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Abstract:  Simulation in manufacturing is often applied in situations where conducting experiments on a real 

system is very difficult often because of cost or the time to carry out the experiment is too long. 

Optimization is the organized search for such designs and operating modes to find the best available 

solution from a set of feasible solutions. It determines the set of actions or elements that must be 

implemented to achieve an optimized manufacturing line. As a result of being able to concurrently 

simulate and optimize equipment processes, the understanding of how the actual production system 

will perform under varying conditions is achieved. The author has adopted an open-source 

simulation tool (JaamSim) to develop a digital model of an automated tray loader manufacturing 

system in the Johnson & Johnson Vision Care (JJVC) manufacturing facility. This paper 

demonstrates how a digital model developed using JaamSim was integrated with an author 

developed genetic algorithm optimization system and how both tools can be used for the 

optimization and development of an automated manufacturing line in the medical devices industry.  
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I. INTRODUCTION 

Digitalization in manufacturing is the conversion 

of information into digital format, the integration of 

this digital data and technologies into the 

manufacturing process and the use of those 

technologies (eg: simulation, optimization) to 

change a business model to provide new revenue and 

value-producing opportunities. Digitalization may 

be seen as the increased generation, analysis, and use 

of data to improve the efficiency of the overall 

manufacturing system. Digital manufacturing 

technologies, such as simulation models, have been 

considered an essential part of the continuous effort 

towards improving the performance of automated 

manufacturing equipment and processes. 

Optimization seeks the maximum or minimum value 

of an objective function corresponding to variables 

defined in a feasible range or space. More generally, 

optimization is the search of the set of variables that 

produces the best values of one or more objective 

functions while complying with multiple constraints. 

The purpose of optimization has been described as 

objective function, loss function, or cost function for 

minimization and utility function or fitness function 

for maximization [1] [2]. In this paper, it will be 

referred to as objective function. Simulation 

optimization (SO) refers to the optimization of an 

objective function subject to constraints, both of 

which can be evaluated through a stochastic 

simulation/digital model [3]. The term simulation 

optimization (SO) is an overall term for techniques 

used to optimize stochastic simulations. Simulation 

optimization involves the search for those specific 

settings of the input parameters to a stochastic 

simulation such that a target objective, which is a 

function of the simulation output, is either 

maximized or minimized [3]. Simulation techniques 

allow for modelling and artificially reproducing 

complex systems using stochastic distributions [4]. 

Complex simulation models may require long 

development times and difficult verification and 

validation processes and finally, simulation is not an 

optimization tool on its own [5]. According to [5] 

large Combinatorial Optimization Problems (COPs) 

require the use of metaheuristics to conduct an 

efficient search, where he proposes to combine 

simulation with metaheuristics to form a new class 

of optimization algorithms called ‘simheuristics’. 

These algorithms integrate simulation (in any of its 

variants) into a metaheuristic-driven framework to 

solve complex stochastic COPs. A metaheuristic is a 

high-level problem-independent algorithmic 

framework that provides a set of guidelines or 

https://dx.doi.org/10.14513/actatechjaur.00668


P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022 

175 

strategies to develop heuristic optimization 

algorithms [6]. The JaamSim simulation package 

used in this industrial case study currently has no 

optimization analysis capability [7]. It is thus 

proposed by the author to develop and integrate a 

metaheuristic genetic algorithm optimization engine 

with the JaamSim Tray Loader digital model thus 

enabling the optimization of this industrial case 

system.  

An optimization problem involves searching for 

an optimal solution(s) xi from a search space X, 

which maximize (or minimize) an objective function 

f(x), while satisfying a set of constraints [8]. The 

search space X may be composed of discrete 

variables (e.g., integer, categorical), continuous 

variables or mixed variables [9]. Metaheuristics are 

general algorithmic frameworks, often nature-

inspired, designed to solve complex optimization 

problems [10]. Metaheuristics are a growing 

research area over the last number of years. 

Metaheuristics are emerging as successful 

alternatives to more classical approaches also for 

solving optimization problems that include in their 

mathematical formulation uncertain, stochastic, and 

dynamic information [10]. The Greek suffix ‘‘meta’’ 

used in the word metaheuristic means ‘‘beyond, in 

an upper level’’. Thus, metaheuristics are algorithms 

that combine heuristics (that are usually very 

problem-specific) in a more general framework. 

Metaheuristics are strategies that guide the search 

process. The goal is to efficiently explore the search 

space to find near–optimal solutions. Techniques 

which constitute metaheuristic algorithms range 

from simple local search procedures to complex 

learning processes [11]. Optimization algorithms 

attempt to improve solutions in each iteration, 

seeking to converge toward the optimal solution. 

After a number of iterations, the search reaches an 

optimal region of the feasible decision space. The 

best solution calculated by the algorithm at the time 

of termination constitutes the optimal solutions of a 

particular run. Fig. 1 portrays the process of 

optimization by Metaheuristic and evolutionary 

genetic algorithms. 

 

Figure 1. Components of the Optimization System 

using Simulation and Genetic Algorithms 

 

II. GENETIC ALGORITHMS 

1. Genetic Algorithm Overview 

Among the meta-heuristic optimization methods, 

genetic algorithms have gained importance because 

of its capacity to find sets of optimal solutions [12]. 

A genetic algorithm (GA) is an 'intelligent' 

probabilistic search algorithm which simulates the 

process of evolution by taking a population of 

solutions and applying genetic operators in each 

reproduction [13]. Genetic Algorithms (GAs) are 

adaptive heuristic search algorithms based on the 

evolutionary ideas of natural selection and genetics. 

They are a part of evolutionary computing, a rapidly 

growing area of artificial intelligence. GAs are 

inspired by Darwin’s theory of evolution – “Survival 

of the fittest”. Simplicity of operation and power of 

effect are two of the main attractions of the GA 

approach [14]. Genetic algorithms are popular as 

they are relatively easy to implement and are used in 

several commercial software packages [3]. Genetic 

algorithms (GA) have been used for the resolution of 

a wide variety of combinatorial problems, due to the 

demonstrated success in the results it can achieve 

[15]. Despite the advantages of genetic algorithms, 

several parameter inputs are required before using 

this algorithm. They include waypoint, population 

size, crossover rate, and mutation rate. The potential 

GA solution to a problem is an individual which can 

be represented by the set of parameters. These 

parameters are just like a gene of a chromosome and 

can be represented by the string of values in binary 

form [16]. The fitness value is used to test the degree 

of goodness of the chromosome for solving a 

problem that is directly related to the objective value. 

The operators employed in a GA include selection, 

crossover, and mutation processes [16] [17]. 

The performance of the Genetic Algorithm is 

dependent on these parameter settings [18]. The GA 

method requires the algorithm to be initialized with 

a set of randomly generated initial values, which is 

known as initial population which represents a 

significant difference with respect to mathematical 

programming techniques. The initial population is 

then evaluated to determine which of the individuals 

have the best characteristics (i.e., the best values for 

the objective functions), allowing them to pass to the 

next generation (or iteration). There is a similarity 

between GA and those that can be observed with the 

natural evolution concepts. Once the population has 

been evaluated, the best individuals combine their 

genetic information between them, and a new 

generation is obtained. Standard GAs begins with a 

randomly generated population of possible solutions 

(individuals). The individual’s fitness is calculated 

and some of them are selected as parents according 

to their fitness values. A new population (or 

generation) of possible solutions (the children’s 

population) is produced by applying the crossover 
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operator to the parent population and then applying 

the mutation operator to their offspring. The fitness 

value is recalculated for this new population. The 

iterations involving the replacement of the original 

generation (old individual) with a new generation 

(children) is repeated until the termination criteria is 

achieved. This whole process is shown in Fig. 2. 

 

Figure 2. Genetic Algorithm Flowchart [19] 

2. Elitism Strategy 

A solution with a high fitness value could be 

replaced by a weaker solution after a crossover or 

mutation occurs. The process of maintaining good 

solutions with high fitness after a certain generation 

cannot be guaranteed. Hence an elitism strategy can 

be applied in GA to maintain a certain number of the 

fittest solutions for the next generation. When the 

next-generation population is obtained after 

crossover and mutation, these solutions that were 

maintained by elitism will replace the weaker 

solutions. The same number of the fittest solutions 

will replace the weaker solutions and be retained and 

utilized for the next generation [19] [20]. It has been  

shown that results obtained by an algorithm which 

uses elitism is better than the result obtained by an 

algorithm which doesn’t use elitism [21], [22].  

3. GA Parameters and Termination 

Strategy 

The size of the population of solutions (M), the 

number of parents (R), the probability of crossover 

(PC), the probability of mutation (PM), and the 

termination criterion are the user defined parameters 

of the GA. A good choice of the parameters is related 

to the decision space of a particular problem, and in 

general the optimal parameter setting for one 

problem may not perform equally as well for other 

problems. Consequently, determining a good 

parameter setting often requires the execution of 

many time-consuming experiments. A critical factor 

in implementing a genetic algorithm is how to set the 

values for the various parameters. [23] classifies 

these efforts into two major forms:  

1. Parameter tuning. It refers to finding good 

values for the parameters before the algorithm is 

run and then keeping these values fixed while 

the algorithm runs. With this method, typically 

one parameter is tuned at a time, which may 

cause some suboptimal choices, since 

parameters often interact in a complex way with 

each other. Simultaneous tuning of more 

parameters, however, leads to an enormous 

number of experiments.  

2. Parameter Control. This method forms an 

alternative, as it amounts to starting a run with 

initial parameter values which are then changed 

during the run. 

Selecting the appropriate GA parameters is 

regularly done based on experience with specific 

optimization problems. However, a reasonable 

method for finding suitable values for the GA 

parameters is to perform sensitivity analysis. This 

entails choosing a combination of GA parameters 

and running the GA several times. Other 

combinations of parameters are chosen, and repeated 

runs are made with each combination. A comparison 

of the optimization results obtained may lead to the 

best set of GA parameters. The author has used 

Design of Experiments to select the optimum GA 

parameters for the Tray Loader application. 

A termination criterion is required to allow the 

Genetic Algorithm to end its iterations. Selecting an 

appropriate termination criterion has an important 

role on the correct convergence of the algorithm. The 

number of iterations, the amount of improvement of 

the objective function between consecutive 

iterations, and the run time are common termination 

criteria for the GA.  

4. NSGA-II (Non-dominated Sorting 

Genetic Algorithm II) 

  The non-dominated sorting algorithm (NSGA), 

developed in 1994, was one of the first Multi 

Objective Evolutionary Algorithms (MOEA) [24]. 

NSGA differs from the standard GA in the way that 

the selection operator performs, with the crossover 

and mutation operators remaining the same. The 

population of solutions is ranked based on its 

nondomination before selection takes place.   

Improvements to NSGA were made to tackle issues 

such as high computational complexity, lack of 

elitism, need to specify sharing parameter and a 

technique was added to embed constraints into the 

optimization algorithm, leading to a new algorithm 

known as NSGA-II being introduced [25]. 

According to [26] [27] one of the most widely used 

MOEA’s that has been effective in finding the Pareto 

optimal solutions is the elitist NSGA-II algorithm. 

Both the diversity and the convergence abilities of 

the NSGA-II algorithm have been demonstrated by 
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[28]. They have also shown the suitability of NSGA-

II in producing an acceptable number of optimized 

design alternatives regarding the problem 

complexity and in a reasonable timeframe. A 

detailed review of NSGA-II optimization algorithm 

in machining operations was presented by [29]. They 

concluded that NSGA-II as part of Multi Objective 

Optimization Problem (MOOP) is a popular and 

reliable algorithm that can be used in optimizing the 

process parameters of multiple machine 

performances. Unlike the single objective 

optimization technique, NSGA-II simultaneously 

optimizes each objective without being dominated 

by any other solution [29]. The problem of 

controlling an air conditioning system using 

evolutionary algorithms to increase energy-saving 

while also considering user satisfaction was 

investigated [30]. They concluded that the NSGA II 

as an excellent algorithm for solving a multi 

objective optimization problem. It has also been 

shown that the multi-objective optimization 

technique NSGA-II applied to a project was efficient 

in searching for multiple solutions and was able to 

find a pareto front after a few iterations during the 

optimization process [31]. NSGA-II applies an elitist 

strategy which improves the convergence of an 

MOEA and avoids the loss of optimal solutions after 

getting them [32]. It is proposed to use the Elitist 

NSGA-II and develop a standalone multi objective 

optimization engine that will run fully integrated 

with the JaamSim Tray Loader digital model. The 

workings of the NSGA-II will now be further 

explained. The flowchart for NSGA-II is shown in 

Fig. 3. 

 

Figure 3. NSGA-II Algorithm Flowchart [31] 

 

  In NSGA-II parents and offspring are combined, 

followed by non-dominated sorting. The fitness of 

all individuals is assessed and chosen to be parents 

for the next generation. The NSGA-II Non-

dominated sorting and crowding distance sorting, 

which is depicted in Fig 4 is then completed. Pt is 

the parent generation and Qt the offspring that are 

both merged into Rt. The objective is to obtain a 

new generation Pt+1 of the same size as the parent 

population Pt. Two parameters are estimated for 

each individual: the domination count, which 

provides the information of how many solutions 

dominate the individual, and a list of the set of 

solutions that are dominated by the individual. 

This method splits up all solutions into different 

fronts. As per Fig. 4, PF1-3 are the fronts that are 

obtained by the sorting process.  

Figure 4. NGSA-II Ranking Procedure [25] 

All individuals are compared with each other. 

The first front will comprise only solutions with a 

domination count of 0. From there, the algorithm 

continues going individual by individual through 

all sets of solutions that have a domination count 

of 0 to form the first front. The individuals from 

this 1st front are removed from the list, and the 

remaining individuals now compared to each other 

with the 2nd front obtained by selecting 

individuals with a new domination count of 0. 

After this process, all the individuals that have a 

domination count of zero, excluding the first front 

solutions, will form the second front. The 

procedure is continued until the last front is 

obtained as can be seen in Fig. 5. 

Figure 5. Solution Pareto fronts and 

Crowding Distance Estimation 

From Fig 5 all solutions in PF1 and PF2 are taken 

forward to the new population Pt+1. Some solutions 

from PF3 are taken forward to Pt+1, while the 

remainder is rejected. The solutions that are taken 

forward from PF3 is based on the crowding distance 

calculation, with the lesser crowded distance 

individual being chosen to form the total in 

population Pt+1 [25]. The crowding distance is a 

number that determines how closely other solutions 

are surrounding an individual. Figure 5 shows the 

calculation of the crowding distance of solution i. 

The crowding distance is an estimate of the size of 

the largest cuboid enclosing solution i without 

including any other solution [30]. The nearest 

neighbours are used to calculate the average distance 
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between the closest solutions of the same front. A 

higher value of crowding distance gives a lesser 

crowded region and vice versa [25]. 

III. DEVELOPMENT OF TRAY LOADER 

DIGITAL MODEL 

5. Overview of The Tray Loader Digital 

Model  

A digital model of an industrial system (Fig. 6) 

known as a Tray Loading System was developed 

using JaamSim software. 

 

 

Figure 6. Automated Tray Loading System 

Industrial Case  

This system consists of individual product (p) that 

arrives from an upstream line to a product feeder at 

defined arrival times. These are then grouped into 

multiples of 10. The group of products are then 

loaded into empty plastic trays that can hold up to 

660 parts. Once filled the plastic tray moves at a 

defined cycle time to a tray stacker. The tray stacker 

accumulates the filled trays into groups of 30. This 

group of 30 trays then undergoes a batch process in 

either Process station 1 or 2 under defined 

conditions. Upon completion of this batch process, 

the trays of product leave Process Station 1 or 2, 

where a tray unstacking operation takes place. Each 

individual tray of product undergoes a further 

process step (Process Station 3), again under defined 

conditions. Once a tray is finished at Process Station 

3, the product is removed from the tray at the Tray 

Unloading station and is then passed to the Star 

Wheel grouping station, where the product is now 

grouped into batches of 30. These groups are then 

passed to Process Station 4 and 5 for the final 

finishing process. The empty trays from the tray 

unloading station, are returned to the empty tray 

buffer and finally back to the tray loader operation, 

to repeat the overall process. The digital model 

developed, will simulate this whole operation, 

considering the following 5 points: 

1. Entities (units of Product) per arrival. 

2. Service times for process stations, travel times   

for conveyors 

3. Probability distributions for reliability and 

repair of stations. 

4. Conditions for process stations to process and 

pass product to the next station. 

5. Queue size and location. 

6. Verification of the Tray Loader Digital 

Model 

A detailed verification process was undertaken on 

the Tray Loader digital model following the 

Logical/mathematical verification, program/code 

verification steps outlined by [33] and the detailed 

knowledge of the author of the actual tray loading 

system. All the Tray Loader Objects, Service Times, 

Steps, Thresholds, Maintenance conditions and 

Threshold condition logic were all verified and 

confirmed to be correct to how the actual line 

operates. A detailed verification checklist was 

completed on the Tray Loader digital model. As part 

of the digital model verification process it was 

important to verify that the product flow into and out 

of the various simulation objects (as seen from the 

JaamSim GUI) are identical to what occurs on the 

tray loader line. This verification process allowed 

any additions or changes to the simulation logic to 

be corrected, verified, and visualized immediately. It 

was through the ongoing and iterative model 

verification and the testing process during model 

development, that a realistic model of the actual 

dynamic interactions was developed and fine-tuned. 

During this phase of model verification, the weak 

points of the system were discovered and corrected. 

It is extremely advantageous to find these early-stage 

simulation bugs, thus allowing a well-tested and 

robust system to be developed. 

7. Validation of the Tray Loader Digital 

Model  

The approach taken for developing the Tray 

Loader digital model followed the steps described by 

[34]. Step 5 of this approach deals with confirming 

that the programmed model is valid. The model is 

run using the standard basic settings from the actual 

tray loader system. The simulation model output data 

for the system was compared with the comparable 

output data collected from the actual system. This is 

called results validation. If the results are consistent 

with how the system should operate, then the 

simulation model is said to have face validity. 

Sensitivity analyses is performed on the 

programmed model to see which factors have the 

greatest impact on the performance measures and, 

thus, must be modelled carefully [34]. According to 

[35], validation is concerned with determining 

whether the conceptual digital model (as opposed to 

the computer program) is an accurate representation 

of the system under study. [35] outlines the 

following three (3) steps to validate a simulation 

model.  

1. Obtaining real-world data from the actual 

system.  
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2. Tests for comparing simulated and real data 

(namely graphical, Schruben-Turing or t tests). 

3. Sensitivity analysis (using statistical design of 

experiments with associated regression 

analysis). 

The above approach was used to validate the Tray 

Loader digital model, see section 3 for more detail. 

Actual Tray Loader system data was collected from 

the historian database for all the relevant process 

stations used in the digital model. The data collected 

included input feed rate, yield, throughput and 

uptime per minute for each process station. Excel 

macros were then developed to calculate the 

equipment reliability metrics namely: Mean Time 

Between Failures (MTBF) and Mean Time to Repair 

(MTTR) for each of the process stations using the 

uptime/minute data. The Input feed rate, yield, 

output data and the MTBF/MTTR for each process 

station was analysed, outliers removed, and 

distributions determined along with the distribution 

parameters. Minitab is used to analyse all the data 

obtained. Minitab is a statistical analysis software 

that assists in the analysis of data collected from any 

process and provides a simple, effective way to input 

the data, manipulate that data and statistically 

analyse it. 

IV. DEVELOPMENT OF THE NSGA-II 

OPTIMIZATION ENGINE 

A closed loop digital model and optimization 

engine is proposed by the author as shown in Fig. 7. 

An NSGA-II optimization engine is integrated with 

the Tray Loader JaamSim digital model and the 

following four (4) elements being executed 

automatically until an optimized solution is 

obtained:   

1. Digital Model inputs parameters updated.  

2. Simulation runs executed and monitored  

3. Digital Model outputs collected. 

4. Optimization analysis completed and new 

parameter settings recommended. 

 

 

Figure 7. Closed Loop Optimization Engine  

The overall optimization system developed by the 

author allows the user to specify the objectives to be 

optimized from an excel file. Table 1 shows an 

example of two (2) objectives to be minimized along 

with two (2) objectives to be maximized (station 

throughputs). This file is used to configure the 

optimization problem along with the associated 

objectives to be either maximised or minimised. 
 

Table 1. Optimization Objectives 

 

 

 

 

 

Another excel file is set-up to store all the 

entities/workstations names along with their 

associated base parameter values, see Table 2 for a 

sample of some configuration settings for the Tray 

Loader Simulation model. 
 

Table 2. Simulation Model and Optimization 

Parameters 

The settings in the Optim_Space column are used 

by the NSGA-II optimization engine. As an 

example, referring to Table 2, JaamSim is 

configured with an entity generator called P_Feeder. 

The base InterArrivalTime for this generator is 

0.90sec. When performing an optimization analysis, 

the InterArrivalTime for this entity can be changed 

within a space of 0.90 sec ±10% in increments of 

1%. Likewise, the Tray Loader JaamSim model uses 

a resource called Empty_Tray_Stacker, with a base 

setting of 90 units. The optimization space for this 

parameter is 90 ± 15% in increments of 1%.  The 

user can select which parameters, the base setting for 

that parameter and if required the optimization space 

for that parameter to be used by NSGA-II. 

Reviewing the optimization space for the 7 factors 

in Table 2, there is in excess of 2.6 Billion 

combinations of different factor settings that the 

Tray Loader line can be operated to. It is impossible 

to run all of those combinations using the Tray 

Loader digital model, hence the need to use 

optimization approaches to determine a particular 

setting for each of the 7 factors that results in an 

optimum solution to the required objective(s).  

Python code was developed that integrates the excel 

input configuration files with both the JaamSim Tray 

Loader digital model and the NSGA-II optimization 

engine. The overall structure and Python code that 

was written to integrate the NSGA-II and the 

JaamSim Tray Loader digital model to form an 

optimization system followed a modular format. 

This modular format followed the ten (10) rules and 

two (2) best practices for code development 
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highlighted by [36]. The overall system architecture 

is shown in Fig. 8. This architecture gives a high-

level overview of how the optimization system was 

developed with the main optimization system being 

controlled by the module called invoke_Simw (see 

purple box in Fig. 8). The main function module 

called invoke_simw then calls other blocks (red 

boxes in Fig. 8) forming the main spine of the Tray 

Loader Optimization system. All the function 

modules are written using the python programming 

language. The four (4) main blocks of the system 

include: 

1. Main controlling function module called 

invoke_simw 

2. Input Data Pre-processing function block that 

calls several sub function modules.  

3. Overall GA and JaamSim Optimization Loop 

function block calling several sub function 

modules. 

4. Output data file post processing block calling 

several sub function modules. 

 
Figure 8. OPTIM-GA Program and Data Structure 

Tray Loader digital model parameters are passed to 

the ‘invoke_simw’ function. The invoke_simw 

function (Fig. 8), then schedules the calling of all the 

various functions and methods required to execute 

all the tasks in the three (3) red boxes. When all input 

data pre-processing is completed, the NSGA-II and 

JaamSim Optimization loop (Fig. 8) is activated 

where simulation runs are completed using the tray 

loader digital model. Output results from each 

simulation run is then analyzed by NSGA-II 

optimization engine and any associated changes to 

the digital model input parameters based on the 

requirements of the objective function are then 

made.  This process is repeated until the termination 

criteria is achieved thus producing an optimal 

solution. The tray loader termination criteria is 

reviewed in section 8 below. 

Once NSGA-II optimization has terminated the 

program returns to the calling function 

‘invoke_simw’. At this point the function ‘Output 

Data File Post Processing’ Fig. 8 is called. This 

block of code prepares the results from the 

optimization study for review and graphing. The data 

is also saved to a csv file to allow the user to further 

analyze the data with statistical packages (eg: 

Minitab ©) to support any decisions in relation to 

possible design changes to the tray loading system. 

A significant number of Python libraries associated 

with optimization have been developed recently, 

however, only a few of them support optimization of 

multiple objectives at a time [37]. As such, pymoo 

(python multi-objective optimization) which is a 

library of multi-objective optimization tools was 

developed in Python [37]. There are several different 

algorithm implementations in “pymoo” examples 

include GA and NSGA-II to name a few. These 

NSGA-II pymoo library of optimization routines 

were used in the development of the overall Tray 

Loader NSGA-II optimization system. A plug-in 

library called pymoo, Ver 0.5.0 was then installed 

into the Thonny IDE to enable multi objective 

optimization in Python (Fig. 9).  

 

Figure 9. Pymoo Library in the Thonny IDE 

A list of the additional Python libraries installed 

into the Thonny IDE are given in Table 3. These 

libraries are required to allow the developed python 

code for the Tray Loader optimization to run without 

errors. 

Table 3. Python Libraries installed into the Thonny 

IDE 
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8. NSGA-II Termination Criteria for the Tray 

Loader Optimization Problem 

Whenever an optimization algorithm is executed, 

it needs to be determined at each iteration whether 

the optimization run shall be continued or not. Many 

different ways exist of how to decide when an 

optimization run should be terminated. Running the 

algorithm not long enough can lead to unsatisfactory 

results and running it too long might waste function 

evaluations, time  and thus computational resources. 

Pymoo have developed several termination criterion 

for both single and multi-objective optimization. The 

Tray Loader termination criteria uses the standard 

‘Termination’ function which was imported by 

python from pymoo. Actual code is given below: 

from pymoo.core.termination import 

Termination 

According to [38] the most interesting stopping 

criterion is to use objective space change to decide 

whether to terminate the algorithm. This termination 

criteria uses a simple and efficient procedure to 

determine whether to stop the optimization or not. 

This termination procedure is called 

‘MultiObjectiveSpaceToleranceTermination’, and is 

imported from pymoo as given by the actual code 

below: 

from pymoo.util.termination.f_tol 

import 

MultiObjectiveSpaceToleranceTermin

ation 

This termination procedure 

‘MultiObjectiveSpaceToleranceTermination’ is 

then configured with various termination 

parameters and assigned to the ‘termination’ 

attribute with python code as given below: 

# NSGA-II Tray Loader termination 

criteria 

termination = 

MultiObjectiveSpaceToleranceTermin

ation(tol=0.0025, n_last= min(30, 

n_max_gen), nth_gen= min(5, 

patience), n_max_gen= n_max_gen, 

n_max_evals=None) 

The five (5) termination parameters [38] above 

are described as follows: 

1. tol =  This is the average threshold tolerance in 

the objective space. If the value is below this 

bound (0.25% from above), the algorithm is 

terminated.  

2. n_last = To make the termination criterion more 

robust, this parameter specifies the 

last n generations to review and then takes the 

maximum from this number of generations. 

3.  nth_gen = Defines whenever 

the termination criterion is calculated by 

default, or every nth generation. In the example 

above, nth_gen is the minimum of 5 or the 

patience value. 

4. n_max_gen = Furthermore, the number of 

generations executed by the algorithm can be 

used for termination. For some optimization 

problems, the termination criterion might not be 

reached, thus, an upper bound for generations 

can be defined to stop in this case. 

5. n_max_evals = Lastly, the number of 

function evaluations can be used for 

termination. In the example above, this is not 

used as can be seen when this variable is set to 

None. 

9. NSGA-II parameter tuning for the Tray 

Loader Application 

The key to a successful implementation of Genetic 

Algorithms primarily depends on the efficient 

crossover and mutation search operators to guide the 

system toward a global optimum [39]. The values of 

GA parameters greatly determine whether the GA 

will find a near-optimum solution and whether it will 

find such a solution efficiently in a timely manner. 

Choosing the right parameter values can be a time-

consuming task where the computer specifications 

can play a significant factor in how long it takes to 

obtain both the GA optimum parameters and 

determining the optimum solution to the problem 

itself [23]. According to [40], GAs are not easy to 

use because they require parameter tunings in order 

to achieve the desirable solutions. The task of tuning 

GA parameters has been proven to be far from trivial 

due to the complex interactions among the 

parameters. In the research carried out by [41], 

parameter setting for MOOP using evolutionary 

algorithms (MOEAs) is crucial for finding the best 

performance of the algorithm. These parameters are 

very sensitive in driving the algorithms to the best 

performance and finding the good results. Design of 

experiments (DoE) methods offer practical 

approaches to tune the parameters effectively [42]. It 

has been shown that the internal parameters of 

NSGA-II can be tuned using the Design of 

Experiments (DoE) procedure to enhance the quality 

of the results for the synthesis optimization of a four-

bar mechanism [43]. The six (6) operating 

parameters of the NSGA-II algorithm which need to 

be set for the Tray Loader optimization application 

are as follows: 

1. Population size.  

2. # of Offspring.  
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3. Crossover Probability 

4. Crossover Distribution Index 

5. Mutation Probability 

6. Mutation Distribution Index 

These parameters affect the capability of the 

algorithm to achieve the optimum objective results 

and computing time to reach these results. According 

to [44] population size can be decided by experience 

and usually between 50 and 160. If the population 

size is too small, then it can be difficult to get an 

optimum solution, whereas, if it’s too large then the 

convergence time can be long. A recommended 

range of parameter settings is given in Table 4 to 

achieve optimum GA performance [41], [42], [44]. 

Table 4. GA Parameter Settings 

 

The mutation distribution index (ηm) and the 

crossover distribution index (ηc) are typically set in 

the range of 10 – 40 [45]. A large crossover 

distribution index (ηc) gives a higher probability for 

creating near parent solutions and a small crossover 

distribution index (ηc) allows distant solutions to be 

selected as children solutions [46]. The parameters 

with the associated levels for each parameter that are 

used in the NSGA-II algorithm are given in Table 5. 

Table 5. NSGA-II Parameters and Levels 

 

A ½ fractional DoE was chosen for tuning the Tray 

Loader NSGA-II optimization parameters as the 

resolution provided was sufficient to analyse the 

data. A total of 33 runs is required for the experiment 

(32 ½ fraction runs and 1 centre level run). Each 

experiment was run for a maximum of 30 

generations based on previous optimization 

experiments carried out by the author during the 

development of this optimization system. Increasing 

the number of generations, significantly increases 

the time required to run each experiment. The max 

P_Feeder output and max Process4 output was 

recorded across the total population for each of the 

thirty (30) generations. Analysis of Variance 

(ANOVA) and response optimization of the NSGA-

II parameters is completed using Minitab in order to 

maximise both the P_Feeder and Process4 outputs. 

The results are shown in Table 6. 

 

 

Table 6. Tray Loader NSGA-II Parameter 

Optimization 

 

Based on this analysis, the Tray Loader NSGA-II 

optimization system is configured with the 

parameter values as shown in Table 7. 

Table 7. Tray Loader NSGA-II Parameter Values 

 

V. RESULTS FROM THE TRAY LOADER 

DIGITAL MODEL AND NSGA-II 

OPTIMIZATION ENGINE 

All simulation/optimization runs were completed 

using a HP ZBook Firefly 15 G7 2Z4F7UC laptop 

running an Intel(R) Core(TM) i7-10810U CPU @ 

1.61 GHz processor and 64GB of RAM. The single 

objective optimization run (Maximize P_Feeder 

output) was executed 10 times as recommended by 

[47] [48]. The results of the 10-run experiment is 

given in Table 8.  

Table 8. Simulation Model and Optimization 

Parameters 

 
 

As can be seen from Table 8, the P_Feeder 

Mean, Max, Min and Standard Deviation is 

calculated across the 50 generations for each run 

using the NSGA-II optimization. The average 

P_Feeder (max) across the 10 runs using NSGA-II 

was 462,298 units. The overall P_Feeder maximum 

output across the 10 runs using NSGA-II 

optimization was 462,741 achieved on runs 3, 7 and 

10. Run #1 was analysed in additional detail, as the 

results of this particular run produced results that 

were close to the overall average of the 10 runs 

completed. Analyzing the data collected from Run 



P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022 

183 

#1, the P_Feeder maximum, minimum, average and 

standard deviation is calculated for each of the 50 

generations and plotted using Minitab©. Fig. 10 

shows how all the individual solutions within the 

population of 100 solutions for each of the 50 

generations are converging closer to the P_Feeder 

maximum value of 462,391 which was achieved on 

generation #22.  

 

Figure 10. NSGA-II Optimization of P_Feeder 

Output/Shift 

The maximum P_Feeder output remained 

unchanged for the remaining 28 generations of the 

experiment.   The standard deviation of the P_Feeder 

output within the population of 100 solutions for 

each generation is plotted and can be seen in Fig. 11.  

 

Figure 11. NSGA-II optimization of P_Feeder 

Standard Deviation 

Fig. 11 shows that as the solutions are generated 

for each generation, the spread is reducing indicating 

that all of the solutions are progressively getting 

closer to the optimum P_Feeder max value of 

462,391 and the optimization procedure can be 

terminated. It can be seen from Fig. 10 and 11 that 

the NSGA-II algorithm has converged after 

approximately 22 generations, at which point the 

fitness value function (max P_Feeder Output) was 

unchanged and the standard deviation of P_Feeder 

output of all the solutions within each generation 

decreasing slightly. To reduce the optimization 

computation time, the maximum number of 

generations could be reduced from 50 to approx. 30. 

This value of 30 was selected (greater than 22), with 

the aim of avoiding an early termination of the 

algorithm before the max P_Feeder output was 

obtained. The solution developed for run #7 (Table 

8) with an overall P_Feeder max of 462,741 units 

using the Tray Loader JaamSim digital model and 

the NSGA-II optimization engine is shown in Table 

9. 
 

Table 9. Tray Loader Optimized Digital Model 

Parameters 

 

A two (2) objective optimization problem 

(maximize the P_Feeder and minimize the Empty 

Tray Buffer capacity) was designed and tested using 

the tray loader digital model and NSGA-II 

optimization engine. As with the single objective 

optimization problem, the same Tray Loader 

simulation model, model parameters and 

optimization parameter space was used for this study 

(See Table 2), with results given in Table 10. 
 

Table 10. Two Objective Optimization problem of 

Tray Loader System using NSGA-II Optimization 

 
 

A pareto front is a set of nondominated solutions, 

being chosen as optimal, if no objective can be 

improved without sacrificing at least one other 

objective [8].  The pareto front is an excellent 

visualization to show the interaction of each 

objective has on the other. A pareto front (Empty 

Tray Buffer Capacity vs P_Feeder Output/Shift) was 

generated using  all the data gathered from the 2 

objective SimWrapper Optimization runs. See Fig. 

12 for the pareto front. 
 

 

Figure 12. Tray Loader 2 Objective Optimization 

Pareto Front. 
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As can be seen from Fig. 12, the optimum solution 

is where the Empty Tray count (Buffer Capacity) is 

approx. 79 trays, thus producing a stable P_Feeder 

output of ~ 462,741. Increasing the Empty Tray 

buffer beyond 79 trays, has no impact on the 

P_Feeder output/shift. Since the optimization 

problem is to minimize Empty Tray Buffer and 

maximize P_Feeder output, the factor setting 

providing the solution of 79 trays and P_Feeder 

output of 462,741 is selected.   

VI. CONCLUSION 

As manufacturing capital equipment is expensive, 

it is necessary that the equipment once in operation 

is reliable and delivers to the business plan targets. 

Simulation along with an optimization system is an 

invaluable tool to confirm that an automated 

manufacturing line can produce to the required 

business objectives before and after it goes into 

operation. Implementing the actual changes to 

equipment to improve reliability can be both time 

consuming and expensive. Simulation in conjunction 

with optimization can be used to verify these 

improvements before the equipment is modified. 

These technologies form the basis of an overall 

digital manufacturing system that enables the 

optimization of a manufacturing line during the line 

design stage or when the line is put into operation. 

The use of this technology gives a deeper 

understanding of what can occur on the 

manufacturing line when it is running. A simulation 

model when combined with optimization engine, can 

be used to identify problems before they occur and 

aid in the selection of optimum parameters to run the 

line before it is fully designed or built. Digital model 

and optimization technologies supports other 

Industry 4.0 technologies such as predictive 

maintenance, OEE improvement, waste 

reduction, improve batch changeover times and to 

improve product quality [49]. It allows for efficient 

design and development, linking 3D models with 

simulation and emulation of equipment control code. 

In addition, having a digital model enables virtual 

line analysis, removing the physical restraints of 

expert engineers having to be on your location [50]. 

The author has demonstrated how the development 

of digital model can be validated and subsequently 

used as part of an optimization system which is then 

used for the study of equipment design, maintenance 

and reliability of an automated production line in the 

medical devices industry. 
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