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Abstract:  Simulation in manufacturing is often applied in situations where conducting experiments on a real 
system is very difficult often because of cost or the time to carry out the experiment is too long. 
Optimization is the organized search for such designs and operating modes to find the best available 
solution from a set of feasible solutions. It determines the set of actions or elements that must be 
implemented to achieve an optimized manufacturing line. As a result of being able to concurrently 
simulate and optimize equipment processes, the understanding of how the actual production system 
will perform under varying conditions is achieved. The author has adopted an open-source 
simulation tool (JaamSim) to develop a digital model of an automated tray loader manufacturing 
system in the Johnson & Johnson Vision Care (JJVC) manufacturing facility. This paper 
demonstrates how a digital model developed using JaamSim was integrated with an author 
developed genetic algorithm optimization system and how both tools can be used for the 
optimization and development of an automated manufacturing line in the medical devices industry.  

Keywords:  Digital Model; Digitalization; Genetic Algorithm; JaamSim; Optimization; Simulation 

 

I. INTRODUCTION 
Digitalization in manufacturing is the conversion 

of information into digital format, the integration of 
this digital data and technologies into the 
manufacturing process and the use of those 
technologies (eg: simulation, optimization) to 
change a business model to provide new revenue and 
value-producing opportunities. Digitalization may 
be seen as the increased generation, analysis, and use 
of data to improve the efficiency of the overall 
manufacturing system. Digital manufacturing 
technologies, such as simulation models, have been 
considered an essential part of the continuous effort 
towards improving the performance of automated 
manufacturing equipment and processes. 
Optimization seeks the maximum or minimum value 
of an objective function corresponding to variables 
defined in a feasible range or space. More generally, 
optimization is the search of the set of variables that 
produces the best values of one or more objective 
functions while complying with multiple constraints. 
The purpose of optimization has been described as 
objective function, loss function, or cost function for 
minimization and utility function or fitness function 

for maximization [1] [2]. In this paper, it will be 
referred to as objective function. Simulation 
optimization (SO) refers to the optimization of an 
objective function subject to constraints, both of 
which can be evaluated through a stochastic 
simulation/digital model [3]. The term simulation 
optimization (SO) is an overall term for techniques 
used to optimize stochastic simulations. Simulation 
optimization involves the search for those specific 
settings of the input parameters to a stochastic 
simulation such that a target objective, which is a 
function of the simulation output, is either 
maximized or minimized [3]. Simulation techniques 
allow for modelling and artificially reproducing 
complex systems using stochastic distributions [4]. 
Complex simulation models may require long 
development times and difficult verification and 
validation processes and finally, simulation is not an 
optimization tool on its own [5]. According to [5] 
large Combinatorial Optimization Problems (COPs) 
require the use of metaheuristics to conduct an 
efficient search, where he proposes to combine 
simulation with metaheuristics to form a new class 
of optimization algorithms called ‘simheuristics’. 
These algorithms integrate simulation (in any of its 
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variants) into a metaheuristic-driven framework to 
solve complex stochastic COPs. A metaheuristic is a 
high-level problem-independent algorithmic 
framework that provides a set of guidelines or 
strategies to develop heuristic optimization 
algorithms [6]. The JaamSim simulation package 
used in this industrial case study currently has no 
optimization analysis capability [7]. It is thus 
proposed by the author to develop and integrate a 
metaheuristic genetic algorithm optimization engine 
with the JaamSim Tray Loader digital model thus 
enabling the optimization of this industrial case 
system.  

An optimization problem involves searching for 
an optimal solution(s) xi from a search space X, 
which maximize (or minimize) an objective function 
f(x), while satisfying a set of constraints [8]. The 
search space X may be composed of discrete 
variables (e.g., integer, categorical), continuous 
variables or mixed variables [9]. Metaheuristics are 
general algorithmic frameworks, often nature-
inspired, designed to solve complex optimization 
problems [10]. Metaheuristics are a growing 
research area over the last number of years. 
Metaheuristics are emerging as successful 
alternatives to more classical approaches also for 
solving optimization problems that include in their 
mathematical formulation uncertain, stochastic, and 
dynamic information [10]. The Greek suffix ‘‘meta’’ 
used in the word metaheuristic means ‘‘beyond, in 
an upper level’’. Thus, metaheuristics are algorithms 
that combine heuristics (that are usually very 
problem-specific) in a more general framework. 
Metaheuristics are strategies that guide the search 
process. The goal is to efficiently explore the search 
space to find near–optimal solutions. Techniques 
which constitute metaheuristic algorithms range 
from simple local search procedures to complex 
learning processes [11]. Optimization algorithms 
attempt to improve solutions in each iteration, 
seeking to converge toward the optimal solution. 
After a number of iterations, the search reaches an 
optimal region of the feasible decision space. The 
best solution calculated by the algorithm at the time 
of termination constitutes the optimal solutions of a 
particular run. Fig. 1 portrays the process of 
optimization by Metaheuristic and evolutionary 
genetic algorithms. 

 

Figure 1. Components of the Optimization System 
using Simulation and Genetic Algorithms 

 

II. GENETIC ALGORITHMS 

1. Genetic Algorithm Overview 

Among the meta-heuristic optimization methods, 
genetic algorithms have gained importance because 
of its capacity to find sets of optimal solutions [12]. 
A genetic algorithm (GA) is an 'intelligent' 
probabilistic search algorithm which simulates the 
process of evolution by taking a population of 
solutions and applying genetic operators in each 
reproduction [13]. Genetic Algorithms (GAs) are 
adaptive heuristic search algorithms based on the 
evolutionary ideas of natural selection and genetics. 
They are a part of evolutionary computing, a rapidly 
growing area of artificial intelligence. GAs are 
inspired by Darwin’s theory of evolution – “Survival 
of the fittest”. Simplicity of operation and power of 
effect are two of the main attractions of the GA 
approach [14]. Genetic algorithms are popular as 
they are relatively easy to implement and are used in 
several commercial software packages [3]. Genetic 
algorithms (GA) have been used for the resolution of 
a wide variety of combinatorial problems, due to the 
demonstrated success in the results it can achieve 
[15]. Despite the advantages of genetic algorithms, 
several parameter inputs are required before using 
this algorithm. They include waypoint, population 
size, crossover rate, and mutation rate. The potential 
GA solution to a problem is an individual which can 
be represented by the set of parameters. These 
parameters are just like a gene of a chromosome and 
can be represented by the string of values in binary 
form [16]. The fitness value is used to test the degree 
of goodness of the chromosome for solving a 
problem that is directly related to the objective value. 
The operators employed in a GA include selection, 
crossover, and mutation processes [16] [17]. 

The performance of the Genetic Algorithm is 
dependent on these parameter settings [18]. The GA 
method requires the algorithm to be initialized with 
a set of randomly generated initial values, which is 
known as initial population which represents a 
significant difference with respect to mathematical 
programming techniques. The initial population is 
then evaluated to determine which of the individuals 
have the best characteristics (i.e., the best values for 
the objective functions), allowing them to pass to the 
next generation (or iteration). There is a similarity 
between GA and those that can be observed with the 
natural evolution concepts. Once the population has 
been evaluated, the best individuals combine their 
genetic information between them, and a new 
generation is obtained. Standard GAs begins with a 
randomly generated population of possible solutions 
(individuals). The individual’s fitness is calculated 
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and some of them are selected as parents according 
to their fitness values. A new population (or 
generation) of possible solutions (the children’s 
population) is produced by applying the crossover 
operator to the parent population and then applying 
the mutation operator to their offspring. The fitness 
value is recalculated for this new population. The 
iterations involving the replacement of the original 
generation (old individual) with a new generation 
(children) is repeated until the termination criteria is 
achieved. This whole process is shown in Fig. 2. 

 

Figure 2. Genetic Algorithm Flowchart [19] 

2. Elitism Strategy 

A solution with a high fitness value could be 
replaced by a weaker solution after a crossover or 
mutation occurs. The process of maintaining good 
solutions with high fitness after a certain generation 
cannot be guaranteed. Hence an elitism strategy can 
be applied in GA to maintain a certain number of the 
fittest solutions for the next generation. When the 
next-generation population is obtained after 
crossover and mutation, these solutions that were 
maintained by elitism will replace the weaker 
solutions. The same number of the fittest solutions 
will replace the weaker solutions and be retained and 
utilized for the next generation [19] [20]. It has been  
shown that results obtained by an algorithm which 
uses elitism is better than the result obtained by an 
algorithm which doesn’t use elitism [21], [22].  

3. GA Parameters and Termination 
Strategy 

The size of the population of solutions (M), the 
number of parents (R), the probability of crossover 
(PC), the probability of mutation (PM), and the 
termination criterion are the user defined parameters 
of the GA. A good choice of the parameters is related 
to the decision space of a particular problem, and in 
general the optimal parameter setting for one 
problem may not perform equally as well for other 

problems. Consequently, determining a good 
parameter setting often requires the execution of 
many time-consuming experiments. A critical factor 
in implementing a genetic algorithm is how to set the 
values for the various parameters. [23] classifies 
these efforts into two major forms:  
1. Parameter tuning. It refers to finding good 

values for the parameters before the algorithm is 
run and then keeping these values fixed while 
the algorithm runs. With this method, typically 
one parameter is tuned at a time, which may 
cause some suboptimal choices, since 
parameters often interact in a complex way with 
each other. Simultaneous tuning of more 
parameters, however, leads to an enormous 
number of experiments.  

2. Parameter Control. This method forms an 
alternative, as it amounts to starting a run with 
initial parameter values which are then changed 
during the run. 

Selecting the appropriate GA parameters is 
regularly done based on experience with specific 
optimization problems. However, a reasonable 
method for finding suitable values for the GA 
parameters is to perform sensitivity analysis. This 
entails choosing a combination of GA parameters 
and running the GA several times. Other 
combinations of parameters are chosen, and repeated 
runs are made with each combination. A comparison 
of the optimization results obtained may lead to the 
best set of GA parameters. The author has used 
Design of Experiments to select the optimum GA 
parameters for the Tray Loader application. 

A termination criterion is required to allow the 
Genetic Algorithm to end its iterations. Selecting an 
appropriate termination criterion has an important 
role on the correct convergence of the algorithm. The 
number of iterations, the amount of improvement of 
the objective function between consecutive 
iterations, and the run time are common termination 
criteria for the GA.  

4. NSGA-II (Non-dominated Sorting 
Genetic Algorithm II) 

  The non-dominated sorting algorithm (NSGA), 
developed in 1994, was one of the first Multi 
Objective Evolutionary Algorithms (MOEA) [24]. 
NSGA differs from the standard GA in the way that 
the selection operator performs, with the crossover 
and mutation operators remaining the same. The 
population of solutions is ranked based on its 
nondomination before selection takes place.   
Improvements to NSGA were made to tackle issues 
such as high computational complexity, lack of 
elitism, need to specify sharing parameter and a 
technique was added to embed constraints into the 
optimization algorithm, leading to a new algorithm 
known as NSGA-II being introduced [25]. 
According to [26] [27] one of the most widely used 
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MOEA’s that has been effective in finding the Pareto 
optimal solutions is the elitist NSGA-II algorithm. 
Both the diversity and the convergence abilities of 
the NSGA-II algorithm have been demonstrated by 
[28]. They have also shown the suitability of NSGA-
II in producing an acceptable number of optimized 
design alternatives regarding the problem 
complexity and in a reasonable timeframe. A 
detailed review of NSGA-II optimization algorithm 
in machining operations was presented by [29]. They 
concluded that NSGA-II as part of Multi Objective 
Optimization Problem (MOOP) is a popular and 
reliable algorithm that can be used in optimizing the 
process parameters of multiple machine 
performances. Unlike the single objective 
optimization technique, NSGA-II simultaneously 
optimizes each objective without being dominated 
by any other solution [29]. The problem of 
controlling an air conditioning system using 
evolutionary algorithms to increase energy-saving 
while also considering user satisfaction was 
investigated [30]. They concluded that the NSGA II 
as an excellent algorithm for solving a multi 
objective optimization problem. It has also been 
shown that the multi-objective optimization 
technique NSGA-II applied to a project was efficient 
in searching for multiple solutions and was able to 
find a pareto front after a few iterations during the 
optimization process [31]. NSGA-II applies an elitist 
strategy which improves the convergence of an 
MOEA and avoids the loss of optimal solutions after 
getting them [32]. It is proposed to use the Elitist 
NSGA-II and develop a standalone multi objective 
optimization engine that will run fully integrated 
with the JaamSim Tray Loader digital model. The 
workings of the NSGA-II will now be further 
explained. The flowchart for NSGA-II is shown in 
Fig. 3. 

 
Figure 3. NSGA-II Algorithm Flowchart [31] 

 
  In NSGA-II parents and offspring are combined, 
followed by non-dominated sorting. The fitness of 
all individuals is assessed and chosen to be parents 
for the next generation. The NSGA-II Non-
dominated sorting and crowding distance sorting, 
which is depicted in Fig 4 is then completed. Pt is 

the parent generation and Qt the offspring that are 
both merged into Rt. The objective is to obtain a 
new generation Pt+1 of the same size as the parent 
population Pt. Two parameters are estimated for 
each individual: the domination count, which 
provides the information of how many solutions 
dominate the individual, and a list of the set of 

solutions that are dominated by the individual. 
This method splits up all solutions into different 
fronts. As per Fig. 4, PF1-3 are the fronts that are 
obtained by the sorting process.  

Figure 4. NGSA-II Ranking Procedure [25] 

All individuals are compared with each other. 
The first front will comprise only solutions with a 
domination count of 0. From there, the algorithm 
continues going individual by individual through 
all sets of solutions that have a domination count 
of 0 to form the first front. The individuals from 
this 1st front are removed from the list, and the 
remaining individuals now compared to each other 
with the 2nd front obtained by selecting 
individuals with a new domination count of 0. 
After this process, all the individuals that have a 

domination count of zero, excluding the first front 
solutions, will form the second front. The 
procedure is continued until the last front is 
obtained as can be seen in Fig. 5. 

Figure 5. Solution Pareto fronts and 
Crowding Distance Estimation 

From Fig 5 all solutions in PF1 and PF2 are taken 
forward to the new population Pt+1. Some solutions 
from PF3 are taken forward to Pt+1, while the 
remainder is rejected. The solutions that are taken 
forward from PF3 is based on the crowding distance 
calculation, with the lesser crowded distance 
individual being chosen to form the total in 
population Pt+1 [25]. The crowding distance is a 
number that determines how closely other solutions 
are surrounding an individual. Figure 5 shows the 
calculation of the crowding distance of solution i. 
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The crowding distance is an estimate of the size of 
the largest cuboid enclosing solution i without 
including any other solution [30]. The nearest 
neighbours are used to calculate the average distance 
between the closest solutions of the same front. A 
higher value of crowding distance gives a lesser 
crowded region and vice versa [25]. 

III. DEVELOPMENT OF TRAY LOADER 
DIGITAL MODEL 

5. Overview of The Tray Loader Digital 
Model  

A digital model of an industrial system (Fig. 6) 
known as a Tray Loading System was developed 
using JaamSim software. 

 

 
Figure 6. Automated Tray Loading System 

Industrial Case  
This system consists of individual product (p) that 

arrives from an upstream line to a product feeder at 
defined arrival times. These are then grouped into 
multiples of 10. The group of products are then 
loaded into empty plastic trays that can hold up to 
660 parts. Once filled the plastic tray moves at a 
defined cycle time to a tray stacker. The tray stacker 
accumulates the filled trays into groups of 30. This 
group of 30 trays then undergoes a batch process in 
either Process station 1 or 2 under defined 
conditions. Upon completion of this batch process, 
the trays of product leave Process Station 1 or 2, 
where a tray unstacking operation takes place. Each 
individual tray of product undergoes a further 
process step (Process Station 3), again under defined 
conditions. Once a tray is finished at Process Station 
3, the product is removed from the tray at the Tray 
Unloading station and is then passed to the Star 
Wheel grouping station, where the product is now 
grouped into batches of 30. These groups are then 
passed to Process Station 4 and 5 for the final 
finishing process. The empty trays from the tray 
unloading station, are returned to the empty tray 
buffer and finally back to the tray loader operation, 
to repeat the overall process. The digital model 
developed, will simulate this whole operation, 
considering the following 5 points: 
1. Entities (units of Product) per arrival. 
2. Service times for process stations, travel times   

for conveyors 

3. Probability distributions for reliability and 
repair of stations. 

4. Conditions for process stations to process and 
pass product to the next station. 

5. Queue size and location. 

6. Verification of the Tray Loader Digital 
Model 

A detailed verification process was undertaken on 
the Tray Loader digital model following the 
Logical/mathematical verification, program/code 
verification steps outlined by [33] and the detailed 
knowledge of the author of the actual tray loading 
system. All the Tray Loader Objects, Service Times, 
Steps, Thresholds, Maintenance conditions and 
Threshold condition logic were all verified and 
confirmed to be correct to how the actual line 
operates. A detailed verification checklist was 
completed on the Tray Loader digital model. As part 
of the digital model verification process it was 
important to verify that the product flow into and out 
of the various simulation objects (as seen from the 
JaamSim GUI) are identical to what occurs on the 
tray loader line. This verification process allowed 
any additions or changes to the simulation logic to 
be corrected, verified, and visualized immediately. It 
was through the ongoing and iterative model 
verification and the testing process during model 
development, that a realistic model of the actual 
dynamic interactions was developed and fine-tuned. 
During this phase of model verification, the weak 
points of the system were discovered and corrected. 
It is extremely advantageous to find these early-stage 
simulation bugs, thus allowing a well-tested and 
robust system to be developed. 

7. Validation of the Tray Loader Digital 
Model  

The approach taken for developing the Tray 
Loader digital model followed the steps described by 
[34]. Step 5 of this approach deals with confirming 
that the programmed model is valid. The model is 
run using the standard basic settings from the actual 
tray loader system. The simulation model output data 
for the system was compared with the comparable 
output data collected from the actual system. This is 
called results validation. If the results are consistent 
with how the system should operate, then the 
simulation model is said to have face validity. 
Sensitivity analyses is performed on the 
programmed model to see which factors have the 
greatest impact on the performance measures and, 
thus, must be modelled carefully [34]. According to 
[35], validation is concerned with determining 
whether the conceptual digital model (as opposed to 
the computer program) is an accurate representation 
of the system under study. [35] outlines the 
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following three (3) steps to validate a simulation 
model.  
1. Obtaining real-world data from the actual 

system.  
2. Tests for comparing simulated and real data 

(namely graphical, Schruben-Turing or t tests). 
3. Sensitivity analysis (using statistical design of 

experiments with associated regression 
analysis). 

The above approach was used to validate the Tray 
Loader digital model, see section 3 for more detail. 
Actual Tray Loader system data was collected from 
the historian database for all the relevant process 
stations used in the digital model. The data collected 
included input feed rate, yield, throughput and 
uptime per minute for each process station. Excel 
macros were then developed to calculate the 
equipment reliability metrics namely: Mean Time 
Between Failures (MTBF) and Mean Time to Repair 
(MTTR) for each of the process stations using the 
uptime/minute data. The Input feed rate, yield, 
output data and the MTBF/MTTR for each process 
station was analysed, outliers removed, and 
distributions determined along with the distribution 
parameters. Minitab is used to analyse all the data 
obtained. Minitab is a statistical analysis software 
that assists in the analysis of data collected from any 
process and provides a simple, effective way to input 
the data, manipulate that data and statistically 
analyse it. 

IV. DEVELOPMENT OF THE NSGA-II 
OPTIMIZATION ENGINE 

A closed loop digital model and optimization 
engine is proposed by the author as shown in Fig. 7. 
An NSGA-II optimization engine is integrated with 
the Tray Loader JaamSim digital model and the 
following four (4) elements being executed 
automatically until an optimized solution is 
obtained:   

1. Digital Model inputs parameters updated.  
2. Simulation runs executed and monitored  
3. Digital Model outputs collected. 
4. Optimization analysis completed and new 

parameter settings recommended. 
 

 
Figure 7. Closed Loop Optimization Engine  

The overall optimization system developed by the 
author allows the user to specify the objectives to be 
optimized from an excel file. Table 1 shows an 
example of two (2) objectives to be minimized along 
with two (2) objectives to be maximized (station 
throughputs). This file is used to configure the 

optimization problem along with the associated 
objectives to be either maximised or minimised. 

 

Table 1. Optimization Objectives 
 

 
 
 

 

Another excel file is set-up to store all the 
entities/workstations names along with their 
associated base parameter values, see Table 2 for a 
sample of some configuration settings for the Tray 
Loader Simulation model. 

 

Table 2. Simulation Model and Optimization 
Parameters 

The settings in the Optim_Space column are used 
by the NSGA-II optimization engine. As an 
example, referring to Table 2, JaamSim is 
configured with an entity generator called P_Feeder. 
The base InterArrivalTime for this generator is 
0.90sec. When performing an optimization analysis, 
the InterArrivalTime for this entity can be changed 
within a space of 0.90 sec ±10% in increments of 
1%. Likewise, the Tray Loader JaamSim model uses 
a resource called Empty_Tray_Stacker, with a base 
setting of 90 units. The optimization space for this 
parameter is 90 ± 15% in increments of 1%.  The 
user can select which parameters, the base setting for 
that parameter and if required the optimization space 
for that parameter to be used by NSGA-II. 

Reviewing the optimization space for the 7 factors 
in Table 2, there is in excess of 2.6 Billion 
combinations of different factor settings that the 
Tray Loader line can be operated to. It is impossible 
to run all of those combinations using the Tray 
Loader digital model, hence the need to use 
optimization approaches to determine a particular 
setting for each of the 7 factors that results in an 
optimum solution to the required objective(s).  
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Python code was developed that integrates the excel 
input configuration files with both the JaamSim Tray 
Loader digital model and the NSGA-II optimization 
engine. The overall structure and Python code that 
was written to integrate the NSGA-II and the 
JaamSim Tray Loader digital model to form an 
optimization system followed a modular format. 
This modular format followed the ten (10) rules and 
two (2) best practices for code development 
highlighted by [36]. The overall system architecture 
is shown in Fig. 8. This architecture gives a high-
level overview of how the optimization system was 
developed with the main optimization system being 
controlled by the module called invoke_Simw (see 
purple box in Fig. 8). The main function module 
called invoke_simw then calls other blocks (red 
boxes in Fig. 8) forming the main spine of the Tray 
Loader Optimization system. All the function 
modules are written using the python programming 
language. The four (4) main blocks of the system 
include: 
1. Main controlling function module called 

invoke_simw 
2. Input Data Pre-processing function block that 

calls several sub function modules.  
3. Overall GA and JaamSim Optimization Loop 

function block calling several sub function 
modules. 

4. Output data file post processing block calling 
several sub function modules. 

 
Figure 8. OPTIM-GA Program and Data Structure 

Tray Loader digital model parameters are passed to 
the ‘invoke_simw’ function. The invoke_simw 
function (Fig. 8), then schedules the calling of all the 
various functions and methods required to execute 
all the tasks in the three (3) red boxes. When all input 
data pre-processing is completed, the NSGA-II and 
JaamSim Optimization loop (Fig. 8) is activated 
where simulation runs are completed using the tray 
loader digital model. Output results from each 
simulation run is then analyzed by NSGA-II 
optimization engine and any associated changes to 
the digital model input parameters based on the 
requirements of the objective function are then 
made.  This process is repeated until the termination 
criteria is achieved thus producing an optimal 
solution. The tray loader termination criteria is 
reviewed in section 8 below. 

Once NSGA-II optimization has terminated the 
program returns to the calling function 

‘invoke_simw’. At this point the function ‘Output 
Data File Post Processing’ Fig. 8 is called. This 
block of code prepares the results from the 
optimization study for review and graphing. The data 
is also saved to a csv file to allow the user to further 
analyze the data with statistical packages (eg: 
Minitab ©) to support any decisions in relation to 
possible design changes to the tray loading system. 
A significant number of Python libraries associated 
with optimization have been developed recently, 
however, only a few of them support optimization of 
multiple objectives at a time [37]. As such, pymoo 
(python multi-objective optimization) which is a 
library of multi-objective optimization tools was 
developed in Python [37]. There are several different 
algorithm implementations in “pymoo” examples 
include GA and NSGA-II to name a few. These 
NSGA-II pymoo library of optimization routines 
were used in the development of the overall Tray 
Loader NSGA-II optimization system. A plug-in 
library called pymoo, Ver 0.5.0 was then installed 
into the Thonny IDE to enable multi objective 
optimization in Python (Fig. 9).  

 
Figure 9. Pymoo Library in the Thonny IDE 

A list of the additional Python libraries installed 
into the Thonny IDE are given in Table 3. These 
libraries are required to allow the developed python 
code for the Tray Loader optimization to run without 
errors. 

Table 3. Python Libraries installed into the Thonny 
IDE 
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8. NSGA-II Termination Criteria for the Tray 
Loader Optimization Problem 

Whenever an optimization algorithm is executed, 
it needs to be determined at each iteration whether 
the optimization run shall be continued or not. Many 
different ways exist of how to decide when an 
optimization run should be terminated. Running the 
algorithm not long enough can lead to unsatisfactory 
results and running it too long might waste function 
evaluations, time  and thus computational resources. 
Pymoo have developed several termination criterion 
for both single and multi-objective optimization. The 
Tray Loader termination criteria uses the standard 
‘Termination’ function which was imported by 
python from pymoo. Actual code is given below: 
from pymoo.core.termination import 

Termination 

According to [38] the most interesting stopping 
criterion is to use objective space change to decide 
whether to terminate the algorithm. This termination 
criteria uses a simple and efficient procedure to 
determine whether to stop the optimization or not. 
This termination procedure is called 
‘MultiObjectiveSpaceToleranceTermination’, and is 
imported from pymoo as given by the actual code 
below: 
from pymoo.util.termination.f_tol 

import 

MultiObjectiveSpaceToleranceTermin

ation 

This termination procedure 
‘MultiObjectiveSpaceToleranceTermination’ is 
then configured with various termination 
parameters and assigned to the ‘termination’ 
attribute with python code as given below: 

# NSGA-II Tray Loader termination 

criteria 

termination = 

MultiObjectiveSpaceToleranceTermin

ation(tol=0.0025, n_last= min(30, 

n_max_gen), nth_gen= min(5, 

patience), n_max_gen= n_max_gen, 

n_max_evals=None) 

The five (5) termination parameters [38] above 
are described as follows: 
1. tol =  This is the average threshold tolerance in 

the objective space. If the value is below this 
bound (0.25% from above), the algorithm is 
terminated.  

2. n_last = To make the termination criterion more 
robust, this parameter specifies the 
last n generations to review and then takes the 
maximum from this number of generations. 

3.  nth_gen = Defines whenever 
the termination criterion is calculated by 
default, or every nth generation. In the example 
above, nth_gen is the minimum of 5 or the 
patience value. 

4. n_max_gen = Furthermore, the number of 
generations executed by the algorithm can be 
used for termination. For some optimization 
problems, the termination criterion might not be 
reached, thus, an upper bound for generations 
can be defined to stop in this case. 

5. n_max_evals = Lastly, the number of 
function evaluations can be used for 
termination. In the example above, this is not 
used as can be seen when this variable is set to 
None. 

9. NSGA-II parameter tuning for the Tray 
Loader Application 

The key to a successful implementation of Genetic 
Algorithms primarily depends on the efficient 
crossover and mutation search operators to guide the 
system toward a global optimum [39]. The values of 
GA parameters greatly determine whether the GA 
will find a near-optimum solution and whether it will 
find such a solution efficiently in a timely manner. 
Choosing the right parameter values can be a time-
consuming task where the computer specifications 
can play a significant factor in how long it takes to 
obtain both the GA optimum parameters and 
determining the optimum solution to the problem 
itself [23]. According to [40], GAs are not easy to 
use because they require parameter tunings in order 
to achieve the desirable solutions. The task of tuning 
GA parameters has been proven to be far from trivial 
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due to the complex interactions among the 
parameters. In the research carried out by [41], 
parameter setting for MOOP using evolutionary 
algorithms (MOEAs) is crucial for finding the best 
performance of the algorithm. These parameters are 
very sensitive in driving the algorithms to the best 
performance and finding the good results. Design of 
experiments (DoE) methods offer practical 
approaches to tune the parameters effectively [42]. It 
has been shown that the internal parameters of 
NSGA-II can be tuned using the Design of 
Experiments (DoE) procedure to enhance the quality 
of the results for the synthesis optimization of a four-
bar mechanism [43]. The six (6) operating 
parameters of the NSGA-II algorithm which need to 
be set for the Tray Loader optimization application 
are as follows: 

1. Population size.  
2. # of Offspring.  
3. Crossover Probability 
4. Crossover Distribution Index 
5. Mutation Probability 
6. Mutation Distribution Index 

These parameters affect the capability of the 
algorithm to achieve the optimum objective results 
and computing time to reach these results. According 
to [44] population size can be decided by experience 
and usually between 50 and 160. If the population 
size is too small, then it can be difficult to get an 
optimum solution, whereas, if it’s too large then the 
convergence time can be long. A recommended 
range of parameter settings is given in Table 4 to 
achieve optimum GA performance [41], [42], [44]. 

Table 4. GA Parameter Settings 

 
The mutation distribution index (ηm) and the 

crossover distribution index (ηc) are typically set in 
the range of 10 – 40 [45]. A large crossover 
distribution index (ηc) gives a higher probability for 
creating near parent solutions and a small crossover 
distribution index (ηc) allows distant solutions to be 
selected as children solutions [46]. The parameters 
with the associated levels for each parameter that are 
used in the NSGA-II algorithm are given in Table 5. 

Table 5. NSGA-II Parameters and Levels 

 
A ½ fractional DoE was chosen for tuning the Tray 

Loader NSGA-II optimization parameters as the 

resolution provided was sufficient to analyse the 
data. A total of 33 runs is required for the experiment 
(32 ½ fraction runs and 1 centre level run). Each 
experiment was run for a maximum of 30 
generations based on previous optimization 
experiments carried out by the author during the 
development of this optimization system. Increasing 
the number of generations, significantly increases 
the time required to run each experiment. The max 
P_Feeder output and max Process4 output was 
recorded across the total population for each of the 
thirty (30) generations. Analysis of Variance 
(ANOVA) and response optimization of the NSGA-
II parameters is completed using Minitab in order to 
maximise both the P_Feeder and Process4 outputs. 
The results are shown in Table 6. 

 

 

Table 6. Tray Loader NSGA-II Parameter 
Optimization 

 
Based on this analysis, the Tray Loader NSGA-II 

optimization system is configured with the 
parameter values as shown in Table 7. 

Table 7. Tray Loader NSGA-II Parameter Values 

 

V. RESULTS FROM THE TRAY LOADER 
DIGITAL MODEL AND NSGA-II 

OPTIMIZATION ENGINE 
All simulation/optimization runs were completed 

using a HP ZBook Firefly 15 G7 2Z4F7UC laptop 
running an Intel(R) Core(TM) i7-10810U CPU @ 
1.61 GHz processor and 64GB of RAM. The single 
objective optimization run (Maximize P_Feeder 
output) was executed 10 times as recommended by 
[47] [48]. The results of the 10-run experiment is 
given in Table 8.  

Table 8. Simulation Model and Optimization 
Parameters 
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As can be seen from Table 8, the P_Feeder 

Mean, Max, Min and Standard Deviation is 
calculated across the 50 generations for each run 
using the NSGA-II optimization. The average 
P_Feeder (max) across the 10 runs using NSGA-II 
was 462,298 units. The overall P_Feeder maximum 
output across the 10 runs using NSGA-II 
optimization was 462,741 achieved on runs 3, 7 and 
10. Run #1 was analysed in additional detail, as the 
results of this particular run produced results that 
were close to the overall average of the 10 runs 
completed. Analyzing the data collected from Run 
#1, the P_Feeder maximum, minimum, average and 
standard deviation is calculated for each of the 50 
generations and plotted using Minitab©. Fig. 10 
shows how all the individual solutions within the 
population of 100 solutions for each of the 50 
generations are converging closer to the P_Feeder 
maximum value of 462,391 which was achieved on 
generation #22.  

 
Figure 10. NSGA-II Optimization of P_Feeder 

Output/Shift 
The maximum P_Feeder output remained 

unchanged for the remaining 28 generations of the 
experiment.   The standard deviation of the P_Feeder 
output within the population of 100 solutions for 
each generation is plotted and can be seen in Fig. 11.  

 
Figure 11. NSGA-II optimization of P_Feeder 

Standard Deviation 

Fig. 11 shows that as the solutions are generated 
for each generation, the spread is reducing indicating 
that all of the solutions are progressively getting 
closer to the optimum P_Feeder max value of 
462,391 and the optimization procedure can be 
terminated. It can be seen from Fig. 10 and 11 that 
the NSGA-II algorithm has converged after 
approximately 22 generations, at which point the 
fitness value function (max P_Feeder Output) was 
unchanged and the standard deviation of P_Feeder 
output of all the solutions within each generation 
decreasing slightly. To reduce the optimization 
computation time, the maximum number of 
generations could be reduced from 50 to approx. 30. 
This value of 30 was selected (greater than 22), with 
the aim of avoiding an early termination of the 
algorithm before the max P_Feeder output was 
obtained. The solution developed for run #7 (Table 
8) with an overall P_Feeder max of 462,741 units 
using the Tray Loader JaamSim digital model and 
the NSGA-II optimization engine is shown in Table 
9. 

 

Table 9. Tray Loader Optimized Digital Model 
Parameters 

 
A two (2) objective optimization problem 

(maximize the P_Feeder and minimize the Empty 
Tray Buffer capacity) was designed and tested using 
the tray loader digital model and NSGA-II 
optimization engine. As with the single objective 
optimization problem, the same Tray Loader 
simulation model, model parameters and 
optimization parameter space was used for this study 
(See Table 2), with results given in Table 10. 
 

Table 10. Two Objective Optimization problem of 
Tray Loader System using NSGA-II Optimization 
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A pareto front is a set of nondominated solutions, 
being chosen as optimal, if no objective can be 
improved without sacrificing at least one other 
objective [8].  The pareto front is an excellent 
visualization to show the interaction of each 
objective has on the other. A pareto front (Empty 
Tray Buffer Capacity vs P_Feeder Output/Shift) was 
generated using  all the data gathered from the 2 
objective SimWrapper Optimization runs. See Fig. 
12 for the pareto front. 

 

 
Figure 12. Tray Loader 2 Objective Optimization 

Pareto Front. 

As can be seen from Fig. 12, the optimum solution 
is where the Empty Tray count (Buffer Capacity) is 
approx. 79 trays, thus producing a stable P_Feeder 
output of ~ 462,741. Increasing the Empty Tray 
buffer beyond 79 trays, has no impact on the 
P_Feeder output/shift. Since the optimization 
problem is to minimize Empty Tray Buffer and 
maximize P_Feeder output, the factor setting 
providing the solution of 79 trays and P_Feeder 
output of 462,741 is selected.   

VI. CONCLUSION 
As manufacturing capital equipment is expensive, 

it is necessary that the equipment once in operation 
is reliable and delivers to the business plan targets. 
Simulation along with an optimization system is an 
invaluable tool to confirm that an automated 
manufacturing line can produce to the required 
business objectives before and after it goes into 
operation. Implementing the actual changes to 
equipment to improve reliability can be both time 
consuming and expensive. Simulation in conjunction 

with optimization can be used to verify these 
improvements before the equipment is modified. 
These technologies form the basis of an overall 
digital manufacturing system that enables the 
optimization of a manufacturing line during the line 
design stage or when the line is put into operation. 
The use of this technology gives a deeper 
understanding of what can occur on the 
manufacturing line when it is running. A simulation 
model when combined with optimization engine, can 
be used to identify problems before they occur and 
aid in the selection of optimum parameters to run the 
line before it is fully designed or built. Digital model 
and optimization technologies supports other 
Industry 4.0 technologies such as predictive 
maintenance, OEE improvement, waste 
reduction, improve batch changeover times and to 
improve product quality [49]. It allows for efficient 
design and development, linking 3D models with 
simulation and emulation of equipment control code. 
In addition, having a digital model enables virtual 
line analysis, removing the physical restraints of 
expert engineers having to be on your location [50]. 
The author has demonstrated how the development 
of digital model can be validated and subsequently 
used as part of an optimization system which is then 
used for the study of equipment design, maintenance 
and reliability of an automated production line in the 
medical devices industry. 
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