

ACTA TECHNICA JAURINENSIS

Vol. 15, No. 3, pp. 174-187, 2022

10.14513/actatechjaur.00668

174

Simulation and Genetic Algorithms to Improve the Performance

of an Automated Manufacturing Line

Patrick Ruane1,2,*, Patrick Walsh2, John Cosgrove2

1 Johnson & Johnson Vision Care

Rivers, V94 N732 Limerick, Ireland
2 Technological University of the Shannon

Moylish, V94 EC5T, Limerick, Ireland

*e-mail: patrick.ruane@tus.ie

Submitted: 27/06/2022 Accepted: 29/08/2022 Published online: 31/08/2022

Abstract: Simulation in manufacturing is often applied in situations where conducting experiments on a real

system is very difficult often because of cost or the time to carry out the experiment is too long.

Optimization is the organized search for such designs and operating modes to find the best available

solution from a set of feasible solutions. It determines the set of actions or elements that must be

implemented to achieve an optimized manufacturing line. As a result of being able to concurrently

simulate and optimize equipment processes, the understanding of how the actual production system

will perform under varying conditions is achieved. The author has adopted an open-source

simulation tool (JaamSim) to develop a digital model of an automated tray loader manufacturing

system in the Johnson & Johnson Vision Care (JJVC) manufacturing facility. This paper

demonstrates how a digital model developed using JaamSim was integrated with an author

developed genetic algorithm optimization system and how both tools can be used for the

optimization and development of an automated manufacturing line in the medical devices industry.

Keywords: Digital Model; Digitalization; Genetic Algorithm; JaamSim; Optimization; Simulation

I. INTRODUCTION

Digitalization in manufacturing is the conversion

of information into digital format, the integration of

this digital data and technologies into the

manufacturing process and the use of those

technologies (eg: simulation, optimization) to

change a business model to provide new revenue and

value-producing opportunities. Digitalization may

be seen as the increased generation, analysis, and use

of data to improve the efficiency of the overall

manufacturing system. Digital manufacturing

technologies, such as simulation models, have been

considered an essential part of the continuous effort

towards improving the performance of automated

manufacturing equipment and processes.

Optimization seeks the maximum or minimum value

of an objective function corresponding to variables

defined in a feasible range or space. More generally,

optimization is the search of the set of variables that

produces the best values of one or more objective

functions while complying with multiple constraints.

The purpose of optimization has been described as

objective function, loss function, or cost function for

minimization and utility function or fitness function

for maximization [1] [2]. In this paper, it will be

referred to as objective function. Simulation

optimization (SO) refers to the optimization of an

objective function subject to constraints, both of

which can be evaluated through a stochastic

simulation/digital model [3]. The term simulation

optimization (SO) is an overall term for techniques

used to optimize stochastic simulations. Simulation

optimization involves the search for those specific

settings of the input parameters to a stochastic

simulation such that a target objective, which is a

function of the simulation output, is either

maximized or minimized [3]. Simulation techniques

allow for modelling and artificially reproducing

complex systems using stochastic distributions [4].

Complex simulation models may require long

development times and difficult verification and

validation processes and finally, simulation is not an

optimization tool on its own [5]. According to [5]

large Combinatorial Optimization Problems (COPs)

require the use of metaheuristics to conduct an

efficient search, where he proposes to combine

simulation with metaheuristics to form a new class

of optimization algorithms called ‘simheuristics’.

These algorithms integrate simulation (in any of its

variants) into a metaheuristic-driven framework to

solve complex stochastic COPs. A metaheuristic is a

high-level problem-independent algorithmic

framework that provides a set of guidelines or

https://dx.doi.org/10.14513/actatechjaur.00668

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

175

strategies to develop heuristic optimization

algorithms [6]. The JaamSim simulation package

used in this industrial case study currently has no

optimization analysis capability [7]. It is thus

proposed by the author to develop and integrate a

metaheuristic genetic algorithm optimization engine

with the JaamSim Tray Loader digital model thus

enabling the optimization of this industrial case

system.

An optimization problem involves searching for

an optimal solution(s) xi from a search space X,

which maximize (or minimize) an objective function

f(x), while satisfying a set of constraints [8]. The

search space X may be composed of discrete

variables (e.g., integer, categorical), continuous

variables or mixed variables [9]. Metaheuristics are

general algorithmic frameworks, often nature-

inspired, designed to solve complex optimization

problems [10]. Metaheuristics are a growing

research area over the last number of years.

Metaheuristics are emerging as successful

alternatives to more classical approaches also for

solving optimization problems that include in their

mathematical formulation uncertain, stochastic, and

dynamic information [10]. The Greek suffix ‘‘meta’’

used in the word metaheuristic means ‘‘beyond, in

an upper level’’. Thus, metaheuristics are algorithms

that combine heuristics (that are usually very

problem-specific) in a more general framework.

Metaheuristics are strategies that guide the search

process. The goal is to efficiently explore the search

space to find near–optimal solutions. Techniques

which constitute metaheuristic algorithms range

from simple local search procedures to complex

learning processes [11]. Optimization algorithms

attempt to improve solutions in each iteration,

seeking to converge toward the optimal solution.

After a number of iterations, the search reaches an

optimal region of the feasible decision space. The

best solution calculated by the algorithm at the time

of termination constitutes the optimal solutions of a

particular run. Fig. 1 portrays the process of

optimization by Metaheuristic and evolutionary

genetic algorithms.

Figure 1. Components of the Optimization System

using Simulation and Genetic Algorithms

II. GENETIC ALGORITHMS

1. Genetic Algorithm Overview

Among the meta-heuristic optimization methods,

genetic algorithms have gained importance because

of its capacity to find sets of optimal solutions [12].

A genetic algorithm (GA) is an 'intelligent'

probabilistic search algorithm which simulates the

process of evolution by taking a population of

solutions and applying genetic operators in each

reproduction [13]. Genetic Algorithms (GAs) are

adaptive heuristic search algorithms based on the

evolutionary ideas of natural selection and genetics.

They are a part of evolutionary computing, a rapidly

growing area of artificial intelligence. GAs are

inspired by Darwin’s theory of evolution – “Survival

of the fittest”. Simplicity of operation and power of

effect are two of the main attractions of the GA

approach [14]. Genetic algorithms are popular as

they are relatively easy to implement and are used in

several commercial software packages [3]. Genetic

algorithms (GA) have been used for the resolution of

a wide variety of combinatorial problems, due to the

demonstrated success in the results it can achieve

[15]. Despite the advantages of genetic algorithms,

several parameter inputs are required before using

this algorithm. They include waypoint, population

size, crossover rate, and mutation rate. The potential

GA solution to a problem is an individual which can

be represented by the set of parameters. These

parameters are just like a gene of a chromosome and

can be represented by the string of values in binary

form [16]. The fitness value is used to test the degree

of goodness of the chromosome for solving a

problem that is directly related to the objective value.

The operators employed in a GA include selection,

crossover, and mutation processes [16] [17].

The performance of the Genetic Algorithm is

dependent on these parameter settings [18]. The GA

method requires the algorithm to be initialized with

a set of randomly generated initial values, which is

known as initial population which represents a

significant difference with respect to mathematical

programming techniques. The initial population is

then evaluated to determine which of the individuals

have the best characteristics (i.e., the best values for

the objective functions), allowing them to pass to the

next generation (or iteration). There is a similarity

between GA and those that can be observed with the

natural evolution concepts. Once the population has

been evaluated, the best individuals combine their

genetic information between them, and a new

generation is obtained. Standard GAs begins with a

randomly generated population of possible solutions

(individuals). The individual’s fitness is calculated

and some of them are selected as parents according

to their fitness values. A new population (or

generation) of possible solutions (the children’s

population) is produced by applying the crossover

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

176

operator to the parent population and then applying

the mutation operator to their offspring. The fitness

value is recalculated for this new population. The

iterations involving the replacement of the original

generation (old individual) with a new generation

(children) is repeated until the termination criteria is

achieved. This whole process is shown in Fig. 2.

Figure 2. Genetic Algorithm Flowchart [19]

2. Elitism Strategy

A solution with a high fitness value could be

replaced by a weaker solution after a crossover or

mutation occurs. The process of maintaining good

solutions with high fitness after a certain generation

cannot be guaranteed. Hence an elitism strategy can

be applied in GA to maintain a certain number of the

fittest solutions for the next generation. When the

next-generation population is obtained after

crossover and mutation, these solutions that were

maintained by elitism will replace the weaker

solutions. The same number of the fittest solutions

will replace the weaker solutions and be retained and

utilized for the next generation [19] [20]. It has been

shown that results obtained by an algorithm which

uses elitism is better than the result obtained by an

algorithm which doesn’t use elitism [21], [22].

3. GA Parameters and Termination

Strategy

The size of the population of solutions (M), the

number of parents (R), the probability of crossover

(PC), the probability of mutation (PM), and the

termination criterion are the user defined parameters

of the GA. A good choice of the parameters is related

to the decision space of a particular problem, and in

general the optimal parameter setting for one

problem may not perform equally as well for other

problems. Consequently, determining a good

parameter setting often requires the execution of

many time-consuming experiments. A critical factor

in implementing a genetic algorithm is how to set the

values for the various parameters. [23] classifies

these efforts into two major forms:

1. Parameter tuning. It refers to finding good

values for the parameters before the algorithm is

run and then keeping these values fixed while

the algorithm runs. With this method, typically

one parameter is tuned at a time, which may

cause some suboptimal choices, since

parameters often interact in a complex way with

each other. Simultaneous tuning of more

parameters, however, leads to an enormous

number of experiments.

2. Parameter Control. This method forms an

alternative, as it amounts to starting a run with

initial parameter values which are then changed

during the run.

Selecting the appropriate GA parameters is

regularly done based on experience with specific

optimization problems. However, a reasonable

method for finding suitable values for the GA

parameters is to perform sensitivity analysis. This

entails choosing a combination of GA parameters

and running the GA several times. Other

combinations of parameters are chosen, and repeated

runs are made with each combination. A comparison

of the optimization results obtained may lead to the

best set of GA parameters. The author has used

Design of Experiments to select the optimum GA

parameters for the Tray Loader application.

A termination criterion is required to allow the

Genetic Algorithm to end its iterations. Selecting an

appropriate termination criterion has an important

role on the correct convergence of the algorithm. The

number of iterations, the amount of improvement of

the objective function between consecutive

iterations, and the run time are common termination

criteria for the GA.

4. NSGA-II (Non-dominated Sorting

Genetic Algorithm II)

 The non-dominated sorting algorithm (NSGA),

developed in 1994, was one of the first Multi

Objective Evolutionary Algorithms (MOEA) [24].

NSGA differs from the standard GA in the way that

the selection operator performs, with the crossover

and mutation operators remaining the same. The

population of solutions is ranked based on its

nondomination before selection takes place.

Improvements to NSGA were made to tackle issues

such as high computational complexity, lack of

elitism, need to specify sharing parameter and a

technique was added to embed constraints into the

optimization algorithm, leading to a new algorithm

known as NSGA-II being introduced [25].

According to [26] [27] one of the most widely used

MOEA’s that has been effective in finding the Pareto

optimal solutions is the elitist NSGA-II algorithm.

Both the diversity and the convergence abilities of

the NSGA-II algorithm have been demonstrated by

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

177

[28]. They have also shown the suitability of NSGA-

II in producing an acceptable number of optimized

design alternatives regarding the problem

complexity and in a reasonable timeframe. A

detailed review of NSGA-II optimization algorithm

in machining operations was presented by [29]. They

concluded that NSGA-II as part of Multi Objective

Optimization Problem (MOOP) is a popular and

reliable algorithm that can be used in optimizing the

process parameters of multiple machine

performances. Unlike the single objective

optimization technique, NSGA-II simultaneously

optimizes each objective without being dominated

by any other solution [29]. The problem of

controlling an air conditioning system using

evolutionary algorithms to increase energy-saving

while also considering user satisfaction was

investigated [30]. They concluded that the NSGA II

as an excellent algorithm for solving a multi

objective optimization problem. It has also been

shown that the multi-objective optimization

technique NSGA-II applied to a project was efficient

in searching for multiple solutions and was able to

find a pareto front after a few iterations during the

optimization process [31]. NSGA-II applies an elitist

strategy which improves the convergence of an

MOEA and avoids the loss of optimal solutions after

getting them [32]. It is proposed to use the Elitist

NSGA-II and develop a standalone multi objective

optimization engine that will run fully integrated

with the JaamSim Tray Loader digital model. The

workings of the NSGA-II will now be further

explained. The flowchart for NSGA-II is shown in

Fig. 3.

Figure 3. NSGA-II Algorithm Flowchart [31]

 In NSGA-II parents and offspring are combined,

followed by non-dominated sorting. The fitness of

all individuals is assessed and chosen to be parents

for the next generation. The NSGA-II Non-

dominated sorting and crowding distance sorting,

which is depicted in Fig 4 is then completed. Pt is

the parent generation and Qt the offspring that are

both merged into Rt. The objective is to obtain a

new generation Pt+1 of the same size as the parent

population Pt. Two parameters are estimated for

each individual: the domination count, which

provides the information of how many solutions

dominate the individual, and a list of the set of

solutions that are dominated by the individual.

This method splits up all solutions into different

fronts. As per Fig. 4, PF1-3 are the fronts that are

obtained by the sorting process.

Figure 4. NGSA-II Ranking Procedure [25]

All individuals are compared with each other.

The first front will comprise only solutions with a

domination count of 0. From there, the algorithm

continues going individual by individual through

all sets of solutions that have a domination count

of 0 to form the first front. The individuals from

this 1st front are removed from the list, and the

remaining individuals now compared to each other

with the 2nd front obtained by selecting

individuals with a new domination count of 0.

After this process, all the individuals that have a

domination count of zero, excluding the first front

solutions, will form the second front. The

procedure is continued until the last front is

obtained as can be seen in Fig. 5.

Figure 5. Solution Pareto fronts and

Crowding Distance Estimation

From Fig 5 all solutions in PF1 and PF2 are taken

forward to the new population Pt+1. Some solutions

from PF3 are taken forward to Pt+1, while the

remainder is rejected. The solutions that are taken

forward from PF3 is based on the crowding distance

calculation, with the lesser crowded distance

individual being chosen to form the total in

population Pt+1 [25]. The crowding distance is a

number that determines how closely other solutions

are surrounding an individual. Figure 5 shows the

calculation of the crowding distance of solution i.

The crowding distance is an estimate of the size of

the largest cuboid enclosing solution i without

including any other solution [30]. The nearest

neighbours are used to calculate the average distance

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

178

between the closest solutions of the same front. A

higher value of crowding distance gives a lesser

crowded region and vice versa [25].

III. DEVELOPMENT OF TRAY LOADER

DIGITAL MODEL

5. Overview of The Tray Loader Digital

Model

A digital model of an industrial system (Fig. 6)

known as a Tray Loading System was developed

using JaamSim software.

Figure 6. Automated Tray Loading System

Industrial Case

This system consists of individual product (p) that

arrives from an upstream line to a product feeder at

defined arrival times. These are then grouped into

multiples of 10. The group of products are then

loaded into empty plastic trays that can hold up to

660 parts. Once filled the plastic tray moves at a

defined cycle time to a tray stacker. The tray stacker

accumulates the filled trays into groups of 30. This

group of 30 trays then undergoes a batch process in

either Process station 1 or 2 under defined

conditions. Upon completion of this batch process,

the trays of product leave Process Station 1 or 2,

where a tray unstacking operation takes place. Each

individual tray of product undergoes a further

process step (Process Station 3), again under defined

conditions. Once a tray is finished at Process Station

3, the product is removed from the tray at the Tray

Unloading station and is then passed to the Star

Wheel grouping station, where the product is now

grouped into batches of 30. These groups are then

passed to Process Station 4 and 5 for the final

finishing process. The empty trays from the tray

unloading station, are returned to the empty tray

buffer and finally back to the tray loader operation,

to repeat the overall process. The digital model

developed, will simulate this whole operation,

considering the following 5 points:

1. Entities (units of Product) per arrival.

2. Service times for process stations, travel times

for conveyors

3. Probability distributions for reliability and

repair of stations.

4. Conditions for process stations to process and

pass product to the next station.

5. Queue size and location.

6. Verification of the Tray Loader Digital

Model

A detailed verification process was undertaken on

the Tray Loader digital model following the

Logical/mathematical verification, program/code

verification steps outlined by [33] and the detailed

knowledge of the author of the actual tray loading

system. All the Tray Loader Objects, Service Times,

Steps, Thresholds, Maintenance conditions and

Threshold condition logic were all verified and

confirmed to be correct to how the actual line

operates. A detailed verification checklist was

completed on the Tray Loader digital model. As part

of the digital model verification process it was

important to verify that the product flow into and out

of the various simulation objects (as seen from the

JaamSim GUI) are identical to what occurs on the

tray loader line. This verification process allowed

any additions or changes to the simulation logic to

be corrected, verified, and visualized immediately. It

was through the ongoing and iterative model

verification and the testing process during model

development, that a realistic model of the actual

dynamic interactions was developed and fine-tuned.

During this phase of model verification, the weak

points of the system were discovered and corrected.

It is extremely advantageous to find these early-stage

simulation bugs, thus allowing a well-tested and

robust system to be developed.

7. Validation of the Tray Loader Digital

Model

The approach taken for developing the Tray

Loader digital model followed the steps described by

[34]. Step 5 of this approach deals with confirming

that the programmed model is valid. The model is

run using the standard basic settings from the actual

tray loader system. The simulation model output data

for the system was compared with the comparable

output data collected from the actual system. This is

called results validation. If the results are consistent

with how the system should operate, then the

simulation model is said to have face validity.

Sensitivity analyses is performed on the

programmed model to see which factors have the

greatest impact on the performance measures and,

thus, must be modelled carefully [34]. According to

[35], validation is concerned with determining

whether the conceptual digital model (as opposed to

the computer program) is an accurate representation

of the system under study. [35] outlines the

following three (3) steps to validate a simulation

model.

1. Obtaining real-world data from the actual

system.

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

179

2. Tests for comparing simulated and real data

(namely graphical, Schruben-Turing or t tests).

3. Sensitivity analysis (using statistical design of

experiments with associated regression

analysis).

The above approach was used to validate the Tray

Loader digital model, see section 3 for more detail.

Actual Tray Loader system data was collected from

the historian database for all the relevant process

stations used in the digital model. The data collected

included input feed rate, yield, throughput and

uptime per minute for each process station. Excel

macros were then developed to calculate the

equipment reliability metrics namely: Mean Time

Between Failures (MTBF) and Mean Time to Repair

(MTTR) for each of the process stations using the

uptime/minute data. The Input feed rate, yield,

output data and the MTBF/MTTR for each process

station was analysed, outliers removed, and

distributions determined along with the distribution

parameters. Minitab is used to analyse all the data

obtained. Minitab is a statistical analysis software

that assists in the analysis of data collected from any

process and provides a simple, effective way to input

the data, manipulate that data and statistically

analyse it.

IV. DEVELOPMENT OF THE NSGA-II

OPTIMIZATION ENGINE

A closed loop digital model and optimization

engine is proposed by the author as shown in Fig. 7.

An NSGA-II optimization engine is integrated with

the Tray Loader JaamSim digital model and the

following four (4) elements being executed

automatically until an optimized solution is

obtained:

1. Digital Model inputs parameters updated.

2. Simulation runs executed and monitored

3. Digital Model outputs collected.

4. Optimization analysis completed and new

parameter settings recommended.

Figure 7. Closed Loop Optimization Engine

The overall optimization system developed by the

author allows the user to specify the objectives to be

optimized from an excel file. Table 1 shows an

example of two (2) objectives to be minimized along

with two (2) objectives to be maximized (station

throughputs). This file is used to configure the

optimization problem along with the associated

objectives to be either maximised or minimised.

Table 1. Optimization Objectives

Another excel file is set-up to store all the

entities/workstations names along with their

associated base parameter values, see Table 2 for a

sample of some configuration settings for the Tray

Loader Simulation model.

Table 2. Simulation Model and Optimization

Parameters

The settings in the Optim_Space column are used

by the NSGA-II optimization engine. As an

example, referring to Table 2, JaamSim is

configured with an entity generator called P_Feeder.

The base InterArrivalTime for this generator is

0.90sec. When performing an optimization analysis,

the InterArrivalTime for this entity can be changed

within a space of 0.90 sec ±10% in increments of

1%. Likewise, the Tray Loader JaamSim model uses

a resource called Empty_Tray_Stacker, with a base

setting of 90 units. The optimization space for this

parameter is 90 ± 15% in increments of 1%. The

user can select which parameters, the base setting for

that parameter and if required the optimization space

for that parameter to be used by NSGA-II.

Reviewing the optimization space for the 7 factors

in Table 2, there is in excess of 2.6 Billion

combinations of different factor settings that the

Tray Loader line can be operated to. It is impossible

to run all of those combinations using the Tray

Loader digital model, hence the need to use

optimization approaches to determine a particular

setting for each of the 7 factors that results in an

optimum solution to the required objective(s).

Python code was developed that integrates the excel

input configuration files with both the JaamSim Tray

Loader digital model and the NSGA-II optimization

engine. The overall structure and Python code that

was written to integrate the NSGA-II and the

JaamSim Tray Loader digital model to form an

optimization system followed a modular format.

This modular format followed the ten (10) rules and

two (2) best practices for code development

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

180

highlighted by [36]. The overall system architecture

is shown in Fig. 8. This architecture gives a high-

level overview of how the optimization system was

developed with the main optimization system being

controlled by the module called invoke_Simw (see

purple box in Fig. 8). The main function module

called invoke_simw then calls other blocks (red

boxes in Fig. 8) forming the main spine of the Tray

Loader Optimization system. All the function

modules are written using the python programming

language. The four (4) main blocks of the system

include:

1. Main controlling function module called

invoke_simw

2. Input Data Pre-processing function block that

calls several sub function modules.

3. Overall GA and JaamSim Optimization Loop

function block calling several sub function

modules.

4. Output data file post processing block calling

several sub function modules.

Figure 8. OPTIM-GA Program and Data Structure

Tray Loader digital model parameters are passed to

the ‘invoke_simw’ function. The invoke_simw

function (Fig. 8), then schedules the calling of all the

various functions and methods required to execute

all the tasks in the three (3) red boxes. When all input

data pre-processing is completed, the NSGA-II and

JaamSim Optimization loop (Fig. 8) is activated

where simulation runs are completed using the tray

loader digital model. Output results from each

simulation run is then analyzed by NSGA-II

optimization engine and any associated changes to

the digital model input parameters based on the

requirements of the objective function are then

made. This process is repeated until the termination

criteria is achieved thus producing an optimal

solution. The tray loader termination criteria is

reviewed in section 8 below.

Once NSGA-II optimization has terminated the

program returns to the calling function

‘invoke_simw’. At this point the function ‘Output

Data File Post Processing’ Fig. 8 is called. This

block of code prepares the results from the

optimization study for review and graphing. The data

is also saved to a csv file to allow the user to further

analyze the data with statistical packages (eg:

Minitab ©) to support any decisions in relation to

possible design changes to the tray loading system.

A significant number of Python libraries associated

with optimization have been developed recently,

however, only a few of them support optimization of

multiple objectives at a time [37]. As such, pymoo

(python multi-objective optimization) which is a

library of multi-objective optimization tools was

developed in Python [37]. There are several different

algorithm implementations in “pymoo” examples

include GA and NSGA-II to name a few. These

NSGA-II pymoo library of optimization routines

were used in the development of the overall Tray

Loader NSGA-II optimization system. A plug-in

library called pymoo, Ver 0.5.0 was then installed

into the Thonny IDE to enable multi objective

optimization in Python (Fig. 9).

Figure 9. Pymoo Library in the Thonny IDE

A list of the additional Python libraries installed

into the Thonny IDE are given in Table 3. These

libraries are required to allow the developed python

code for the Tray Loader optimization to run without

errors.

Table 3. Python Libraries installed into the Thonny

IDE

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

181

8. NSGA-II Termination Criteria for the Tray

Loader Optimization Problem

Whenever an optimization algorithm is executed,

it needs to be determined at each iteration whether

the optimization run shall be continued or not. Many

different ways exist of how to decide when an

optimization run should be terminated. Running the

algorithm not long enough can lead to unsatisfactory

results and running it too long might waste function

evaluations, time and thus computational resources.

Pymoo have developed several termination criterion

for both single and multi-objective optimization. The

Tray Loader termination criteria uses the standard

‘Termination’ function which was imported by

python from pymoo. Actual code is given below:

from pymoo.core.termination import

Termination

According to [38] the most interesting stopping

criterion is to use objective space change to decide

whether to terminate the algorithm. This termination

criteria uses a simple and efficient procedure to

determine whether to stop the optimization or not.

This termination procedure is called

‘MultiObjectiveSpaceToleranceTermination’, and is

imported from pymoo as given by the actual code

below:

from pymoo.util.termination.f_tol

import

MultiObjectiveSpaceToleranceTermin

ation

This termination procedure

‘MultiObjectiveSpaceToleranceTermination’ is

then configured with various termination

parameters and assigned to the ‘termination’

attribute with python code as given below:

NSGA-II Tray Loader termination

criteria

termination =

MultiObjectiveSpaceToleranceTermin

ation(tol=0.0025, n_last= min(30,

n_max_gen), nth_gen= min(5,

patience), n_max_gen= n_max_gen,

n_max_evals=None)

The five (5) termination parameters [38] above

are described as follows:

1. tol = This is the average threshold tolerance in

the objective space. If the value is below this

bound (0.25% from above), the algorithm is

terminated.

2. n_last = To make the termination criterion more

robust, this parameter specifies the

last n generations to review and then takes the

maximum from this number of generations.

3. nth_gen = Defines whenever

the termination criterion is calculated by

default, or every nth generation. In the example

above, nth_gen is the minimum of 5 or the

patience value.

4. n_max_gen = Furthermore, the number of

generations executed by the algorithm can be

used for termination. For some optimization

problems, the termination criterion might not be

reached, thus, an upper bound for generations

can be defined to stop in this case.

5. n_max_evals = Lastly, the number of

function evaluations can be used for

termination. In the example above, this is not

used as can be seen when this variable is set to

None.

9. NSGA-II parameter tuning for the Tray

Loader Application

The key to a successful implementation of Genetic

Algorithms primarily depends on the efficient

crossover and mutation search operators to guide the

system toward a global optimum [39]. The values of

GA parameters greatly determine whether the GA

will find a near-optimum solution and whether it will

find such a solution efficiently in a timely manner.

Choosing the right parameter values can be a time-

consuming task where the computer specifications

can play a significant factor in how long it takes to

obtain both the GA optimum parameters and

determining the optimum solution to the problem

itself [23]. According to [40], GAs are not easy to

use because they require parameter tunings in order

to achieve the desirable solutions. The task of tuning

GA parameters has been proven to be far from trivial

due to the complex interactions among the

parameters. In the research carried out by [41],

parameter setting for MOOP using evolutionary

algorithms (MOEAs) is crucial for finding the best

performance of the algorithm. These parameters are

very sensitive in driving the algorithms to the best

performance and finding the good results. Design of

experiments (DoE) methods offer practical

approaches to tune the parameters effectively [42]. It

has been shown that the internal parameters of

NSGA-II can be tuned using the Design of

Experiments (DoE) procedure to enhance the quality

of the results for the synthesis optimization of a four-

bar mechanism [43]. The six (6) operating

parameters of the NSGA-II algorithm which need to

be set for the Tray Loader optimization application

are as follows:

1. Population size.

2. # of Offspring.

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

182

3. Crossover Probability

4. Crossover Distribution Index

5. Mutation Probability

6. Mutation Distribution Index

These parameters affect the capability of the

algorithm to achieve the optimum objective results

and computing time to reach these results. According

to [44] population size can be decided by experience

and usually between 50 and 160. If the population

size is too small, then it can be difficult to get an

optimum solution, whereas, if it’s too large then the

convergence time can be long. A recommended

range of parameter settings is given in Table 4 to

achieve optimum GA performance [41], [42], [44].

Table 4. GA Parameter Settings

The mutation distribution index (ηm) and the

crossover distribution index (ηc) are typically set in

the range of 10 – 40 [45]. A large crossover

distribution index (ηc) gives a higher probability for

creating near parent solutions and a small crossover

distribution index (ηc) allows distant solutions to be

selected as children solutions [46]. The parameters

with the associated levels for each parameter that are

used in the NSGA-II algorithm are given in Table 5.

Table 5. NSGA-II Parameters and Levels

A ½ fractional DoE was chosen for tuning the Tray

Loader NSGA-II optimization parameters as the

resolution provided was sufficient to analyse the

data. A total of 33 runs is required for the experiment

(32 ½ fraction runs and 1 centre level run). Each

experiment was run for a maximum of 30

generations based on previous optimization

experiments carried out by the author during the

development of this optimization system. Increasing

the number of generations, significantly increases

the time required to run each experiment. The max

P_Feeder output and max Process4 output was

recorded across the total population for each of the

thirty (30) generations. Analysis of Variance

(ANOVA) and response optimization of the NSGA-

II parameters is completed using Minitab in order to

maximise both the P_Feeder and Process4 outputs.

The results are shown in Table 6.

Table 6. Tray Loader NSGA-II Parameter

Optimization

Based on this analysis, the Tray Loader NSGA-II

optimization system is configured with the

parameter values as shown in Table 7.

Table 7. Tray Loader NSGA-II Parameter Values

V. RESULTS FROM THE TRAY LOADER

DIGITAL MODEL AND NSGA-II

OPTIMIZATION ENGINE

All simulation/optimization runs were completed

using a HP ZBook Firefly 15 G7 2Z4F7UC laptop

running an Intel(R) Core(TM) i7-10810U CPU @

1.61 GHz processor and 64GB of RAM. The single

objective optimization run (Maximize P_Feeder

output) was executed 10 times as recommended by

[47] [48]. The results of the 10-run experiment is

given in Table 8.

Table 8. Simulation Model and Optimization

Parameters

As can be seen from Table 8, the P_Feeder

Mean, Max, Min and Standard Deviation is

calculated across the 50 generations for each run

using the NSGA-II optimization. The average

P_Feeder (max) across the 10 runs using NSGA-II

was 462,298 units. The overall P_Feeder maximum

output across the 10 runs using NSGA-II

optimization was 462,741 achieved on runs 3, 7 and

10. Run #1 was analysed in additional detail, as the

results of this particular run produced results that

were close to the overall average of the 10 runs

completed. Analyzing the data collected from Run

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

183

#1, the P_Feeder maximum, minimum, average and

standard deviation is calculated for each of the 50

generations and plotted using Minitab©. Fig. 10

shows how all the individual solutions within the

population of 100 solutions for each of the 50

generations are converging closer to the P_Feeder

maximum value of 462,391 which was achieved on

generation #22.

Figure 10. NSGA-II Optimization of P_Feeder

Output/Shift

The maximum P_Feeder output remained

unchanged for the remaining 28 generations of the

experiment. The standard deviation of the P_Feeder

output within the population of 100 solutions for

each generation is plotted and can be seen in Fig. 11.

Figure 11. NSGA-II optimization of P_Feeder

Standard Deviation

Fig. 11 shows that as the solutions are generated

for each generation, the spread is reducing indicating

that all of the solutions are progressively getting

closer to the optimum P_Feeder max value of

462,391 and the optimization procedure can be

terminated. It can be seen from Fig. 10 and 11 that

the NSGA-II algorithm has converged after

approximately 22 generations, at which point the

fitness value function (max P_Feeder Output) was

unchanged and the standard deviation of P_Feeder

output of all the solutions within each generation

decreasing slightly. To reduce the optimization

computation time, the maximum number of

generations could be reduced from 50 to approx. 30.

This value of 30 was selected (greater than 22), with

the aim of avoiding an early termination of the

algorithm before the max P_Feeder output was

obtained. The solution developed for run #7 (Table

8) with an overall P_Feeder max of 462,741 units

using the Tray Loader JaamSim digital model and

the NSGA-II optimization engine is shown in Table

9.

Table 9. Tray Loader Optimized Digital Model

Parameters

A two (2) objective optimization problem

(maximize the P_Feeder and minimize the Empty

Tray Buffer capacity) was designed and tested using

the tray loader digital model and NSGA-II

optimization engine. As with the single objective

optimization problem, the same Tray Loader

simulation model, model parameters and

optimization parameter space was used for this study

(See Table 2), with results given in Table 10.

Table 10. Two Objective Optimization problem of

Tray Loader System using NSGA-II Optimization

A pareto front is a set of nondominated solutions,

being chosen as optimal, if no objective can be

improved without sacrificing at least one other

objective [8]. The pareto front is an excellent

visualization to show the interaction of each

objective has on the other. A pareto front (Empty

Tray Buffer Capacity vs P_Feeder Output/Shift) was

generated using all the data gathered from the 2

objective SimWrapper Optimization runs. See Fig.

12 for the pareto front.

Figure 12. Tray Loader 2 Objective Optimization

Pareto Front.

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

184

As can be seen from Fig. 12, the optimum solution

is where the Empty Tray count (Buffer Capacity) is

approx. 79 trays, thus producing a stable P_Feeder

output of ~ 462,741. Increasing the Empty Tray

buffer beyond 79 trays, has no impact on the

P_Feeder output/shift. Since the optimization

problem is to minimize Empty Tray Buffer and

maximize P_Feeder output, the factor setting

providing the solution of 79 trays and P_Feeder

output of 462,741 is selected.

VI. CONCLUSION

As manufacturing capital equipment is expensive,

it is necessary that the equipment once in operation

is reliable and delivers to the business plan targets.

Simulation along with an optimization system is an

invaluable tool to confirm that an automated

manufacturing line can produce to the required

business objectives before and after it goes into

operation. Implementing the actual changes to

equipment to improve reliability can be both time

consuming and expensive. Simulation in conjunction

with optimization can be used to verify these

improvements before the equipment is modified.

These technologies form the basis of an overall

digital manufacturing system that enables the

optimization of a manufacturing line during the line

design stage or when the line is put into operation.

The use of this technology gives a deeper

understanding of what can occur on the

manufacturing line when it is running. A simulation

model when combined with optimization engine, can

be used to identify problems before they occur and

aid in the selection of optimum parameters to run the

line before it is fully designed or built. Digital model

and optimization technologies supports other

Industry 4.0 technologies such as predictive

maintenance, OEE improvement, waste

reduction, improve batch changeover times and to

improve product quality [49]. It allows for efficient

design and development, linking 3D models with

simulation and emulation of equipment control code.

In addition, having a digital model enables virtual

line analysis, removing the physical restraints of

expert engineers having to be on your location [50].

The author has demonstrated how the development

of digital model can be validated and subsequently

used as part of an optimization system which is then

used for the study of equipment design, maintenance

and reliability of an automated production line in the

medical devices industry.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to

Johnson & Johnson Vision Care and Technological

University of the Shannon for providing me with the

tools, time and support necessary to allow me to

pursue this very important research in the field of

simulation and optimization of advanced automated

manufacturing equipment.

AUTHOR CONTRIBUTIONS

Patrick Ruane: Conceptualization, development,

Experimentation, Analysis, Writing and Editing.

Patrick Walsh: Supervision & Review.

John Cosgrove: Supervision & Review.

DISCLOSURE STATEMENT

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

ORCID

Patrick Ruane http://orcid.org/0000-0002-6685-1663

REFERENCES

[1] W. Erwin Diewert, “The New Palgrave

Dictionary of Economics,” Palgrave

Macmillan UK, 27 April 2017. [Online].

https://link.springer.com/referenceworkentry/

10.1057/978-1-349-95121-5_659-2.

[2] S. Boyd and L. Vandenberghe, Convex

Optimization, vol. 7, Cambridge University

Press, 2009.

[3] S. Amaran, N. Sahinidis, B. Sharda and S.

Bury, “Simulation Optimization: A Review of

Algorithms and Applications,” Annals of

Operations Research, vol. 240, pp. 351-380,

2016.

https://doi.org/10.1007/s10479-015-2019-x

[4] R. Nance and R. Sargent, “Perspectives on the

Evolution of Simulation,” Operations

Research, vol. 50, no. 1, pp. 161-172, 2002.

https://doi.org/10.1287/opre.50.1.161.17790

[5] A. Juan, J. Faulin, S. Grasman, M. Rabe and

G. Figueira, “A review of Simheuristics:

Extending Metaheuristics to deal with

Stochastic Combinatorial Optimization

Problems,” Operations Research

Perspectives, vol. 2, pp. 62-72, 2015.

https://doi.org/10.1016/j.orp.2015.03.001

[6] K. Sörensen and F. Glover, “Metaheuristics,”

In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of

Operations Research and Management

Science. Springer, Boston, MA (2013) pp.

https://slcontrols.com/automation-of-the-batch-changeover-process-saving-the-time-between-batches-you-dont-have/
http://orcid.org/0000-0002-6685-1663
https://link.springer.com/referenceworkentry/10.1057/978-1-349-95121-5_659-2
https://link.springer.com/referenceworkentry/10.1057/978-1-349-95121-5_659-2
https://doi.org/10.1007/s10479-015-2019-x
https://doi.org/10.1287/opre.50.1.161.17790
https://doi.org/10.1016/j.orp.2015.03.001

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

185

960-970.

https://doi.org/10.1007/978-1-4419-1153-

7_1167

[7] King, D.H, and H.S Harrison. 2013. “Open

Source Simulation Software “JaamSim”.”

Proceedings of the 2013 Winter Simulation

Conference. Washington, DC, USA.

https://doi.org/10.1109/WSC.2013.6721593

[8] N. Gunantara and Q. Ai, “A review of multi-

objective optimization: Methods and its

applications.,” Cogent Engineering, vol. 5, no.

1, pp. 1 - 16, 2018.

https://doi.org/10.1080/23311916.2018.1502

242

[9] J. Pelamatti, L. Brevault, M. Balesdent, E.

Talbi and Y. Guerin, “Efficient global

optimization of constrained mixed variable

problems.,” Journal of Global Optimization,

vol. 73, no. 3, pp. 583-613, 2019.

https://doi.org/10.1007/s10898-018-0715-1

[10] L. Bianchi, M. Dorigo and L. Gambardella, “A

Survey on Metaheuristics for Stochastic

Combinatorial Optimization,” 2009.

https://doi.org/10.1007/s11047-008-9098-4

[11] C. Blum and A. Roli, “Metaheuristics in

Combinatorial Optimization Overview and

Conceptual Comparison,” ACM Computing

Surveys, vol. 35, no. 3, pp. 268-308, 2003.

https://doi.org/10.1145/937503.937505

[12] F. Castro, C. Gutierrez-Antonio, A. Briones-

Ramirez and J. Herandez, “Genetic

Algorithms: A tool for Optimizing Intensified

Distillation Sequences,” Genetic Algorithms:

Advances in Research and Applications, pp. 1-

17, 2017.

[13] P. Chu and J. Beasley, “A Genetic Algorithm

for the Generalised Assignment Problem,”

Computers & Operations Research, vol. 24,

no. 1, pp. 17-23, 1997.

https://doi.org/10.1016/S0305-

0548(96)00032-9

[14] D. Goldberg and J. Holland, “Genetic

Algorithms and Machine Learning,” Machine

Learning, vol. 3, no. 2-3, pp. 95-99, 1988.

https://doi.org/10.1023/A:1022602019183

[15] M. Dalle Mura and G. Dini, “A Multi-

Objective Software Tool for Manual

Assembly Line Balancing using a Genetic

Algorithm,” CIRP Journal of Manufacturing

Science and Technology, vol. 19, pp. 72-83,

2017.

http://dx.doi.org/10.1016/j.cirpj.2017.06.002

[16] R. Haupt and S. Haupt, Practical Genetic

Algorithms, New York, NY, USA: John

Wiley & Sons, 2004.

https://doi.org/10.1002/0471671746

[17] M. Hamza, H. Yap and I. A. Choudhury,

“Genetic Algorithm and Particle Swarm

Optimization Based Cascade Interval Type 2

Fuzzy PD Controller for Rotary Inverted

Pendulum System.,” Mathematical Problems

in Engineering, vol. 2015, pp. 1 - 15, 2015.

https://doi.org/10.1155/2015/695965

[18] P. Rajendran and K. Yit Yok, “The

Optimization of a Genetic Algorithm for

Unmanned Aerial Vehicle Path Planning,”

Genetic Algorithms: Advances in Research

and Applications, pp. 19 - 32, 2017.

[19] K. Kok, P. Rajendran, R. Rainis, I. Wan and

M. Wan Mohd, “Investigation on selection

schemes and population sizes for genetic

algorithm in unmanned aerial vehicle path

planning.,” International Symposium on

Technology Management & Emerging

Technologies (ISTMET), pp. 6 - 10, 2015.

https://doi.org/10.1109/ISTMET.2015.73589

90

[20] K. Yit Kok, P. Rajendran, R. R and W. Mohd

Muhiyuddin Wan Ibrahim, “Investigation on

Selection Schemes and Population Sizes for

Genetic Algorithm in Unmanned Aerial

Vehicle Path Planning,” in 2015 International

Symposium on Technology Management and

Emerging Technologies (ISTMET), Langkawi,

Malaysia, 2015.

https://doi.org/10.1109/ISTMET.2015.73589

90

[21] C. Grosan and M. Oltean, “The Role of

Elitism in Multiobjective Optimization with

Evolutionary Algorithms,” Acta Universitatis

Apulensis 5 (2003) pp. 83-90.

[22] G. Guariso and M. Sangiorgio, “Improving the

Performance of Multiobjective Genetic

Algorithms: An Elitism-Based Approach,”

Information, 11 (12) pp. 1 - 14, 2020.

https://doi.org/10.3390/info11120587

[23] A. Eiben, R. Hinterding and Z. Michalewicz,

“Parameter Control in Evolutionary

Algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 3, no. 2, pp.

124-141, 1999.

https://doi.org/10.1109/4235.771166

[24] N. Srinivas and K. Deb, “Muiltiobjective

Optimization Using Nondominated Sorting in

Genetic Algorithms,” Evolutionary

https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1109/WSC.2013.6721593
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1007/s10898-018-0715-1
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/S0305-0548(96)00032-9
https://doi.org/10.1016/S0305-0548(96)00032-9
https://doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1016/j.cirpj.2017.06.002
https://doi.org/10.1002/0471671746
https://doi.org/10.1155/2015/695965
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.3390/info11120587
https://doi.org/10.1109/4235.771166

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

186

Computation, p. 22 1– 248, 1994.

https://doi.org/10.1162/evco.1994.2.3.221

[25] K. Deb, A. Pratap, S. Agarwal and T.

Meyarivan, “A Fast and Elitist Multiobjective

Genetic Algorithm: NSGA-II,” IEEE

Transactions on Evolutionary Computation,

vol. 6, no. 2, pp. 182 - 197, 07 August 2002.

https://doi.org/10.1109/4235.996017

[26] T. Goel, R. Vaidyanathan, R. Haftka, W.

Shyy, N. Queipo and K. Tucker, “Response

Surface Approximation of Pareto Optimal

Front in Multi-Objective Optimization,”

Computer Methods in Applied Mechanics and

Engineering, vol. 196, no. 4, pp. 879 - 893,

2007.

https://doi.org/10.1016/j.cma.2006.07.010

[27] C. Leung and H. Lau, “Simulation-based

optimization for material handling systems in

manufacturing and distribution industries,”

Wireless Networks, p. 4839 – 4860, 2020.

https://doi.org/10.1007/s11276-018-1894-x

[28] N. Mahammed, M. B. S, O. A and M. Fahsi,

“Evolutionary Business Process Optimization

using a Multiple-Criteria Decision Analysis

method,” in International Conference on

Computer, Information and

Telecommunication Systems (CITS), 2018.

https://doi.org/10.1109/CITS.2018.8440166

[29] Y. Yusoff, M. Salihin Ngadiman and A. Mohd

Zain, “Overview of NSGA-II for Optimizing

Machining Process Parameters,” Procedia

Engineering 15, p. 3978 – 3983, 2011.

https://doi.org/10.1016/j.proeng.2011.08.745

30] A. Ruiz, S. Martínez, J. Rocha, J. Villanueva,

J. Menchaca, M. Berrones, M. Flores and A.

Pineda, “Assessing a Multi-Objective Genetic

Algorithm with a Simulated Environment for

Energy-Saving of Air Conditioning Systems

with User Preferences,” Symmetry 2021, vol.

13, no. 2, 20 Febuary 2021.

https://doi.org/10.3390/sym13020344

[31] Y. Chang, Z. Bouzarkouna and D.

Devegowda, “Multi Objective Optimization

for Rapid and Robust Optimal Oil Field

Development Under Geological Uncertainty,”

Computational Geosciences, vol. 19, p. 933 –

950, 2015.

https://doi.org/10.1007/s10596-015-9507-6

[32] H. Kumar and S. Yadav, “Hybrid NSGA-II

Based Decision Making in Fuzzy Multi

Objective Reliability Optimization Problem,”

SN Applied Sciences, 2019.

https://doi.org/10.1007/s42452-019-1512-2

[33] P. K. Davis, “Generalizing Concepts and

Methods of Verification, Validation and

Accreditation (VV&A) for Military

Simulations,” National Defense Research

Institute, pp. 5-6, 1992.

[34] A. M. Law, "How to Build Valid and Credible

Simulation Models," 2019 Winter Simulation

Conference (WSC), 2019, pp. 1402-1414.

https://doi.org/10.1109/WSC40007.2019.900

4789

[35] J. P. Kleijnen, “Theory and Methodology of

Verification and validation of simulation

models,” European Journal of Operational

Research, vol. 82, pp. 145-162, 1995.

[36] H. Hunter-Zinck, A. de Siqueira, V. Vásquez,

R. Barnes and C. Martinez, “Ten Simple Rules

on Writing Clean and Reliable Open-Source

Scientific Software,” PLOS Computational

Biology, pp. 1 - 9, 2021.

https://doi.org/10.1371/journal.pcbi.1009481

[37] J. Blank and K. Deb, “Pymoo - Multi-

objective Optimization in Python,” IEEE

Access, vol. 8, pp. 89497 - 89509, 2020.

https://doi.org/10.1109/ACCESS.2020.29905

67

[38] Blank, J, and K Deb. 2020. “A Running

Performance Metric and Termination

Criterion for Evaluating Multi and Many

Objective Optimization Algorithms.” 2020

IEEE Congress on Evolutionary Computation

(CEC) pp. 1 - 9.

https://doi.org/10.1109/CEC48606.2020.9185

546

[39] Lim, S.M, A.B Sultan, N Sulaiman, A

Mustapha, and K.Y Leong. 2017. “Crossover

and Mutation Operators of Genetic

Algorithms.” International Journal of

Machine Learning and Computing 7 (1).

https://doi.org/10.18178/ijmlc.2017.7.1.611

40] Duc Tran, Khoa. 2005. “Elitist non-dominated

sorting GA-II (NSGA-II) as a parameter-less

multi-objective genetic algorithm.”

Proceedings. IEEE Southeast Conference. Ft.

Lauderdale, FL, USA. pp. 359 - 367.

https://doi.org/10.1109/SECON.2005.142327

3

[41] Samsuri, S, R Ahmad, M Zakaria, and M Zain.

2019. “Parameter Tuning for Comparing

Multi-Objective Evolutionary Algorithms

Applied to System Identification Problems.”

Proc. of the 2019 IEEE 6th International

Conference on Smart Instrumentation,

Measurement and Applications. Kuala

https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.cma.2006.07.010
https://doi.org/10.1007/s11276-018-1894-x
https://doi.org/10.1109/CITS.2018.8440166
https://doi.org/10.1016/j.proeng.2011.08.745
https://doi.org/10.3390/sym13020344
https://doi.org/10.1007/s10596-015-9507-6
https://doi.org/10.1007/s42452-019-1512-2
https://doi.org/10.1109/WSC40007.2019.9004789
https://doi.org/10.1109/WSC40007.2019.9004789
https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/CEC48606.2020.9185546
https://doi.org/10.1109/CEC48606.2020.9185546
https://doi.org/10.18178/ijmlc.2017.7.1.611
https://doi.org/10.1109/SECON.2005.1423273
https://doi.org/10.1109/SECON.2005.1423273

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

187

Lumpur, Malaysia.

https://doi.org/10.1109/ICSIMA47653.2019.

9057333

[42] Arin, A, G Rabadi, and R Unal. 2011.

“Comparative studies on design of

experiments for tuning parameters in a genetic

algorithm for a scheduling problem.”

International Journal of Experimental Design

and Process Optimisation 102-124.

https://doi.org/10.1504/IJEDPO.2011.040262

[43] Badduri, J, R.A Srivatsan, Kumar G.S, and S

Bandyopadhyay. 2012. “Coupler-Curve

Synthesis of a Planar Four-Bar Mechanism

Using NSGA-II.” Asia-Pacific Conference on

Simulated Evolution and Learning. 460-469.

https://doi.org/10.1007/978-3-642-34859-

4_46

[44] Cao, Z, and Z Zhang. 2010. “Parameter

Settings of Genetic Algorithm Based on

Multi-Factor Analysis of Variance.” 2010

Fourth International Conference on Genetic

and Evolutionary Computing. Shenzhen,

China. 305 - 307.

https://doi.org/10.1109/ICGEC.2010.82

[45] Deb, K. 2011. “Multi-Objective Optimization

Using Evolutionary Algorithms.” Department

of Mechanical Engineering, Indian Institute of

Technology Kanpur, Kanpur, PIN 208016,

India, 1 - 24. Accessed January 10, 2022.

https://www.egr.msu.edu/~kdeb/papers/k201

1003.pdf

[46] Deb, K, and H Beyer. 2001. “Self Adaptive

Genetic Algorithms with Simulated Binary

Crossover.” Evolutionary Computation 9 (2):

197 - 221.

https://doi.org/10.1162/10636560175019040

6

[47] M. Jeong, J. H. Choi and B. H. Koh,

“Performance evaluation of modified genetic

and swarm‐based optimization algorithms,”

Structural Control and Health Monitoring, p.

878–889, 2013.

https://doi.org/10.1002/stc.507

[48] J. Shen and Y. Zhu, “Chance-Constrained

Model for Uncertain Job Shop Scheduling

Problem,” Soft Computing - A Fusion of

Foundations, Methodologies & Applications.,

vol. 20, no. 6, pp. 2383-2391, June 2016.

https://doi.org/10.1007/s00500-015-1647-z

[49] G. Shao, S. Jain, C. Laroque, L. H. Lee, P.

Lendermann and O. Rose, "Digital Twin for

Smart Manufacturing: The Simulation

Aspect," 2019 Winter Simulation Conference

(WSC), 2019, pp. 2085-2098.

https://doi.org/10.1109/WSC40007.2019.900

4659

[50] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y.

Wei and L. Wang, “Enabling Technologies

and Tools for Digital Twin,” Journal of

Manufacturing Systems, vol. 58, pp. 3-21,

2021.

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution NonCommercial (CC BY-NC 4.0) license.

https://doi.org/10.1109/ICSIMA47653.2019.9057333
https://doi.org/10.1109/ICSIMA47653.2019.9057333
https://doi.org/10.1504/IJEDPO.2011.040262
https://doi.org/10.1007/978-3-642-34859-4_46
https://doi.org/10.1007/978-3-642-34859-4_46
https://doi.org/10.1109/ICGEC.2010.82
https://www.egr.msu.edu/~kdeb/papers/k2011003.pdf
https://www.egr.msu.edu/~kdeb/papers/k2011003.pdf
https://doi.org/10.1162/106365601750190406
https://doi.org/10.1162/106365601750190406
https://doi.org/10.1002/stc.507
https://doi.org/10.1007/s00500-015-1647-z
https://doi.org/10.1109/WSC40007.2019.9004659
https://doi.org/10.1109/WSC40007.2019.9004659
https://creativecommons.org/licenses/by-nc/4.0/

