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Abstract: An analysis of analytical and numerical approaches to the problem of determining the stress-strain 
state of underground workings has been carried out. A system of parametric analysis of the stress-
strain state of unsupported and supported horizontal underground workings has been developed. This 
system proved that to determine the stress-strain state of horizontal unsupported workings of a certain 
diameter, it is enough to perform one numerical calculation of a finite-element model with unit 
parameters, and using simple analytical formulas, extrapolate the stress-strain state of this model to 
all possible cases of real workings. Finite element models of underground workings were developed 
to justify the author’s system. A method of parametric analysis of the strained state of a supported 
working by using models with equivalent bending stiffness has been developed and substantiated. On 
its basis, it is possible to perform a numerical analysis of a finite-element model with unit parameters 
of the frame, selecting the equivalent modulus of elasticity. 
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I. INTRODUCTION 
In geomechanics, two conceptual directions in the 

research of the stress-strain state of horizontal 
underground workings have been formed and are 
further developing: 1. It is based on an analytical 
approach; 2. It is based on numerical methods. 
Reviews in the application of these directions 
conducted by many researchers [1-3] allow us to 
highlight their inherent features, wherein these 
features are most often the advantages and 
disadvantages of calculation methods. 

For example, methods based on an analytical 
approach are noted by the universality of solutions 
that can be applied to different conditions, but their 
disadvantage is a significant number of assumptions 
introduced when obtaining [3, 4]. Numerical 
methods, in turn, are characterized by the possibility 
of calculating many complex underground facilities 
[5-7]. But their disadvantage is that the obtained 
solutions refer to specific calculation cases and 
cannot be extrapolated to similar cases with changed 
properties [1, 3, 6]. 

Recently, analytical methods have been much less 
often used in the calculations of underground 

facilities, which are explained by the complexity of 
their application (complicated mathematical 
apparatus, insufficient software implementation, 
etc.). A weighty argument for applying numerical 
methods is a specific approach to each underground 
facility. This approach is more expedient and 
rational than a typical calculation without taking into 
account the specific characteristics of the behavior of 
an underground structure.  

The finite element method is the most widely used 
numerical method today [3, 5-9]. Its large-scale 
application is explained by the development of 
theoretical foundations, the simplicity of 
algorithmization, and the availability of powerful 
professional calculation complexes. However, at the 
same time, in applying the finite element method in 
the calculations of underground facilities, including 
horizontal workings, there was a gradual separation 
from the methodology developed by analytical 
methods, which led to some one-sided research in 
this direction [8-11]. It is due to the finite element 
method’s specific features since obtaining high-
accuracy solutions; the adequate finite-element 
model should be developed for real conditions. The 
mentioned feature of the finite element method (the 
impossibility of extrapolating the numerical solution 
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of a specific problem to another one with somewhat 
changed characteristics) is proclaimed by some 
authors who tend towards an analytical approach as 
a methodological drawback. However, obtaining a 
sufficiently accurate solution for a specific 
calculation case is sometimes more important than 
obtaining a dependence that can be applied to other 
cases. 

Undoubtedly, the knowledge of the mechanisms 
for forming the stress-strain state in the “horizontal 
working – rock massif” system is a key issue of 
geomechanics. The currently existing methods in 
studying the stress-strain state are a set of 
disembodied methods for calculating individual 
components of stresses and strains, which can be 
applied only in limited research conditions. Such a 
situation, in many cases, does not allow obtaining a 
quantitative picture of the distribution of the stress-
strain state in the “horizontal working – rock massif” 
system. Therefore, a new methodological technique 
is needed to solve this problem, which allows 
performing operational determination of the stress-
strain state for horizontal working. 

II. METHODS 
Such a methodological technique is parametric 

analysis developed by the authors based on 
numerical analysis using the finite element method 
[3, 8, 9]. Within the framework of this article, the 
parametric analysis as the research of the stress-
strain state of a horizontal working is understood, 
during which a specific numerical solution is 
extrapolated to other calculation cases using the 
author’s algorithms. Exactly these algorithms help 
solve the issue of the imaginary impossibility of 
distributing a numerical solution, which is declared 
by authors who tend toward clear analytical 
solutions. However, the parametric analysis does not 
break links with the analytical approach [10, 11]. 

It is known that representatives of the analytical 
approach often ground their solutions for horizontal 
underground workings on the theoretical patterns of 
Kolosov-Mushkelishvili’s theory of functions of a 
complex variable, that is, one of the theories of 
continuum mechanics [3, 7]. In practice, this theory 
is implemented using conformal mappings, the 
essence of which is as follows. The real working of 
any delineation with a defined specific radius 𝑅𝑅 by 
means of direct mapping turns into a circular 
working with a unit radius, to which the patterns of 
Kolosov-Mushkelishvili’s theory are applied. Then, 
after obtaining the solution of the stress-strain state 
on a circular working with a unit radius, it is 
extrapolated to a real working with a defined specific 
radius 𝑅𝑅 by means of inverse conformal mapping. 

A critical analysis of this approach proves that a 
powerful mathematical apparatus is needed to obtain 
them, which is most often not implemented in 

software complexes. However, the very conceptual 
procedure of Kolosov-Mushkelishvili’s theory is 
fruitful. Its reinterpreting in line with numerical 
solutions is that the stress-strain state on a circular 
working with a unit radius and with the help of 
special parameters can be extrapolated to other 
workings. Thus, it is possible to obtain a solution for 
the stress-strain state on the working with a unit 
radius without applying complex direct and inverse 
conformal mappings by scaling the properties of the 
system [10, 11]. 

Unquestionably, the application of scaling for 
unsupported and supported workings with some 
similarities in the methodology still differs in both 
theoretical and practical terms. This is an objective 
position, since the presence of a frame, which is 
constructed in an unsupported working, radically 
changes the stress-strain state in the “horizontal 
working – rock massif” system. The engineering 
structure/the rock massif interaction is considered to 
be the basic principle of geomechanics, but its 
appearance makes the task of searching for the 
stress-strain state as difficult as possible. 

For the research objectives, a basic finite-element 
model of the “horizontal working – rock massif” 
system is developed, which consists of rectangular 
and square finite elements and maximally reflects 
the geometry of the working (Fig. 1). 

The authors will use the developed models with 
unit parameters for the primary parametric analysis, 
implemented with the professional complex SCAD. 
In these models, the geometric parameters of the 
underground working are accurately reflected, and 
the modulus of elasticity 𝐸𝐸 and the density of the 
rock or soil 𝛾𝛾 are equal to one. It should also be noted 
that all further solutions are implemented in an 
elastic approach since the elastic-plastic solution is 
quite difficult to solve [12]. 

 
Figure 1. The finite-element model for the 
"horizontal working – rock massif" system 
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The finite element model is a spatial one based on 
volumetric finite elements. The number of nodes of 
the model is 5268 pieces, finite elements are 3288 
pieces. Model dimensions: height is 20 m, width is 
22 m, thickness is 1 m. All nodes of the model are 
common, and the dimension of finite elements is 
from 0.25×0.25 to 0.5×0.5 m, which for a model with 
such dimensions is sufficient to obtain sufficiently 
accurate results. 

Since the stress-strain state of the system changes 
dramatically while installing fasteners into a 
horizontal working, it is impossible to conduct a 
primary parametric analysis of the stress-strain state 
in a similar way as for an unsupported working. For 
supported working, a secondary parametric analysis 
should be conducted proceeding from other initial 
parameters. This is explained by the fact that the 
frame is made of different materials (concrete, 
reinforced concrete, cast iron) and has a thickness 
range (for horizontal workings with a diameter of 5.6 
… 6 m, a thickness of ℎ=0.15 … 0.3 m). Therefore, 
any change in the parameters of the frame reshapes 
the stress-strain state in the “horizontal working – 
rock massif” system, and there are still no final 
analytical solutions for the distribution of stress and 
strain components for all possible cases. 

In this research, the authors introduce the 
following proposal, which allows for evaluating the 
deformed state of a horizontal supported working 
when there is a change in the thickness of the frame 
and its material. The controlling parameter affecting 
the change in displacements of the “horizontal 
supported working – rock massif” system is both the 
thickness ℎ and width 𝑏𝑏 of the fastening and to a 
greater extent the bending stiffness 𝐸𝐸𝐸𝐸. This 
parameter is integral because it binds the 
deformation property of the frame material (modulus 
of elasticity 𝐸𝐸) and its geometric dimensions 
(moment of inertia 𝐸𝐸 = 𝑏𝑏ℎ3 12⁄ ). 

As can be seen from the parametric analysis of the 
“horizontal supported working – rock massif” 
system, a stressed state is derived, which is explained 
by objective reasons. Even if the real deformation 
characteristics of the rock massif (modulus of 
elasticity 𝐸𝐸𝑟𝑟  and Poisson’s ratio 𝜇𝜇𝑟𝑟) is accepted as 
constant for all possible calculation cases, then the 
change in the geometric parameters of the fastening 
(thickness ℎ and width 𝑏𝑏) leads to a significant 
change in the stress components. This is due 
precisely to the change in the interaction between the 
fastening and the rock massif, which adjust to each 
other, creating an almost unique stress state for 
calculated cases with slightly varied thickness ℎ. 

Thus, if the bending stiffness 𝐸𝐸𝐸𝐸 is taken as the 
controlling deformation parameter, the following 
calculation situation can be considered. For two 
frames of a running tunnel with an inner diameter of 
5.1 m and made of different materials (reinforced 

concrete and cast iron), the equality 𝐸𝐸1𝐸𝐸1 =  𝐸𝐸2𝐸𝐸2 
must be: 

𝐸𝐸1
𝑏𝑏1ℎ13

12
= 𝐸𝐸2

𝑏𝑏2ℎ23

12
, (1) 

which is simplified if the width b is chosen to be 
the same for two frames (𝑏𝑏 =1.0 m). 

Accordingly, the task, with the help of a somewhat 
artificial technique, introduced only to simplify it, 
returns to the search for an equivalent thickness of 
the frames. However, it should be emphasized that in 
the general case where the frame width b may not be 
the same (1.0 m for cast iron frame and 1.2 m for 
reinforced concrete blocks), the bending stiffness 𝐸𝐸𝐸𝐸 
remains the controlling parameter. Having set the 
modulus of elasticity (for cast iron is 𝐸𝐸1=20.1·104 
MPa and reinforced concrete is 𝐸𝐸2=32.5·103 MPa) 
and solved equation (1), Eq.(2) is obtained: 

ℎ2 = �
12𝐸𝐸1𝐸𝐸1
𝐸𝐸2

3
. (2) 

Accordingly, if the thickness of the cast iron frame 
ℎ1=0.15 m is set, the equivalent thickness of the 
reinforced concrete frame will be equal to ℎ2=0.275 
m (Fig. 2). 

a) 

 
b) 

 
Figure 2. Schemes of supported horizontal 

working with an internal diameter of 5.1 m and 
equivalent 𝐸𝐸𝐸𝐸: a) thickness is of ℎ1=0.15 m (cast 
iron); b) thickness is of ℎ2=0.275 m (reinforced 

concrete) 
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For these two calculation cases, the basic finite-
element model (Fig. 1) has been modified, since the 
working is supported. Finite element models are 
created spatial ones based on volumetric elements. 
The number of nodes in the model is 18912 (cast 
iron) and 23156 (reinforced concrete); of finite 
elements is 9216 (cast iron) and 11316 (reinforced 
concrete). All nodes in the model are common, the 
dimension of the finite elements is from 0.12×0.12 
m to 0.15×0.18 m. These dimensions are sufficient 
to obtain an accurate solution to the set task. 

III. RESULTS AND ITS ANALYSIS 
After creating finite-element models for 

unsupported and supported workings, a numerical 
analysis of each of them has been carried out. Below 
are the results on the research of the finite-element 
model for the unsupported working with unit 
parameters (Fig. 3-4). 

Having obtained the distribution of isopoles of 
stresses and displacements in the model with unit 
parameters, it is quite easy to move to the real case 
using the author’s algorithm of primary parametric 
analysis: 

1) to obtain real displacements 𝑆𝑆𝑟𝑟 , the 
displacement in the model with unit parameters 𝑆𝑆𝑒𝑒 
should be multiplied by the value of the real specific 
gravity 𝛾𝛾𝑟𝑟 and divided by the real value of the 
modulus of elasticity 𝐸𝐸𝑟𝑟  and the unit value of the 
specific gravity: 

𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑒𝑒
𝛾𝛾𝑟𝑟
𝐸𝐸𝑟𝑟

; (3) 

2) to obtain the real stress 𝜎𝜎𝑟𝑟 , the stress in the 
model with unit parameters 𝜎𝜎𝑒𝑒 should be multiplied 
by the value of the real specific gravity and divided 
by the unit value of the specific gravity 𝛾𝛾𝑟𝑟: 

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝑒𝑒𝛾𝛾𝑟𝑟 . (4) 

a) 

 
b) 

 
Figure 3. The strained state of the finite-element 

model with unit parameters: a) displacement along 
the horizontal axis; b) displacement along the 

vertical axis 

 

a) 

 
b) 

 
Figure 4. The stress state of the finite-element 
model with unit parameters: a) stress along the 
horizontal axis: b) stress along the vertical axis 
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To check the adequacy of the distribution of the 
stress-strain state in the finite-element model and the 
obtained formulas, below are the results of the 
calculation of the finite-element model with the 
values of the real characteristics of the soil (hard 
clay): modulus of elasticity is of 𝐸𝐸𝑟𝑟=35 MPa; 
specific gravity is of 𝛾𝛾𝑟𝑟=20 kN/m3 (Fig. 5-6). 

 As can be seen from the above results of 
numerical calculations, the isolines and isofields of 
the stressed and deformed states are qualitatively 
identical, and they can be obtained quantitatively by 
the formulas presented above. Thus, if the 
displacements marked in Fig. 3, multiply by 20 (real 
specific gravity) and divide by 1 (the unit value of 
specific gravity) and 35 (modulus of elasticity), then 
the displacement values can be seen in Fig. 5. If the 
stress value in Fig. 4 multiply by 20 (real specific 
gravity) and divide by 1 (the unit value of specific 
gravity),  the stress values are received in Fig. 6. 

In the case of a horizontal supported working, only 
the strained state is considered, as noted above. To 
check the adequacy in the distribution of 
displacements in finite-element models, the 
calculation results are given below (Fig. 7-8). 

Moreover, the same values of real soil characteristics 
are reproduced in the models of supported working 
as for the unsupported one. 

The analysis of the components of the strained 
state (Fig. 7-8) makes it possible to conclude that the 
vertical and horizontal displacements are almost 
identical for finite-element models with a thickness 
of ℎ1=0.15 m (cast iron) and thickness of ℎ2=0.275 
m (reinforced concrete). The error arose due to the 
fact that the specific gravity, which was considered 
during the calculation of deformations, for cast iron 
(72.0 kN/m3) is almost three times more than for 
reinforced concrete (24.5 kN/m3). In the case of 
horizontal displacements, there was also an error 
made by the difference between the values of 
Poisson’s ratio (0.3 was for cast iron and 0.2 was for 
reinforced concrete). It is evidenced by the 
qualitative distribution of the horizontal component 
of displacements, since in the case of cast iron, the 
isofields are more elongated in height, in contrast to 
the reinforced concrete frame. 

a) 

 
b) 

 
Figure 5. The strained state of the finite-element 

model with unit parameters: a) displacement along 
the horizontal axis; b) displacement along the 

vertical axis 

a) 

 
b) 

 
Figure 6. The stress state of the finite-element 
model with unit parameters: a) stress along the 
horizontal axis: b) stress along the vertical axis 
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 The quantitative analysis of the values shows that 
for the finite-element model with a thickness of 
ℎ1=0.15 m (cast iron), the maximum horizontal 
displacements are 3.23 mm, the maximum vertical 
displacements are -40.27 mm, and for the finite-
element model with a thickness of ℎ2=0.275 m 
(reinforced concrete) 3.57 mm and 40.28 mm, 
respectively (Fig. 7-8). The error values (9.5% for 
horizontal movements and 0.03% for vertical 
movements) are not significant, and it can be stated 
that the author’s hypothesis about the equality of 
bending stiffness is fully confirmed. 

After this confirmation, a new hypothesis can be 
introduced that if the equality  𝐸𝐸1𝐸𝐸1 =  𝐸𝐸2𝐸𝐸2 exists, 
then the expression  𝐸𝐸1𝐸𝐸1 =  𝐸𝐸2𝐸𝐸2 =  𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒  has to also 
be existed, where  𝐸𝐸𝑒𝑒  and 𝐸𝐸𝑒𝑒  – respectively, some 

values of the modulus of elasticity and the moment 
of inertia are equivalent and do not tie to specific 
materials and sections. This hypothesis makes it 
possible to create a finite-element model with unit 
parameters (a thickness is of ℎ𝑒𝑒=0.1 m, and the width 
is of  𝑏𝑏𝑒𝑒=1.0 m) of the frame and, by choosing the 
equivalent modulus of elasticity  𝐸𝐸𝑒𝑒 , to obtain a 
strained state, which is identical, for example, for the 
cast iron tubing frame having an open box section. 
For this, equation (1) should be solved accordingly 
for the equivalent modulus of elasticity: 

 𝐸𝐸𝑒𝑒 =
12  𝐸𝐸1𝐸𝐸1

 ℎ𝑒𝑒
, (5) 

 𝐸𝐸𝑒𝑒 =
12  𝐸𝐸2𝐸𝐸2

 ℎ𝑒𝑒
. (6) 

a) 

 
b) 

 
Figure 7. The strained state of finite-element 

models (horizontal displacements): a) a cast iron 
frame with thickness of ℎ1=0.15 m; b) a reinforced 

concrete frame with thickness of ℎ2=0.275 m 

a) 

 
b) 

 
Figure 8. The strained state of finite-element 

models (vertical displacements): a) a cast iron 
frame with thickness of ℎ1=0.15 m; b) a reinforced 

concrete frame with thickness of ℎ2=0.275 m 
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The resulting formulas implement the search for 
the equivalent modulus of elasticity  𝐸𝐸𝑒𝑒 both based 
on the modulus of elasticity for the cast iron  𝐸𝐸1, and 
based on the modulus of elasticity for the reinforced 
concrete  𝐸𝐸2. 

IV. CONCLUSIONS 
The following provisions are conclusions of the 

performed research of the stress-strain state for 
unsupported and supported horizontal underground 
workings. 

1. Analysis of the research directions for the stress-
strain state of horizontal workings based on the 
analytical approach and numerical methods, in 
particular the finite element method, demonstrates 
that some methodological techniques of the 
analytical approach can be applied during numerical 
analysis. After rethinking the analytical approach, 
the conceptual approach of Kolosov-
Mushkelishvili’s theory was applied to the author’s 
constructions of parametric analysis for models with 
unit parameters. 

2. The developed system of the parametric analysis 
proved that to determine the stress-strain state of 
horizontal unsupported workings of a certain 
diameter, it is enough to perform one numerical 
calculation of a finite-element model with unit 
parameters, and using simple analytical formulas, 
extrapolate the stress-strain state of this model to all 
possible cases of real workings. 

3. A method of parametric analysis of the strained 
state of a supported working by using models with 

equivalent bending stiffness has been developed and 
substantiated. On its basis, it is possible to perform a 
numerical analysis of a finite-element model with 
unit parameters of the frame, selecting the equivalent 
modulus of elasticity. Thus, the results of the 
strained state of this model can be extrapolated to 
models with other geometric parameters of the frame 
and the material’s modulus of elasticity. 
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