industrial data acquisition, 

organizations can improve their ability to monitor 

and optimize industrial processes in real-time[6]. 

Besides the challenges of data acquisition 

methods, the age of equipment is extremely 

heterogeneous. The life cycle of a product can reach 

up to 10-15 years, and this often means the age of the 

production line as well. In addition to state-of-the-art 

equipment, the machine park also includes legacy 

systems that do not have the necessary 

communication capabilities for large-scale data 

collection. One of the challenges is extracting data 

from legacy systems and converting it into the 

appropriate form described by data governance. 

With the increasing number of data sources the 

identification of the data and their sources becomes 

challenging. The age of the machine park also has an 

impact on the identification of machines. As a result 

of poor change tracking of the naming of machines, 

their physical identification and the identification of 

the machines in the IT system can differ. On the 

other hand, the ID of a specific machine can be 

https://dx.doi.org/10.14513/actatechjaur.00689


B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

35 

different and ambiguous in different IT systems. 

These factors have a great influence on the 

identification and assignment of the related data 

sources and datasets. Industrial equipment naming 

conventions provide a standardized approach for 

naming equipment in an organization. One method 

is the use of a code or numbering system that 

identifies equipment by type, function, and location 

[7]. Another method is to use acronyms or 

abbreviations that have meaning for members of a 

group or organization [8]. A third method is the use 

of a descriptive name that is based on the function of 

the equipment [9]. A combination of these methods 

can also be used to provide a unique and 

standardized name for equipment [10]. The selection 

of a naming convention method depends on the 

specific needs of the organization and the industry it 

operates in. 

Another relevant aspect of the data collection is the 

manageability of interfaces of the IT systems and the 

network performance. Different types of datasets are 

stored in different IT systems, like part tracking 

systems, machine and process data systems, and 

quality databases. The different data processing use-

cases use partly or entirely the same data sources. If 

we use separate interface between every system and 

use-case, the number of connections can grow 

rapidly, according to equations (1), where n is the 

number of nodes. 

 

𝑛
(𝑛 − 1)

2
 

(1) 

 

 To avoid the point-to-point interfaces between the 

separate data processor applications and the different 

IT systems, the data extraction and distribution need 

to be standardized. In the next section we describe 

the architecture and the rules of the data integration 

framework. 

II. DATA INTEGRATION FRAMEWORK 

The data integration framework is a set of 

architectural components and rules which propose a 

solution to the collection, identification and 

distribution of data. The main parts of the 

architecture (Fig. 1.)  are: 

 Controller level 

 Gateway level 

 Distribution level 

 Application level 

 

 

Figure 1. Data integration framework architecture 

 

The communication of the components can be 

bidirectional, but this is not mandatory. 

The controller level contains the source systems 

like programmable logic controllers (PLCs), 

numerical control units (NCUs), Internet of Things 

(IoT) capable devices and other automation 

hardware. The state-of-the-art (SOTA) components 

are capable to communicate event driven, with 

higher level protocols like MQTT, but in some cases 

polling and transformation of the messages are 

necessary. 

The function of the gateway level is to physically 

separate the operation technology network from the 

corporate network. Besides security, this level can 

have other responsibilities, like buffering the 

incoming messages in a case of network failure, or 

polling the legacy devices and hosting data 

acquisition agents and translation of the protocols. 

The goal of the distribution layer is to forward the 

messages to the target systems. One advantage of 

this architecture, that the source system does not 

need to know the receiver, it has only send the 

message to the distribution service and it forwards 

the message to the designated system, which is 

subscribed to the data source.  

The application level contains the legacy IT 

systems and other use-cases, which processes the 

data from the controller level and related IT systems. 

These components communicates through the 

distribution layer, this way the point-to-point 

interfaces between system can be avoided and the 

Table 1. Standardised naming convention 

Global ID 

Business Unit 

ID Domain Unit Subunit Component 

01 P Domain A MG0012 MA001 MS01 

02 L Domain B TU0123   

01 F Domain C AE0200 CP012 SS01 

 



B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

36 

data can be used by other systems as well, no need 

the duplicate the data through distinct interfaces.  

The architecture alone cannot guarantee the 

reliable and manageable message flow between the 

components, further rules are needed to manage the 

communication. These rules are defined by the data 

governance and are the following: 

 Standardized naming convention of data 

sources 

 Standardized message structures  

 Distinct channels for predefined message 

types 

1. Standardized Naming Convention 

The source of the data needs to be clearly 

identified[11][12] to forward the information to the 

corresponding data processor and to connect the 

related data. To achieve this behavior, we introduced 

a standardized naming convention of the source 

components. The nomination of the components not 

only identifies the source, but contains additional 

information like the location, hierarchy and type of 

the unit. The naming convention capable to identify 

other assets too, like buildings, halls, facility 

equipment, logistical vehicles, storages. The asset 

management is not scope of this work.  

The coding consists of six level arranged to tree 

structure (Fig. 2.), each level identifies a separate 

entity of the hierarchy. The usage of every level is 

not mandatory, but the notation must follow the top-

down structure, starting with the global ID. Table 1. 

shows the structure of the standardized naming 

convention and three examples (top-down, read left 

to right): 

 Measuring system 1 of Machine 1 in 

Machine Group 12 of Domain A, Business 

Unit: Production, Factory: 01. 

 Tow unit 123 of Domain B, Business Unit: 

Logistics, Factory: 02. 

 Speed sensor 1 of Compressor 12 in Air 

Engineering 200 of Domain C, Business 

Unit: Facility Management, Factory: 01. 

The notation of components is standardized in a 

code library. The delimiter of the sections is 

arbitrary, depends on the use-case or the system, 

which processes the data.  

 

Figure 2. Tree structure of the standardized 

naming convention 

2. Standardized Message Structure 

In addition to the standard naming convention, a 

standard message structure is strongly 

recommended. The uniform structure of the 

messages makes the data acquisition and the 

message protocols independent, allows the exchange 

of the underlying transmission protocol without 

disrupting the data flow, and makes it easier to 

manage the collected data.  

To connect to the data distribution framework, the 

participating system only have to utilize the 

standardized message structure. If the source system 

meet the requirements of the message structure, the 

technology of the data collection and the 

transmission protocol can be arbitrary. 

The standardized message structure is based on the 

JavaScript Object Notation [13] (JSON) format. 

JSON is a lightweight, self-describing textual object. 

The textual format makes it possible to interpret the 

data in a programming language independent way, 

therefore it is used to store or send data between 

computers or programs. 

The mandatory content of all of the messages are 

the source identification, the message timestamp, the 

message version and the counter of lost messages. 

The related dataset are assigned to predefined 

channels or topics, thus all other content depends of 

the message type. An example of the JSON message 

shown on Fig. 3. 

Table 2. The use of standardised naming convention in message topics 

Topic subscription Meaning 

01/P/# 
Subscription to all elements and topics in Factory 1, Business Unit 

Production 

01/P/DomainA/#/#/Energy 
Subscription to Energy topic, all units and subunits in Factory 1, 

Business Unit Production, Domain A 

 



B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

37 

 

Figure 3. An example of the JSON message 

Another good practice is to organize the message 

topics in a way, which utilize the standardized 

naming convention. With this method all hierarchy 

level of the naming convention and all message types 

are accessible. The selection of multiple elements is 

possible with wildcards (#). Table 2. shows different 

topic subscriptions and their meanings. 

3. Data Distribution Layer 

In order to transfer the collected data between the 

source and the destination, a data distribution layer 

is needed. The industrial use-cases requires scalable, 

loosely coupled and dynamic network topology, thus 

the publish–subscribe (pub-sub) messaging pattern 

[14][15] is used.  

In pub-sub messaging, the publisher (source) does 

not need to know, who is the subscriber 

(destination), it only has to publish the messages to 

the data distributions layer in to the related topic, 

then the service forwards the messages to the 

corresponding subscribers who subscribed to that 

specific topic. This features ensures loose coupling 

and scalability of the pub-sub systems. Topics[4][5] 

are logical channels of related datasets, a subscriber 

receives all the data, which are published to the 

subscribed topic. The participants can be publishers 

and subscribers at the same time or only one of them. 

Messaging actions are not restricted to one topic, as 

well as publishing and subscribing can also be done 

on different topics.  

The main advantage of this architecture, that the  

number of communicating system is highly scalable 

without the introduction of further point-to-point 

interfaces, thus the architecture remains transparent 

and manageable. Fig. 4. shows conventional 

interfacing (left) and an interfacing with pub-sub 

data distribution layer. 

 

Figure 4. Conventional interfacing (left) and 

interfacing with data distribution layer (right) 

III. PRACTICAL IMPLEMENTATION OF THE 

FRAMEWORK 

In this section we present a practical 

implementation of the data acquisition method 

described in the previous sections. In the 

experimental setup we collected the number of the 

working tool, the desired and remaining workpiece 

count of the tool, the z-axis position, the main 

spindle feed and current of an 3-axis turning 

machine.  

The framework is also usable with state of the art 

and legacy IT systems. Some of the system are 

natively capable to communicate with message 

brokers, but there are cases when protocol translation 

and interfacing required, thus the usage of agents 

cannot be avoided. 

There are other cases, when the source IT system 

cannot provide the source ID in accordance to the 

standardized naming convention, in this case the 

translation of the source ID requires the usage of 

agents too. 

The following practical implementation presents 

the framework usage in case of legacy OT systems, 

but in case of legacy IT architectural setup of the 

framework is the same except from the source 

system. If the source IT system is capable to 

communicate with the message broker and can also 

provide the source ID in accordance to the 

standardized naming convention, the usage of the 

agents are avoidable. 

1. Architecture of the Experimental Setup 

The architecture of the experimental (Fig. 5.) 

setups contains the elements described in Section II. 

 

Figure 5. Architecture of the practical 

implementation 

In the controller level we used a Siemens 840D SL 

[16] NCU with integrated S7-300 PLC. This device 

is capable to communicate through Profinet on 

Industrial Ethernet. 

For the OT/IT Gateway we chose a SIMATIC IPC 

427E [17] industrial PC with Ubuntu 20.04.5 LTS 

operating system, which besides of the hosting of the 

data acquisition agent, responsible for physical 

separation of OT and IT systems. The OT/IT 

Gateway can host multiple agents in different 

containers like Docker or LXC containers, and the 



B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

38 

gateway can be a remote server too. For the 

simplicity, in this work we used one physical 

hardware and one agent. 

The data collection agent is a .NET [18] 

application written in C#, for the communication we 

used the Sharp7 [19] library, which implements the 

S7 Protocol [20]. 

For the data distribution layer we used an Eclipse 

Mosquitto MQTT broker [21]  hosted on a Windows 

application server. 

To store the data we created a simple .NET 

middleware, which subscribes to the specific topics 

and stores the data to a Microsoft SQL Server 2019 

[22]. The middleware runs on a separate Windows 

server. 

2. Data Collection 

In the experimental setup we collected the tool 

number of actual working tool, the desired and 

remaining workpiece count of the actual tool, the 

main spindle feed and current in percentages, 

referring to the maximal current of the drive, and the 

position of the Z-Axis. The collected variables [23] 

shown in Table 3. 

The sampling speed is based on the speed of the 

communication, which depends on the hardware 

type of the numerical control unit, and the user 

program, but cannot be faster than the smallest 

theoretical cycle time of the PLC. In this case, the 

sampling rate of the data acquisition agent is 500 

milliseconds. The agent sends the collected data to 

the MQTT broker, the topic where the agent 

publishes the messages are the subtopics of  

“01/P/TestDomian/MG0001/MA001/…”,  namely 

“DesiredWorkpieceCount”, 

“RemainingWorkpieceCount”, “MainSpindleFeed”, 

“MainSpindleCurrent” and “ZAxisPos”. 

3. Data Integration Layer 

In the data integration layer we used an Eclipse 

Mosquitto MQTT Broker, hosted on an application 

server. For the simplicity of the setup, we only 

utilized the minimally necessary settings of the 

broker. We used the standard ports, 1883 for 

unsecure, 8883 for secure connection with Transport 

Layer Security. For the client to connect to the 

broker, we created an username and a password, and 

in the access control list (ACL) we defined which 

topics can the client access. The broker operates in 

retain mode, which means if a new client subscribes 

to a topic, the broker sends the last received message 

to the client in that topic. The quality of services 

(QoS) is set to QoS 0, which means “fire and forget”, 

the broker sends the messages to the clients exactly 

once, without the need of confirmation if the 

message is arrived. This setting enables to 

communicate with the lowest latency. QoS 2 and 

QoS 3 are also available, with QoS 2 the message 

will be delivered at least once with the need of 

confirmation, with QoS 3 the broker send the 

message exactly once and requires a handshake 

mechanism with the clients. To ensure transparency 

and to help the debugging, logging is also enabled on 

the broker. 

4. Middleware and Database 

The middleware is a .NET application written in 

C#. For the MQTT connection we used the 

MQTTnet [23] library. The middleware subscribes 

to the corresponding topics and writes the data in an 

Microsoft SQL Database. The application uses the 

Entity Framework [25] and Data Transfer Objects 

(DTOs) to map the classes of the application to the 

database tables.  

The database is “code first”, which means the 

database tables are created based on the classes of 

the application, this feature and the Entity 

Framework also enables to the usage of the strongly-

typed access to the data with LINQ [26]. With LINQ 

the data is easily accessible and manipulatable from 

the code. In this case the application stores the data 

without manipulation. The data from different topics 

are stored in different tables in the SQL Database. 

The database tables columns are ID (incremental ID 

as primary key), SourceID (Client ID based on 

standardized naming convention), TimeStamp (the 

timestamp of the data from the MQTT message) and 

the Value itself. 

Table 3. Collected NC Data 

Data Variable Parameter 

Machine 

Data Format 

Actual tool number (ToolNo) /Channel/State/actTNumber - $P_TOOLNO UWord 

Desired Workpiece Count /Tool/Supervision/data[x,y] ToolNo, 6 $TC_MOP13 Double 

Remaining Workpiece Count /Tool/Supervision/data[x,y] ToolNo, 4 $TC_MOP4 Double 

Main Spindle Feed /DriveHsa/State/actualSpeed - $MD_1701 Float 

Main Spindle Current /DriveHsa/State/actualCurrent - $MD_1708 Float 

Z-Axis Position /Nck/MachineAxis/measPos1[axis] 3 - Double 

 



B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

39 

5. The Collected Data 

As we previously stated in the beginning of section 

three, we collected the number of the working tool, 

the desired and remaining workpiece count of the 

tool, the z-axis position, the main spindle feed and 

current of an 3-axis turning machine. The following 

diagrams shows the above mentioned dataset of the 

tool T6013 during of four consecutive machining. 

The main spindle feed is shown on Fig. 6. The X-

Axis of the diagram represents the timestamps of the 

data in date and time format, the Y-Axis represents 

the feed of the main spindle in mm/s. 

 

Figure 6. Main spindle feed (X-Axis: date and 

time, Y-Axis: feed [mm/s] 

The absolute position of the Z-Axis is shown on 

Fig. 7. The X-Axis of the diagram represents the 

timestamps of the data in date and time format, the 

Y-Axis represents the absolute position in 

millimeters. 

 

Figure 7. Z-Axis position (X-Axis: date and time, 

Y-Axis: absolute position [mm]) 

The main spindle current in percentage of the 

maximal drive current is shown on Fig. 8. The X-

Axis of the diagram represents the timestamps of the 

data in date and time format, the Y-Axis represents 

the spindle current in percentages of the maximum 

current of the drive. 

The count of the remaining workpiece count is 

shown on Fig. 9. The X-Axis of the diagram 

represents the timestamps of the data in date and time 

format, the Y-Axis represents the remaining number 

of machinable workpieces for the specific tool. 

 

 

Figure 8. Main spindle current in percentage of 

maximum current of the drive (X-Axis: date and 

time, Y-Axis: % of maximal current) 

 

Figure 9. Remaining workpiece count (X-Axis: 

date and time, Y-Axis: remaining workpiece 

count [pieces]) 

The desired workpiece count is a specific, constant 

value for each tool, thus it is no depicted. 

IV. RESULTS 

Based on the results of the practical 

implementation of the data integration framework, 

we rolled out the solution to an entire production line 

of the AUDI HUNGARIA Zrt. The pilot production 

line includes 36 machines, each are connected to the 

data distribution layer through agents as in the 

previous section presented.  

We collected the data of the machine states, 

machine information like part counters and cycle 

time measurements, workpiece movements, operator 

identification information, error messages, the 

energy consumption, feed override of the machines 

and the MQTT State of the agent. The topics, where 

the agents are publishing the data, are based on the 

standardized naming convention. The base of the 

topics is the machine ID within the hierarchical 

structure of the factory, business unit, production 

domain and the production line, which follows the 

pattern: “Factory ID/Business Unit 

/Domain/Production line/Machine ID/Topic”. The 

average daily number of messages for each topic and 

the size of each message are shown in Table 4. 

 

 



B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

40 

Table 4. Collected NC Data 

Topic Message Count 
Avg. size 

(Byte) 

MqttState 2 128 

PartMovement 10010 234 

Energy 42657 147 

MachineState 15504 131 

MachineInfo 10010 240 

Messages 37053 93 

Operator 2 188 

Override 251 130 

 

The average daily message count of the 36 

machines is 115000 messages. The messages are 

stored in an SQL Database for further analysis and 

visualization tasks. 

V. SUMMARY AND FUTURE WORK 

In the previous sections we presented a data 

collecting framework to collect data from OT/IT 

systems and prevent interface jungle, thus simplify 

the architecture of a corporate network and enable 

new data processing use-cases. The framework 

enables to collect data from legacy OT and IT 

system, that are unable to use state-of-the-art 

communication protocols or meet data governance 

requirements. 

With the proposed elements, like the standardized 

naming convention and the usage of data collection 

agent and the data distribution layer, the connection 

of related data can be simplified and the difficulties 

caused by the poorly managed system and the lack 

of change management can be eliminated. The 

standardized naming convention can also be used as 

a part of asset management. 

With the introduction of the data distribution layer, 

the point-to-point interfaces can be avoided, thus the 

network management and operations becomes 

simpler. The data distribution layer also provide 

transparency and traceability trough data access 

policies, user management and logging. Specific 

users or clients can only access to topics, which are 

enabled in the access control list of the broker, read 

and write privileges can be set up also, and the 

connection attempts of client are also logged. These 

functionalities also enable the conformity to IT 

security rules. 

The framework enables the data collection from 

legacy systems, thus the operational and process data 

can be collected from heterogenous systems in a 

standardized way. The standardized message 

structure makes the data handling and storage easier, 

the newly connected clients only have to meet the 

requirements of the standardized naming convention 

and message structure to send data to the broker. 

This feature enables data storage without any further 

customization of the data sources. The standardized 

message structure also specifies the topic for the 

data. This property enables the clients to subscribe 

only to that topics, what it really needs. This function 

also eliminates the need for data lakes, each use-case 

only have to collect the data, what they really need. 

In case of a new use-case needs access to the data 

which available on the message broker, a new user 

must be created on the broker and after the access 

right granted on the topic which the new client needs, 

it can subscribe to the topic and can start the data 

collection from the broker. This feature enables fast 

on-boarding of new data processing use-cases, such 

as machine learning models, artificial intelligence 

(AI) based data processors and predictive systems. 

The data integration framework provides a good 

starting point for industrial artificial intelligent 

applications through simplifying the data collection, 

management and distribution of process and 

machine data, and new data collections can be easily 

introduced to the data distribution layer.  

Further research in the processing of the collected 

data, for example predictive maintenance systems 

and AI backed quality assurance systems strongly 

advised. 

AUTHOR CONTRIBUTIONS 

B. Szűcs: conceptualization, proof of concept setup, 

programming, writing and editing. 

DISCLOSURE STATEMENT 

The author declare that he has no known 

competing financial interests or personal 

relationships that could have appeared to influence 

the work reported in this paper. 

ORCID 

B. Szűcs https://orcid.org/0000-0002-2273-027X  

REFERENCES

[1] Verma, N., Jain, M., & Agrawal, R. (2018). 

Wireless sensor networks for industrial 

automation: Challenges and solutions. Journal 

of Sensor and Actuator Networks, 7(3), 33.  

https://doi.org/10.1002/dac.4074 

[2] Shi, W. et al. (2016). Edge computing: Vision 

and challenges. IEEE Internet of Things 

Journal, 3(5), 637-646. https://doi.org/ 

10.1109/JIOT.2016.2579198 

[3] Oussous, A. et al. (2018). Big data 

technologies: A survey. Journal of King Saud 

University - Computer and Information 

Sciences, 30(4), 431-448.  

https://doi.org/10.1016/j.jksuci.2017.06.001 

https://orcid.org/0000-0002-2273-027X
https://doi.org/10.1002/dac.4074
https://doi.org/10.1002/dac.4074
https://doi.org/%2010.1109/JIOT.2016.2579198
https://doi.org/%2010.1109/JIOT.2016.2579198
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1016/j.jksuci.2017.06.001


B. Szűcs – Acta Technica Jaurinensis, Vol. 16, No. 2, pp. 34-41, 2023 

41 

[4] Apache Kafka. (2021). Retrieved from 

https://kafka.apache.org/ [cited 2023-01-22] 

[5] RabbitMQ. (2021). Retrieved from 

https://www.rabbitmq.com/ [cited 2023-01-22] 

[6] Riedel, E. (2022). MQTT protocol for SME 

foundries: potential as an entry point into 

industry 4.0, process transparency and 

sustainability. Procedia CIRP. 105.  

https://doi.org/10.1016/j.procir.2022.02.100. 

[7] Li, Z., Li, B., & Li, J. (2019). Research on 

equipment coding and naming system for 

power plants based on the characteristics of the 

equipment. IOP Conference Series: Materials 

Science and Engineering, 664(1), 012138. 

[8] Das, A., & Akbar, R. (2019). A comprehensive 

naming convention for industrial components. 

In Advances in Manufacturing and Mechanical 

Engineering (pp. 281-289). Springer, 

Singapore. 

[9] Gómez, J. A., & Santana, R. (2020). 

Development of a descriptive naming 

convention for industrial equipment. Industrial 

Management & Data Systems. 

[10] Chung, T. W., Chen, C. M., & Yeh, C. T. 

(2015). Development of a rule-based naming 

convention for equipment in a semiconductor 

manufacturing fab. IEEE Transactions on 

Semiconductor Manufacturing, 28(3), 307-

314. 

[11] Berners-Lee, Tim, RFC 3986: Uniform 

Resource Identifier (URI): Generic Syntax 

(2005) DOI:10.17487/RFC3986 

[12] Libes, D., Choosing a name for your computer, 

FYI 5, RFC 1178, (1990). https://www.rfc-

editor.org/info/rfc1178 

[13] Bray, T., Ed., The JavaScript Object Notation 

(JSON) Data Interchange Format, STD 90, 

RFC 8259 (2017). https://www.rfc-

editor.org/info/std90 

[14] K. Birman, T. Joseph, Exploiting virtual 

synchrony in distributed systems. In 

Proceedings of the eleventh ACM Symposium 

on Operating systems principles (SOSP '87). 

Association for Computing Machinery, New 

York, NY, USA, 123–138. (1987) 

https://doi.org/10.1145/41457.37515 

[15] Yusuf, S., Survey of publish subscribe 

communication system, Advanced Internet 

Application and System Design (2004) 

[16] Technical Documentation for SINUMERIK 

840D sl, Version 4.92, Retrieved from 

https://support.industry.siemens.com/cs/docu

ment/109768584/technical-documentation-for-

sinumerik-840d-sl-version-4-92?dti=0&lc=en-

DE [cited 2023-01-22] 

[17] SIMATIC Industrial PC SIMATIC IPC427E 

Operating Instructions A5E37454814-AE, 

Siemens (2021) 

[18] .NET, Retrieved from 

https://dotnet.microsoft.com/en-us/ 

[cited 2023-01-22] 

[19] Sharp7 Library, Retrieved from 

https://snap7.sourceforge.net/sharp7.html 

[cited 2023-01-22] 

[20] S7 Protocol, Retrieved from 

https://wiki.wireshark.org/S7comm 

[cited 2023-01-22] 

[21] R. A. Light, "Mosquitto: server and client 

implementation of the MQTT protocol," The 

Journal of Open Source Software, vol. 2, no. 

(2017) https://doi.org/10.21105/joss.00265 

[22] Microsoft SQL Server 2019, Retrieved from 

https://www.microsoft.com/en-us/sql-

server/sql-server-2019  

[cited 2023-01-22] 

[23] SINUMERIK 840D sl/840Di sl, SINUMERIK 

840D/840Di/810D List of System Variables, 

Parameter Manual (2006), Retrieved from 

https://cache.industry.siemens.com/dl/files/27

2/28713272/att_92132/v1/PGA1_1106_en.pdf

[cited 2023-01-22] 

[24] MQTTnet Library, Retrieved from 

https://github.com/dotnet/MQTTnet 

[cited 2023-01-22] 

[25] Entity Framework, Retrieved from 

https://learn.microsoft.com/en-us/ef/  

[cited 2023-01-22] 

[26] Language Integrated Query (LINQ), Retrieved 

from https://learn.microsoft.com/en-

us/dotnet/csharp/programming-

guide/concepts/linq/ 

[cited 2023-01-22] 

 

 
 

This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution NonCommercial (CC BY-NC 4.0) license. 

https://kafka.apache.org/
https://www.rabbitmq.com/
http://dx.doi.org/10.1016/j.procir.2022.02.100
http://dx.doi.org/10.1016/j.procir.2022.02.100
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc1178
https://www.rfc-editor.org/info/rfc1178
https://www.rfc-editor.org/info/std90
https://www.rfc-editor.org/info/std90
https://doi.org/10.1145/41457.37515
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://support.industry.siemens.com/cs/document/109768584/technical-documentation-for-sinumerik-840d-sl-version-4-92?dti=0&lc=en-DE
https://dotnet.microsoft.com/en-us/
https://snap7.sourceforge.net/sharp7.html
https://wiki.wireshark.org/S7comm
http://dx.doi.org/10.21105/joss.00265
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://cache.industry.siemens.com/dl/files/272/28713272/att_92132/v1/PGA1_1106_en.pdf
https://cache.industry.siemens.com/dl/files/272/28713272/att_92132/v1/PGA1_1106_en.pdf
https://github.com/dotnet/MQTTnet
https://learn.microsoft.com/en-us/ef/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://creativecommons.org/licenses/by-nc/4.0/

