

ACTA TECHNICA JAURINENSIS
Vol. 15, No. 3, pp. 174-187, 2022

10.14513/actatechjaur.00668

174

Research Article

Simulation and Genetic Algorithms to Improve the Performance
of an Automated Manufacturing Line

Patrick Ruane1,2,*, Patrick Walsh2, John Cosgrove2

1 Johnson & Johnson Vision Care
Rivers, V94 N732 Limerick, Ireland

2 Technological University of the Shannon
Moylish, V94 EC5T, Limerick, Ireland

*e-mail: patrick.ruane@tus.ie

Submitted: 27/06/2022 Accepted: 29/08/2022 Published online: 31/08/2022

Abstract: Simulation in manufacturing is often applied in situations where conducting experiments on a real
system is very difficult often because of cost or the time to carry out the experiment is too long.
Optimization is the organized search for such designs and operating modes to find the best available
solution from a set of feasible solutions. It determines the set of actions or elements that must be
implemented to achieve an optimized manufacturing line. As a result of being able to concurrently
simulate and optimize equipment processes, the understanding of how the actual production system
will perform under varying conditions is achieved. The author has adopted an open-source
simulation tool (JaamSim) to develop a digital model of an automated tray loader manufacturing
system in the Johnson & Johnson Vision Care (JJVC) manufacturing facility. This paper
demonstrates how a digital model developed using JaamSim was integrated with an author
developed genetic algorithm optimization system and how both tools can be used for the
optimization and development of an automated manufacturing line in the medical devices industry.

Keywords: Digital Model; Digitalization; Genetic Algorithm; JaamSim; Optimization; Simulation

I. INTRODUCTION
Digitalization in manufacturing is the conversion

of information into digital format, the integration of
this digital data and technologies into the
manufacturing process and the use of those
technologies (eg: simulation, optimization) to
change a business model to provide new revenue and
value-producing opportunities. Digitalization may
be seen as the increased generation, analysis, and use
of data to improve the efficiency of the overall
manufacturing system. Digital manufacturing
technologies, such as simulation models, have been
considered an essential part of the continuous effort
towards improving the performance of automated
manufacturing equipment and processes.
Optimization seeks the maximum or minimum value
of an objective function corresponding to variables
defined in a feasible range or space. More generally,
optimization is the search of the set of variables that
produces the best values of one or more objective
functions while complying with multiple constraints.
The purpose of optimization has been described as
objective function, loss function, or cost function for
minimization and utility function or fitness function

for maximization [1] [2]. In this paper, it will be
referred to as objective function. Simulation
optimization (SO) refers to the optimization of an
objective function subject to constraints, both of
which can be evaluated through a stochastic
simulation/digital model [3]. The term simulation
optimization (SO) is an overall term for techniques
used to optimize stochastic simulations. Simulation
optimization involves the search for those specific
settings of the input parameters to a stochastic
simulation such that a target objective, which is a
function of the simulation output, is either
maximized or minimized [3]. Simulation techniques
allow for modelling and artificially reproducing
complex systems using stochastic distributions [4].
Complex simulation models may require long
development times and difficult verification and
validation processes and finally, simulation is not an
optimization tool on its own [5]. According to [5]
large Combinatorial Optimization Problems (COPs)
require the use of metaheuristics to conduct an
efficient search, where he proposes to combine
simulation with metaheuristics to form a new class
of optimization algorithms called ‘simheuristics’.
These algorithms integrate simulation (in any of its

https://dx.doi.org/10.14513/actatechjaur.00668

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

175

variants) into a metaheuristic-driven framework to
solve complex stochastic COPs. A metaheuristic is a
high-level problem-independent algorithmic
framework that provides a set of guidelines or
strategies to develop heuristic optimization
algorithms [6]. The JaamSim simulation package
used in this industrial case study currently has no
optimization analysis capability [7]. It is thus
proposed by the author to develop and integrate a
metaheuristic genetic algorithm optimization engine
with the JaamSim Tray Loader digital model thus
enabling the optimization of this industrial case
system.

An optimization problem involves searching for
an optimal solution(s) xi from a search space X,
which maximize (or minimize) an objective function
f(x), while satisfying a set of constraints [8]. The
search space X may be composed of discrete
variables (e.g., integer, categorical), continuous
variables or mixed variables [9]. Metaheuristics are
general algorithmic frameworks, often nature-
inspired, designed to solve complex optimization
problems [10]. Metaheuristics are a growing
research area over the last number of years.
Metaheuristics are emerging as successful
alternatives to more classical approaches also for
solving optimization problems that include in their
mathematical formulation uncertain, stochastic, and
dynamic information [10]. The Greek suffix ‘‘meta’’
used in the word metaheuristic means ‘‘beyond, in
an upper level’’. Thus, metaheuristics are algorithms
that combine heuristics (that are usually very
problem-specific) in a more general framework.
Metaheuristics are strategies that guide the search
process. The goal is to efficiently explore the search
space to find near–optimal solutions. Techniques
which constitute metaheuristic algorithms range
from simple local search procedures to complex
learning processes [11]. Optimization algorithms
attempt to improve solutions in each iteration,
seeking to converge toward the optimal solution.
After a number of iterations, the search reaches an
optimal region of the feasible decision space. The
best solution calculated by the algorithm at the time
of termination constitutes the optimal solutions of a
particular run. Fig. 1 portrays the process of
optimization by Metaheuristic and evolutionary
genetic algorithms.

Figure 1. Components of the Optimization System
using Simulation and Genetic Algorithms

II. GENETIC ALGORITHMS

1. Genetic Algorithm Overview

Among the meta-heuristic optimization methods,
genetic algorithms have gained importance because
of its capacity to find sets of optimal solutions [12].
A genetic algorithm (GA) is an 'intelligent'
probabilistic search algorithm which simulates the
process of evolution by taking a population of
solutions and applying genetic operators in each
reproduction [13]. Genetic Algorithms (GAs) are
adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetics.
They are a part of evolutionary computing, a rapidly
growing area of artificial intelligence. GAs are
inspired by Darwin’s theory of evolution – “Survival
of the fittest”. Simplicity of operation and power of
effect are two of the main attractions of the GA
approach [14]. Genetic algorithms are popular as
they are relatively easy to implement and are used in
several commercial software packages [3]. Genetic
algorithms (GA) have been used for the resolution of
a wide variety of combinatorial problems, due to the
demonstrated success in the results it can achieve
[15]. Despite the advantages of genetic algorithms,
several parameter inputs are required before using
this algorithm. They include waypoint, population
size, crossover rate, and mutation rate. The potential
GA solution to a problem is an individual which can
be represented by the set of parameters. These
parameters are just like a gene of a chromosome and
can be represented by the string of values in binary
form [16]. The fitness value is used to test the degree
of goodness of the chromosome for solving a
problem that is directly related to the objective value.
The operators employed in a GA include selection,
crossover, and mutation processes [16] [17].

The performance of the Genetic Algorithm is
dependent on these parameter settings [18]. The GA
method requires the algorithm to be initialized with
a set of randomly generated initial values, which is
known as initial population which represents a
significant difference with respect to mathematical
programming techniques. The initial population is
then evaluated to determine which of the individuals
have the best characteristics (i.e., the best values for
the objective functions), allowing them to pass to the
next generation (or iteration). There is a similarity
between GA and those that can be observed with the
natural evolution concepts. Once the population has
been evaluated, the best individuals combine their
genetic information between them, and a new
generation is obtained. Standard GAs begins with a
randomly generated population of possible solutions
(individuals). The individual’s fitness is calculated

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

176

and some of them are selected as parents according
to their fitness values. A new population (or
generation) of possible solutions (the children’s
population) is produced by applying the crossover
operator to the parent population and then applying
the mutation operator to their offspring. The fitness
value is recalculated for this new population. The
iterations involving the replacement of the original
generation (old individual) with a new generation
(children) is repeated until the termination criteria is
achieved. This whole process is shown in Fig. 2.

Figure 2. Genetic Algorithm Flowchart [19]

2. Elitism Strategy

A solution with a high fitness value could be
replaced by a weaker solution after a crossover or
mutation occurs. The process of maintaining good
solutions with high fitness after a certain generation
cannot be guaranteed. Hence an elitism strategy can
be applied in GA to maintain a certain number of the
fittest solutions for the next generation. When the
next-generation population is obtained after
crossover and mutation, these solutions that were
maintained by elitism will replace the weaker
solutions. The same number of the fittest solutions
will replace the weaker solutions and be retained and
utilized for the next generation [19] [20]. It has been
shown that results obtained by an algorithm which
uses elitism is better than the result obtained by an
algorithm which doesn’t use elitism [21], [22].

3. GA Parameters and Termination
Strategy

The size of the population of solutions (M), the
number of parents (R), the probability of crossover
(PC), the probability of mutation (PM), and the
termination criterion are the user defined parameters
of the GA. A good choice of the parameters is related
to the decision space of a particular problem, and in
general the optimal parameter setting for one
problem may not perform equally as well for other

problems. Consequently, determining a good
parameter setting often requires the execution of
many time-consuming experiments. A critical factor
in implementing a genetic algorithm is how to set the
values for the various parameters. [23] classifies
these efforts into two major forms:
1. Parameter tuning. It refers to finding good

values for the parameters before the algorithm is
run and then keeping these values fixed while
the algorithm runs. With this method, typically
one parameter is tuned at a time, which may
cause some suboptimal choices, since
parameters often interact in a complex way with
each other. Simultaneous tuning of more
parameters, however, leads to an enormous
number of experiments.

2. Parameter Control. This method forms an
alternative, as it amounts to starting a run with
initial parameter values which are then changed
during the run.

Selecting the appropriate GA parameters is
regularly done based on experience with specific
optimization problems. However, a reasonable
method for finding suitable values for the GA
parameters is to perform sensitivity analysis. This
entails choosing a combination of GA parameters
and running the GA several times. Other
combinations of parameters are chosen, and repeated
runs are made with each combination. A comparison
of the optimization results obtained may lead to the
best set of GA parameters. The author has used
Design of Experiments to select the optimum GA
parameters for the Tray Loader application.

A termination criterion is required to allow the
Genetic Algorithm to end its iterations. Selecting an
appropriate termination criterion has an important
role on the correct convergence of the algorithm. The
number of iterations, the amount of improvement of
the objective function between consecutive
iterations, and the run time are common termination
criteria for the GA.

4. NSGA-II (Non-dominated Sorting
Genetic Algorithm II)

 The non-dominated sorting algorithm (NSGA),
developed in 1994, was one of the first Multi
Objective Evolutionary Algorithms (MOEA) [24].
NSGA differs from the standard GA in the way that
the selection operator performs, with the crossover
and mutation operators remaining the same. The
population of solutions is ranked based on its
nondomination before selection takes place.
Improvements to NSGA were made to tackle issues
such as high computational complexity, lack of
elitism, need to specify sharing parameter and a
technique was added to embed constraints into the
optimization algorithm, leading to a new algorithm
known as NSGA-II being introduced [25].
According to [26] [27] one of the most widely used

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

177

MOEA’s that has been effective in finding the Pareto
optimal solutions is the elitist NSGA-II algorithm.
Both the diversity and the convergence abilities of
the NSGA-II algorithm have been demonstrated by
[28]. They have also shown the suitability of NSGA-
II in producing an acceptable number of optimized
design alternatives regarding the problem
complexity and in a reasonable timeframe. A
detailed review of NSGA-II optimization algorithm
in machining operations was presented by [29]. They
concluded that NSGA-II as part of Multi Objective
Optimization Problem (MOOP) is a popular and
reliable algorithm that can be used in optimizing the
process parameters of multiple machine
performances. Unlike the single objective
optimization technique, NSGA-II simultaneously
optimizes each objective without being dominated
by any other solution [29]. The problem of
controlling an air conditioning system using
evolutionary algorithms to increase energy-saving
while also considering user satisfaction was
investigated [30]. They concluded that the NSGA II
as an excellent algorithm for solving a multi
objective optimization problem. It has also been
shown that the multi-objective optimization
technique NSGA-II applied to a project was efficient
in searching for multiple solutions and was able to
find a pareto front after a few iterations during the
optimization process [31]. NSGA-II applies an elitist
strategy which improves the convergence of an
MOEA and avoids the loss of optimal solutions after
getting them [32]. It is proposed to use the Elitist
NSGA-II and develop a standalone multi objective
optimization engine that will run fully integrated
with the JaamSim Tray Loader digital model. The
workings of the NSGA-II will now be further
explained. The flowchart for NSGA-II is shown in
Fig. 3.

Figure 3. NSGA-II Algorithm Flowchart [31]

 In NSGA-II parents and offspring are combined,
followed by non-dominated sorting. The fitness of
all individuals is assessed and chosen to be parents
for the next generation. The NSGA-II Non-
dominated sorting and crowding distance sorting,
which is depicted in Fig 4 is then completed. Pt is

the parent generation and Qt the offspring that are
both merged into Rt. The objective is to obtain a
new generation Pt+1 of the same size as the parent
population Pt. Two parameters are estimated for
each individual: the domination count, which
provides the information of how many solutions
dominate the individual, and a list of the set of

solutions that are dominated by the individual.
This method splits up all solutions into different
fronts. As per Fig. 4, PF1-3 are the fronts that are
obtained by the sorting process.

Figure 4. NGSA-II Ranking Procedure [25]

All individuals are compared with each other.
The first front will comprise only solutions with a
domination count of 0. From there, the algorithm
continues going individual by individual through
all sets of solutions that have a domination count
of 0 to form the first front. The individuals from
this 1st front are removed from the list, and the
remaining individuals now compared to each other
with the 2nd front obtained by selecting
individuals with a new domination count of 0.
After this process, all the individuals that have a

domination count of zero, excluding the first front
solutions, will form the second front. The
procedure is continued until the last front is
obtained as can be seen in Fig. 5.

Figure 5. Solution Pareto fronts and
Crowding Distance Estimation

From Fig 5 all solutions in PF1 and PF2 are taken
forward to the new population Pt+1. Some solutions
from PF3 are taken forward to Pt+1, while the
remainder is rejected. The solutions that are taken
forward from PF3 is based on the crowding distance
calculation, with the lesser crowded distance
individual being chosen to form the total in
population Pt+1 [25]. The crowding distance is a
number that determines how closely other solutions
are surrounding an individual. Figure 5 shows the
calculation of the crowding distance of solution i.

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

178

The crowding distance is an estimate of the size of
the largest cuboid enclosing solution i without
including any other solution [30]. The nearest
neighbours are used to calculate the average distance
between the closest solutions of the same front. A
higher value of crowding distance gives a lesser
crowded region and vice versa [25].

III. DEVELOPMENT OF TRAY LOADER
DIGITAL MODEL

5. Overview of The Tray Loader Digital
Model

A digital model of an industrial system (Fig. 6)
known as a Tray Loading System was developed
using JaamSim software.

Figure 6. Automated Tray Loading System

Industrial Case
This system consists of individual product (p) that

arrives from an upstream line to a product feeder at
defined arrival times. These are then grouped into
multiples of 10. The group of products are then
loaded into empty plastic trays that can hold up to
660 parts. Once filled the plastic tray moves at a
defined cycle time to a tray stacker. The tray stacker
accumulates the filled trays into groups of 30. This
group of 30 trays then undergoes a batch process in
either Process station 1 or 2 under defined
conditions. Upon completion of this batch process,
the trays of product leave Process Station 1 or 2,
where a tray unstacking operation takes place. Each
individual tray of product undergoes a further
process step (Process Station 3), again under defined
conditions. Once a tray is finished at Process Station
3, the product is removed from the tray at the Tray
Unloading station and is then passed to the Star
Wheel grouping station, where the product is now
grouped into batches of 30. These groups are then
passed to Process Station 4 and 5 for the final
finishing process. The empty trays from the tray
unloading station, are returned to the empty tray
buffer and finally back to the tray loader operation,
to repeat the overall process. The digital model
developed, will simulate this whole operation,
considering the following 5 points:
1. Entities (units of Product) per arrival.
2. Service times for process stations, travel times

for conveyors

3. Probability distributions for reliability and
repair of stations.

4. Conditions for process stations to process and
pass product to the next station.

5. Queue size and location.

6. Verification of the Tray Loader Digital
Model

A detailed verification process was undertaken on
the Tray Loader digital model following the
Logical/mathematical verification, program/code
verification steps outlined by [33] and the detailed
knowledge of the author of the actual tray loading
system. All the Tray Loader Objects, Service Times,
Steps, Thresholds, Maintenance conditions and
Threshold condition logic were all verified and
confirmed to be correct to how the actual line
operates. A detailed verification checklist was
completed on the Tray Loader digital model. As part
of the digital model verification process it was
important to verify that the product flow into and out
of the various simulation objects (as seen from the
JaamSim GUI) are identical to what occurs on the
tray loader line. This verification process allowed
any additions or changes to the simulation logic to
be corrected, verified, and visualized immediately. It
was through the ongoing and iterative model
verification and the testing process during model
development, that a realistic model of the actual
dynamic interactions was developed and fine-tuned.
During this phase of model verification, the weak
points of the system were discovered and corrected.
It is extremely advantageous to find these early-stage
simulation bugs, thus allowing a well-tested and
robust system to be developed.

7. Validation of the Tray Loader Digital
Model

The approach taken for developing the Tray
Loader digital model followed the steps described by
[34]. Step 5 of this approach deals with confirming
that the programmed model is valid. The model is
run using the standard basic settings from the actual
tray loader system. The simulation model output data
for the system was compared with the comparable
output data collected from the actual system. This is
called results validation. If the results are consistent
with how the system should operate, then the
simulation model is said to have face validity.
Sensitivity analyses is performed on the
programmed model to see which factors have the
greatest impact on the performance measures and,
thus, must be modelled carefully [34]. According to
[35], validation is concerned with determining
whether the conceptual digital model (as opposed to
the computer program) is an accurate representation
of the system under study. [35] outlines the

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

179

following three (3) steps to validate a simulation
model.
1. Obtaining real-world data from the actual

system.
2. Tests for comparing simulated and real data

(namely graphical, Schruben-Turing or t tests).
3. Sensitivity analysis (using statistical design of

experiments with associated regression
analysis).

The above approach was used to validate the Tray
Loader digital model, see section 3 for more detail.
Actual Tray Loader system data was collected from
the historian database for all the relevant process
stations used in the digital model. The data collected
included input feed rate, yield, throughput and
uptime per minute for each process station. Excel
macros were then developed to calculate the
equipment reliability metrics namely: Mean Time
Between Failures (MTBF) and Mean Time to Repair
(MTTR) for each of the process stations using the
uptime/minute data. The Input feed rate, yield,
output data and the MTBF/MTTR for each process
station was analysed, outliers removed, and
distributions determined along with the distribution
parameters. Minitab is used to analyse all the data
obtained. Minitab is a statistical analysis software
that assists in the analysis of data collected from any
process and provides a simple, effective way to input
the data, manipulate that data and statistically
analyse it.

IV. DEVELOPMENT OF THE NSGA-II
OPTIMIZATION ENGINE

A closed loop digital model and optimization
engine is proposed by the author as shown in Fig. 7.
An NSGA-II optimization engine is integrated with
the Tray Loader JaamSim digital model and the
following four (4) elements being executed
automatically until an optimized solution is
obtained:

1. Digital Model inputs parameters updated.
2. Simulation runs executed and monitored
3. Digital Model outputs collected.
4. Optimization analysis completed and new

parameter settings recommended.

Figure 7. Closed Loop Optimization Engine

The overall optimization system developed by the
author allows the user to specify the objectives to be
optimized from an excel file. Table 1 shows an
example of two (2) objectives to be minimized along
with two (2) objectives to be maximized (station
throughputs). This file is used to configure the

optimization problem along with the associated
objectives to be either maximised or minimised.

Table 1. Optimization Objectives

Another excel file is set-up to store all the
entities/workstations names along with their
associated base parameter values, see Table 2 for a
sample of some configuration settings for the Tray
Loader Simulation model.

Table 2. Simulation Model and Optimization
Parameters

The settings in the Optim_Space column are used
by the NSGA-II optimization engine. As an
example, referring to Table 2, JaamSim is
configured with an entity generator called P_Feeder.
The base InterArrivalTime for this generator is
0.90sec. When performing an optimization analysis,
the InterArrivalTime for this entity can be changed
within a space of 0.90 sec ±10% in increments of
1%. Likewise, the Tray Loader JaamSim model uses
a resource called Empty_Tray_Stacker, with a base
setting of 90 units. The optimization space for this
parameter is 90 ± 15% in increments of 1%. The
user can select which parameters, the base setting for
that parameter and if required the optimization space
for that parameter to be used by NSGA-II.

Reviewing the optimization space for the 7 factors
in Table 2, there is in excess of 2.6 Billion
combinations of different factor settings that the
Tray Loader line can be operated to. It is impossible
to run all of those combinations using the Tray
Loader digital model, hence the need to use
optimization approaches to determine a particular
setting for each of the 7 factors that results in an
optimum solution to the required objective(s).

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

180

Python code was developed that integrates the excel
input configuration files with both the JaamSim Tray
Loader digital model and the NSGA-II optimization
engine. The overall structure and Python code that
was written to integrate the NSGA-II and the
JaamSim Tray Loader digital model to form an
optimization system followed a modular format.
This modular format followed the ten (10) rules and
two (2) best practices for code development
highlighted by [36]. The overall system architecture
is shown in Fig. 8. This architecture gives a high-
level overview of how the optimization system was
developed with the main optimization system being
controlled by the module called invoke_Simw (see
purple box in Fig. 8). The main function module
called invoke_simw then calls other blocks (red
boxes in Fig. 8) forming the main spine of the Tray
Loader Optimization system. All the function
modules are written using the python programming
language. The four (4) main blocks of the system
include:
1. Main controlling function module called

invoke_simw
2. Input Data Pre-processing function block that

calls several sub function modules.
3. Overall GA and JaamSim Optimization Loop

function block calling several sub function
modules.

4. Output data file post processing block calling
several sub function modules.

Figure 8. OPTIM-GA Program and Data Structure

Tray Loader digital model parameters are passed to
the ‘invoke_simw’ function. The invoke_simw
function (Fig. 8), then schedules the calling of all the
various functions and methods required to execute
all the tasks in the three (3) red boxes. When all input
data pre-processing is completed, the NSGA-II and
JaamSim Optimization loop (Fig. 8) is activated
where simulation runs are completed using the tray
loader digital model. Output results from each
simulation run is then analyzed by NSGA-II
optimization engine and any associated changes to
the digital model input parameters based on the
requirements of the objective function are then
made. This process is repeated until the termination
criteria is achieved thus producing an optimal
solution. The tray loader termination criteria is
reviewed in section 8 below.

Once NSGA-II optimization has terminated the
program returns to the calling function

‘invoke_simw’. At this point the function ‘Output
Data File Post Processing’ Fig. 8 is called. This
block of code prepares the results from the
optimization study for review and graphing. The data
is also saved to a csv file to allow the user to further
analyze the data with statistical packages (eg:
Minitab ©) to support any decisions in relation to
possible design changes to the tray loading system.
A significant number of Python libraries associated
with optimization have been developed recently,
however, only a few of them support optimization of
multiple objectives at a time [37]. As such, pymoo
(python multi-objective optimization) which is a
library of multi-objective optimization tools was
developed in Python [37]. There are several different
algorithm implementations in “pymoo” examples
include GA and NSGA-II to name a few. These
NSGA-II pymoo library of optimization routines
were used in the development of the overall Tray
Loader NSGA-II optimization system. A plug-in
library called pymoo, Ver 0.5.0 was then installed
into the Thonny IDE to enable multi objective
optimization in Python (Fig. 9).

Figure 9. Pymoo Library in the Thonny IDE

A list of the additional Python libraries installed
into the Thonny IDE are given in Table 3. These
libraries are required to allow the developed python
code for the Tray Loader optimization to run without
errors.

Table 3. Python Libraries installed into the Thonny
IDE

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

181

8. NSGA-II Termination Criteria for the Tray
Loader Optimization Problem

Whenever an optimization algorithm is executed,
it needs to be determined at each iteration whether
the optimization run shall be continued or not. Many
different ways exist of how to decide when an
optimization run should be terminated. Running the
algorithm not long enough can lead to unsatisfactory
results and running it too long might waste function
evaluations, time and thus computational resources.
Pymoo have developed several termination criterion
for both single and multi-objective optimization. The
Tray Loader termination criteria uses the standard
‘Termination’ function which was imported by
python from pymoo. Actual code is given below:
from pymoo.core.termination import

Termination

According to [38] the most interesting stopping
criterion is to use objective space change to decide
whether to terminate the algorithm. This termination
criteria uses a simple and efficient procedure to
determine whether to stop the optimization or not.
This termination procedure is called
‘MultiObjectiveSpaceToleranceTermination’, and is
imported from pymoo as given by the actual code
below:
from pymoo.util.termination.f_tol

import

MultiObjectiveSpaceToleranceTermin

ation

This termination procedure
‘MultiObjectiveSpaceToleranceTermination’ is
then configured with various termination
parameters and assigned to the ‘termination’
attribute with python code as given below:

NSGA-II Tray Loader termination

criteria

termination =

MultiObjectiveSpaceToleranceTermin

ation(tol=0.0025, n_last= min(30,

n_max_gen), nth_gen= min(5,

patience), n_max_gen= n_max_gen,

n_max_evals=None)

The five (5) termination parameters [38] above
are described as follows:
1. tol = This is the average threshold tolerance in

the objective space. If the value is below this
bound (0.25% from above), the algorithm is
terminated.

2. n_last = To make the termination criterion more
robust, this parameter specifies the
last n generations to review and then takes the
maximum from this number of generations.

3. nth_gen = Defines whenever
the termination criterion is calculated by
default, or every nth generation. In the example
above, nth_gen is the minimum of 5 or the
patience value.

4. n_max_gen = Furthermore, the number of
generations executed by the algorithm can be
used for termination. For some optimization
problems, the termination criterion might not be
reached, thus, an upper bound for generations
can be defined to stop in this case.

5. n_max_evals = Lastly, the number of
function evaluations can be used for
termination. In the example above, this is not
used as can be seen when this variable is set to
None.

9. NSGA-II parameter tuning for the Tray
Loader Application

The key to a successful implementation of Genetic
Algorithms primarily depends on the efficient
crossover and mutation search operators to guide the
system toward a global optimum [39]. The values of
GA parameters greatly determine whether the GA
will find a near-optimum solution and whether it will
find such a solution efficiently in a timely manner.
Choosing the right parameter values can be a time-
consuming task where the computer specifications
can play a significant factor in how long it takes to
obtain both the GA optimum parameters and
determining the optimum solution to the problem
itself [23]. According to [40], GAs are not easy to
use because they require parameter tunings in order
to achieve the desirable solutions. The task of tuning
GA parameters has been proven to be far from trivial

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

182

due to the complex interactions among the
parameters. In the research carried out by [41],
parameter setting for MOOP using evolutionary
algorithms (MOEAs) is crucial for finding the best
performance of the algorithm. These parameters are
very sensitive in driving the algorithms to the best
performance and finding the good results. Design of
experiments (DoE) methods offer practical
approaches to tune the parameters effectively [42]. It
has been shown that the internal parameters of
NSGA-II can be tuned using the Design of
Experiments (DoE) procedure to enhance the quality
of the results for the synthesis optimization of a four-
bar mechanism [43]. The six (6) operating
parameters of the NSGA-II algorithm which need to
be set for the Tray Loader optimization application
are as follows:

1. Population size.
2. # of Offspring.
3. Crossover Probability
4. Crossover Distribution Index
5. Mutation Probability
6. Mutation Distribution Index

These parameters affect the capability of the
algorithm to achieve the optimum objective results
and computing time to reach these results. According
to [44] population size can be decided by experience
and usually between 50 and 160. If the population
size is too small, then it can be difficult to get an
optimum solution, whereas, if it’s too large then the
convergence time can be long. A recommended
range of parameter settings is given in Table 4 to
achieve optimum GA performance [41], [42], [44].

Table 4. GA Parameter Settings

The mutation distribution index (ηm) and the

crossover distribution index (ηc) are typically set in
the range of 10 – 40 [45]. A large crossover
distribution index (ηc) gives a higher probability for
creating near parent solutions and a small crossover
distribution index (ηc) allows distant solutions to be
selected as children solutions [46]. The parameters
with the associated levels for each parameter that are
used in the NSGA-II algorithm are given in Table 5.

Table 5. NSGA-II Parameters and Levels

A ½ fractional DoE was chosen for tuning the Tray

Loader NSGA-II optimization parameters as the

resolution provided was sufficient to analyse the
data. A total of 33 runs is required for the experiment
(32 ½ fraction runs and 1 centre level run). Each
experiment was run for a maximum of 30
generations based on previous optimization
experiments carried out by the author during the
development of this optimization system. Increasing
the number of generations, significantly increases
the time required to run each experiment. The max
P_Feeder output and max Process4 output was
recorded across the total population for each of the
thirty (30) generations. Analysis of Variance
(ANOVA) and response optimization of the NSGA-
II parameters is completed using Minitab in order to
maximise both the P_Feeder and Process4 outputs.
The results are shown in Table 6.

Table 6. Tray Loader NSGA-II Parameter
Optimization

Based on this analysis, the Tray Loader NSGA-II

optimization system is configured with the
parameter values as shown in Table 7.

Table 7. Tray Loader NSGA-II Parameter Values

V. RESULTS FROM THE TRAY LOADER
DIGITAL MODEL AND NSGA-II

OPTIMIZATION ENGINE
All simulation/optimization runs were completed

using a HP ZBook Firefly 15 G7 2Z4F7UC laptop
running an Intel(R) Core(TM) i7-10810U CPU @
1.61 GHz processor and 64GB of RAM. The single
objective optimization run (Maximize P_Feeder
output) was executed 10 times as recommended by
[47] [48]. The results of the 10-run experiment is
given in Table 8.

Table 8. Simulation Model and Optimization
Parameters

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

183

As can be seen from Table 8, the P_Feeder

Mean, Max, Min and Standard Deviation is
calculated across the 50 generations for each run
using the NSGA-II optimization. The average
P_Feeder (max) across the 10 runs using NSGA-II
was 462,298 units. The overall P_Feeder maximum
output across the 10 runs using NSGA-II
optimization was 462,741 achieved on runs 3, 7 and
10. Run #1 was analysed in additional detail, as the
results of this particular run produced results that
were close to the overall average of the 10 runs
completed. Analyzing the data collected from Run
#1, the P_Feeder maximum, minimum, average and
standard deviation is calculated for each of the 50
generations and plotted using Minitab©. Fig. 10
shows how all the individual solutions within the
population of 100 solutions for each of the 50
generations are converging closer to the P_Feeder
maximum value of 462,391 which was achieved on
generation #22.

Figure 10. NSGA-II Optimization of P_Feeder

Output/Shift
The maximum P_Feeder output remained

unchanged for the remaining 28 generations of the
experiment. The standard deviation of the P_Feeder
output within the population of 100 solutions for
each generation is plotted and can be seen in Fig. 11.

Figure 11. NSGA-II optimization of P_Feeder

Standard Deviation

Fig. 11 shows that as the solutions are generated
for each generation, the spread is reducing indicating
that all of the solutions are progressively getting
closer to the optimum P_Feeder max value of
462,391 and the optimization procedure can be
terminated. It can be seen from Fig. 10 and 11 that
the NSGA-II algorithm has converged after
approximately 22 generations, at which point the
fitness value function (max P_Feeder Output) was
unchanged and the standard deviation of P_Feeder
output of all the solutions within each generation
decreasing slightly. To reduce the optimization
computation time, the maximum number of
generations could be reduced from 50 to approx. 30.
This value of 30 was selected (greater than 22), with
the aim of avoiding an early termination of the
algorithm before the max P_Feeder output was
obtained. The solution developed for run #7 (Table
8) with an overall P_Feeder max of 462,741 units
using the Tray Loader JaamSim digital model and
the NSGA-II optimization engine is shown in Table
9.

Table 9. Tray Loader Optimized Digital Model
Parameters

A two (2) objective optimization problem

(maximize the P_Feeder and minimize the Empty
Tray Buffer capacity) was designed and tested using
the tray loader digital model and NSGA-II
optimization engine. As with the single objective
optimization problem, the same Tray Loader
simulation model, model parameters and
optimization parameter space was used for this study
(See Table 2), with results given in Table 10.

Table 10. Two Objective Optimization problem of
Tray Loader System using NSGA-II Optimization

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

184

A pareto front is a set of nondominated solutions,
being chosen as optimal, if no objective can be
improved without sacrificing at least one other
objective [8]. The pareto front is an excellent
visualization to show the interaction of each
objective has on the other. A pareto front (Empty
Tray Buffer Capacity vs P_Feeder Output/Shift) was
generated using all the data gathered from the 2
objective SimWrapper Optimization runs. See Fig.
12 for the pareto front.

Figure 12. Tray Loader 2 Objective Optimization

Pareto Front.

As can be seen from Fig. 12, the optimum solution
is where the Empty Tray count (Buffer Capacity) is
approx. 79 trays, thus producing a stable P_Feeder
output of ~ 462,741. Increasing the Empty Tray
buffer beyond 79 trays, has no impact on the
P_Feeder output/shift. Since the optimization
problem is to minimize Empty Tray Buffer and
maximize P_Feeder output, the factor setting
providing the solution of 79 trays and P_Feeder
output of 462,741 is selected.

VI. CONCLUSION
As manufacturing capital equipment is expensive,

it is necessary that the equipment once in operation
is reliable and delivers to the business plan targets.
Simulation along with an optimization system is an
invaluable tool to confirm that an automated
manufacturing line can produce to the required
business objectives before and after it goes into
operation. Implementing the actual changes to
equipment to improve reliability can be both time
consuming and expensive. Simulation in conjunction

with optimization can be used to verify these
improvements before the equipment is modified.
These technologies form the basis of an overall
digital manufacturing system that enables the
optimization of a manufacturing line during the line
design stage or when the line is put into operation.
The use of this technology gives a deeper
understanding of what can occur on the
manufacturing line when it is running. A simulation
model when combined with optimization engine, can
be used to identify problems before they occur and
aid in the selection of optimum parameters to run the
line before it is fully designed or built. Digital model
and optimization technologies supports other
Industry 4.0 technologies such as predictive
maintenance, OEE improvement, waste
reduction, improve batch changeover times and to
improve product quality [49]. It allows for efficient
design and development, linking 3D models with
simulation and emulation of equipment control code.
In addition, having a digital model enables virtual
line analysis, removing the physical restraints of
expert engineers having to be on your location [50].
The author has demonstrated how the development
of digital model can be validated and subsequently
used as part of an optimization system which is then
used for the study of equipment design, maintenance
and reliability of an automated production line in the
medical devices industry.

ACKNOWLEDGEMENT
The authors express their sincere gratitude to

Johnson & Johnson Vision Care and Technological
University of the Shannon for providing me with the
tools, time and support necessary to allow me to
pursue this very important research in the field of
simulation and optimization of advanced automated
manufacturing equipment.

AUTHOR CONTRIBUTIONS
Patrick Ruane: Conceptualization, development,
Experimentation, Analysis, Writing and Editing.

Patrick Walsh: Supervision & Review.

John Cosgrove: Supervision & Review.

DISCLOSURE STATEMENT
The authors declare that they have no known

competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.

ORCID
Patrick Ruane http://orcid.org/0000-0002-6685-1663

https://slcontrols.com/automation-of-the-batch-changeover-process-saving-the-time-between-batches-you-dont-have/
http://orcid.org/0000-0002-6685-1663

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

185

REFERENCES

[1] W. Erwin Diewert, “The New Palgrave
Dictionary of Economics,” Palgrave
Macmillan UK, 27 April 2017. [Online].
https://link.springer.com/referenceworkentry/
10.1057/978-1-349-95121-5_659-2.

[2] S. Boyd and L. Vandenberghe, Convex
Optimization, vol. 7, Cambridge University
Press, 2009.

[3] S. Amaran, N. Sahinidis, B. Sharda and S.
Bury, “Simulation Optimization: A Review of
Algorithms and Applications,” Annals of
Operations Research, vol. 240, pp. 351-380,
2016.
https://doi.org/10.1007/s10479-015-2019-x

[4] R. Nance and R. Sargent, “Perspectives on the
Evolution of Simulation,” Operations
Research, vol. 50, no. 1, pp. 161-172, 2002.
https://doi.org/10.1287/opre.50.1.161.17790

[5] A. Juan, J. Faulin, S. Grasman, M. Rabe and
G. Figueira, “A review of Simheuristics:
Extending Metaheuristics to deal with
Stochastic Combinatorial Optimization
Problems,” Operations Research
Perspectives, vol. 2, pp. 62-72, 2015.
https://doi.org/10.1016/j.orp.2015.03.001

[6] K. Sörensen and F. Glover, “Metaheuristics,”
In: Gass, S.I., Fu, M.C. (eds) Encyclopedia of
Operations Research and Management
Science. Springer, Boston, MA (2013) pp.
960-970.
https://doi.org/10.1007/978-1-4419-1153-
7_1167

[7] King, D.H, and H.S Harrison. 2013. “Open
Source Simulation Software “JaamSim”.”
Proceedings of the 2013 Winter Simulation
Conference. Washington, DC, USA.
https://doi.org/10.1109/WSC.2013.6721593

[8] N. Gunantara and Q. Ai, “A review of multi-
objective optimization: Methods and its
applications.,” Cogent Engineering, vol. 5, no.
1, pp. 1 - 16, 2018.
https://doi.org/10.1080/23311916.2018.1502
242

[9] J. Pelamatti, L. Brevault, M. Balesdent, E.
Talbi and Y. Guerin, “Efficient global
optimization of constrained mixed variable
problems.,” Journal of Global Optimization,
vol. 73, no. 3, pp. 583-613, 2019.
https://doi.org/10.1007/s10898-018-0715-1

[10] L. Bianchi, M. Dorigo and L. Gambardella, “A
Survey on Metaheuristics for Stochastic
Combinatorial Optimization,” 2009.
https://doi.org/10.1007/s11047-008-9098-4

[11] C. Blum and A. Roli, “Metaheuristics in
Combinatorial Optimization Overview and
Conceptual Comparison,” ACM Computing
Surveys, vol. 35, no. 3, pp. 268-308, 2003.
https://doi.org/10.1145/937503.937505

[12] F. Castro, C. Gutierrez-Antonio, A. Briones-
Ramirez and J. Herandez, “Genetic
Algorithms: A tool for Optimizing Intensified
Distillation Sequences,” Genetic Algorithms:
Advances in Research and Applications, pp. 1-
17, 2017.

[13] P. Chu and J. Beasley, “A Genetic Algorithm
for the Generalised Assignment Problem,”
Computers & Operations Research, vol. 24,
no. 1, pp. 17-23, 1997.
https://doi.org/10.1016/S0305-
0548(96)00032-9

[14] D. Goldberg and J. Holland, “Genetic
Algorithms and Machine Learning,” Machine
Learning, vol. 3, no. 2-3, pp. 95-99, 1988.
https://doi.org/10.1023/A:1022602019183

[15] M. Dalle Mura and G. Dini, “A Multi-
Objective Software Tool for Manual
Assembly Line Balancing using a Genetic
Algorithm,” CIRP Journal of Manufacturing
Science and Technology, vol. 19, pp. 72-83,
2017.
http://dx.doi.org/10.1016/j.cirpj.2017.06.002

[16] R. Haupt and S. Haupt, Practical Genetic
Algorithms, New York, NY, USA: John
Wiley & Sons, 2004.
https://doi.org/10.1002/0471671746

[17] M. Hamza, H. Yap and I. A. Choudhury,
“Genetic Algorithm and Particle Swarm
Optimization Based Cascade Interval Type 2
Fuzzy PD Controller for Rotary Inverted
Pendulum System.,” Mathematical Problems
in Engineering, vol. 2015, pp. 1 - 15, 2015.
https://doi.org/10.1155/2015/695965

[18] P. Rajendran and K. Yit Yok, “The
Optimization of a Genetic Algorithm for
Unmanned Aerial Vehicle Path Planning,”
Genetic Algorithms: Advances in Research
and Applications, pp. 19 - 32, 2017.

[19] K. Kok, P. Rajendran, R. Rainis, I. Wan and
M. Wan Mohd, “Investigation on selection

https://link.springer.com/referenceworkentry/10.1057/978-1-349-95121-5_659-2
https://link.springer.com/referenceworkentry/10.1057/978-1-349-95121-5_659-2
https://doi.org/10.1007/s10479-015-2019-x
https://doi.org/10.1287/opre.50.1.161.17790
https://doi.org/10.1016/j.orp.2015.03.001
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1109/WSC.2013.6721593
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1007/s10898-018-0715-1
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/937503.937505
https://doi.org/10.1016/S0305-0548(96)00032-9
https://doi.org/10.1016/S0305-0548(96)00032-9
https://doi.org/10.1023/A:1022602019183
http://dx.doi.org/10.1016/j.cirpj.2017.06.002
https://doi.org/10.1002/0471671746
https://doi.org/10.1155/2015/695965

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

186

schemes and population sizes for genetic
algorithm in unmanned aerial vehicle path
planning.,” International Symposium on
Technology Management & Emerging
Technologies (ISTMET), pp. 6 - 10, 2015.
https://doi.org/10.1109/ISTMET.2015.73589
90

[20] K. Yit Kok, P. Rajendran, R. R and W. Mohd
Muhiyuddin Wan Ibrahim, “Investigation on
Selection Schemes and Population Sizes for
Genetic Algorithm in Unmanned Aerial
Vehicle Path Planning,” in 2015 International
Symposium on Technology Management and
Emerging Technologies (ISTMET), Langkawi,
Malaysia, 2015.
https://doi.org/10.1109/ISTMET.2015.73589
90

[21] C. Grosan and M. Oltean, “The Role of
Elitism in Multiobjective Optimization with
Evolutionary Algorithms,” Acta Universitatis
Apulensis 5 (2003) pp. 83-90.

[22] G. Guariso and M. Sangiorgio, “Improving the
Performance of Multiobjective Genetic
Algorithms: An Elitism-Based Approach,”
Information, 11 (12) pp. 1 - 14, 2020.
https://doi.org/10.3390/info11120587

[23] A. Eiben, R. Hinterding and Z. Michalewicz,
“Parameter Control in Evolutionary
Algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 3, no. 2, pp.
124-141, 1999.
https://doi.org/10.1109/4235.771166

[24] N. Srinivas and K. Deb, “Muiltiobjective
Optimization Using Nondominated Sorting in
Genetic Algorithms,” Evolutionary
Computation, p. 22 1– 248, 1994.
https://doi.org/10.1162/evco.1994.2.3.221

[25] K. Deb, A. Pratap, S. Agarwal and T.
Meyarivan, “A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182 - 197, 07 August 2002.
https://doi.org/10.1109/4235.996017

[26] T. Goel, R. Vaidyanathan, R. Haftka, W.
Shyy, N. Queipo and K. Tucker, “Response
Surface Approximation of Pareto Optimal
Front in Multi-Objective Optimization,”
Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 4, pp. 879 - 893,
2007.
https://doi.org/10.1016/j.cma.2006.07.010

[27] C. Leung and H. Lau, “Simulation-based
optimization for material handling systems in
manufacturing and distribution industries,”

Wireless Networks, p. 4839 – 4860, 2020.
https://doi.org/10.1007/s11276-018-1894-x

[28] N. Mahammed, M. B. S, O. A and M. Fahsi,
“Evolutionary Business Process Optimization
using a Multiple-Criteria Decision Analysis
method,” in International Conference on
Computer, Information and
Telecommunication Systems (CITS), 2018.
https://doi.org/10.1109/CITS.2018.8440166

[29] Y. Yusoff, M. Salihin Ngadiman and A. Mohd
Zain, “Overview of NSGA-II for Optimizing
Machining Process Parameters,” Procedia
Engineering 15, p. 3978 – 3983, 2011.
https://doi.org/10.1016/j.proeng.2011.08.745

30] A. Ruiz, S. Martínez, J. Rocha, J. Villanueva,
J. Menchaca, M. Berrones, M. Flores and A.
Pineda, “Assessing a Multi-Objective Genetic
Algorithm with a Simulated Environment for
Energy-Saving of Air Conditioning Systems
with User Preferences,” Symmetry 2021, vol.
13, no. 2, 20 Febuary 2021.
https://doi.org/10.3390/sym13020344

[31] Y. Chang, Z. Bouzarkouna and D.
Devegowda, “Multi Objective Optimization
for Rapid and Robust Optimal Oil Field
Development Under Geological Uncertainty,”
Computational Geosciences, vol. 19, p. 933 –
950, 2015.
https://doi.org/10.1007/s10596-015-9507-6

[32] H. Kumar and S. Yadav, “Hybrid NSGA-II
Based Decision Making in Fuzzy Multi
Objective Reliability Optimization Problem,”
SN Applied Sciences, 2019.
https://doi.org/10.1007/s42452-019-1512-2

[33] P. K. Davis, “Generalizing Concepts and
Methods of Verification, Validation and
Accreditation (VV&A) for Military
Simulations,” National Defense Research
Institute, pp. 5-6, 1992.

[34] A. M. Law, "How to Build Valid and Credible
Simulation Models," 2019 Winter Simulation
Conference (WSC), 2019, pp. 1402-1414.
https://doi.org/10.1109/WSC40007.2019.900
4789

[35] J. P. Kleijnen, “Theory and Methodology of
Verification and validation of simulation
models,” European Journal of Operational
Research, vol. 82, pp. 145-162, 1995.

[36] H. Hunter-Zinck, A. de Siqueira, V. Vásquez,
R. Barnes and C. Martinez, “Ten Simple Rules
on Writing Clean and Reliable Open-Source
Scientific Software,” PLOS Computational

https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.1109/ISTMET.2015.7358990
https://doi.org/10.3390/info11120587
https://doi.org/10.1109/4235.771166
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.cma.2006.07.010
https://doi.org/10.1007/s11276-018-1894-x
https://doi.org/10.1109/CITS.2018.8440166
https://doi.org/10.1016/j.proeng.2011.08.745
https://doi.org/10.3390/sym13020344
https://doi.org/10.1007/s10596-015-9507-6
https://doi.org/10.1007/s42452-019-1512-2
https://doi.org/10.1109/WSC40007.2019.9004789
https://doi.org/10.1109/WSC40007.2019.9004789

P. Ruane et al. – Acta Technica Jaurinensis, Vol. 15, No. 3, pp. 174-187, 2022

187

Biology, pp. 1 - 9, 2021.
https://doi.org/10.1371/journal.pcbi.1009481

[37] J. Blank and K. Deb, “Pymoo - Multi-
objective Optimization in Python,” IEEE
Access, vol. 8, pp. 89497 - 89509, 2020.
https://doi.org/10.1109/ACCESS.2020.29905
67

[38] Blank, J, and K Deb. 2020. “A Running
Performance Metric and Termination
Criterion for Evaluating Multi and Many
Objective Optimization Algorithms.” 2020
IEEE Congress on Evolutionary Computation
(CEC) pp. 1 - 9.
https://doi.org/10.1109/CEC48606.2020.9185
546

[39] Lim, S.M, A.B Sultan, N Sulaiman, A
Mustapha, and K.Y Leong. 2017. “Crossover
and Mutation Operators of Genetic
Algorithms.” International Journal of
Machine Learning and Computing 7 (1).
https://doi.org/10.18178/ijmlc.2017.7.1.611

40] Duc Tran, Khoa. 2005. “Elitist non-dominated
sorting GA-II (NSGA-II) as a parameter-less
multi-objective genetic algorithm.”
Proceedings. IEEE Southeast Conference. Ft.
Lauderdale, FL, USA. pp. 359 - 367.
https://doi.org/10.1109/SECON.2005.142327
3

[41] Samsuri, S, R Ahmad, M Zakaria, and M Zain.
2019. “Parameter Tuning for Comparing
Multi-Objective Evolutionary Algorithms
Applied to System Identification Problems.”
Proc. of the 2019 IEEE 6th International
Conference on Smart Instrumentation,
Measurement and Applications. Kuala
Lumpur, Malaysia.
https://doi.org/10.1109/ICSIMA47653.2019.
9057333

[42] Arin, A, G Rabadi, and R Unal. 2011.
“Comparative studies on design of
experiments for tuning parameters in a genetic
algorithm for a scheduling problem.”
International Journal of Experimental Design
and Process Optimisation 102-124.
https://doi.org/10.1504/IJEDPO.2011.040262

[43] Badduri, J, R.A Srivatsan, Kumar G.S, and S
Bandyopadhyay. 2012. “Coupler-Curve
Synthesis of a Planar Four-Bar Mechanism

Using NSGA-II.” Asia-Pacific Conference on
Simulated Evolution and Learning. 460-469.
https://doi.org/10.1007/978-3-642-34859-
4_46

[44] Cao, Z, and Z Zhang. 2010. “Parameter
Settings of Genetic Algorithm Based on
Multi-Factor Analysis of Variance.” 2010
Fourth International Conference on Genetic
and Evolutionary Computing. Shenzhen,
China. 305 - 307.
https://doi.org/10.1109/ICGEC.2010.82

[45] Deb, K. 2011. “Multi-Objective Optimization
Using Evolutionary Algorithms.” Department
of Mechanical Engineering, Indian Institute of
Technology Kanpur, Kanpur, PIN 208016,
India, 1 - 24. Accessed January 10, 2022.
https://www.egr.msu.edu/~kdeb/papers/k201
1003.pdf

[46] Deb, K, and H Beyer. 2001. “Self Adaptive
Genetic Algorithms with Simulated Binary
Crossover.” Evolutionary Computation 9 (2):
197 - 221.
https://doi.org/10.1162/10636560175019040
6

[47] M. Jeong, J. H. Choi and B. H. Koh,
“Performance evaluation of modified genetic
and swarm‐based optimization algorithms,”
Structural Control and Health Monitoring, p.
878–889, 2013.
https://doi.org/10.1002/stc.507

[48] J. Shen and Y. Zhu, “Chance-Constrained
Model for Uncertain Job Shop Scheduling
Problem,” Soft Computing - A Fusion of
Foundations, Methodologies & Applications.,
vol. 20, no. 6, pp. 2383-2391, June 2016.
https://doi.org/10.1007/s00500-015-1647-z

[49] G. Shao, S. Jain, C. Laroque, L. H. Lee, P.
Lendermann and O. Rose, "Digital Twin for
Smart Manufacturing: The Simulation
Aspect," 2019 Winter Simulation Conference
(WSC), 2019, pp. 2085-2098.
https://doi.org/10.1109/WSC40007.2019.900
4659

[50] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y.
Wei and L. Wang, “Enabling Technologies
and Tools for Digital Twin,” Journal of
Manufacturing Systems, vol. 58, pp. 3-21,
2021.

This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution NonCommercial (CC BY-NC 4.0) license.

https://doi.org/10.1371/journal.pcbi.1009481
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1109/CEC48606.2020.9185546
https://doi.org/10.1109/CEC48606.2020.9185546
https://doi.org/10.18178/ijmlc.2017.7.1.611
https://doi.org/10.1109/SECON.2005.1423273
https://doi.org/10.1109/SECON.2005.1423273
https://doi.org/10.1109/ICSIMA47653.2019.9057333
https://doi.org/10.1109/ICSIMA47653.2019.9057333
https://doi.org/10.1504/IJEDPO.2011.040262
https://doi.org/10.1007/978-3-642-34859-4_46
https://doi.org/10.1007/978-3-642-34859-4_46
https://doi.org/10.1109/ICGEC.2010.82
https://www.egr.msu.edu/%7Ekdeb/papers/k2011003.pdf
https://www.egr.msu.edu/%7Ekdeb/papers/k2011003.pdf
https://doi.org/10.1162/106365601750190406
https://doi.org/10.1162/106365601750190406
https://doi.org/10.1002/stc.507
https://doi.org/10.1007/s00500-015-1647-z
https://doi.org/10.1109/WSC40007.2019.9004659
https://doi.org/10.1109/WSC40007.2019.9004659
https://creativecommons.org/licenses/by-nc/4.0/

	I. Introduction
	II. Genetic Algorithms
	1. Genetic Algorithm Overview
	2. Elitism Strategy
	3. GA Parameters and Termination Strategy
	4. NSGA-II (Non-dominated Sorting Genetic Algorithm II)

	III. Development of Tray Loader Digital Model
	5. Overview of The Tray Loader Digital Model
	6. Verification of the Tray Loader Digital Model
	7. Validation of the Tray Loader Digital Model

	IV. Development of The NSGA-II Optimization Engine
	8. NSGA-II Termination Criteria for the Tray Loader Optimization Problem
	9. NSGA-II parameter tuning for the Tray Loader Application

	V. Results from the Tray Loader Digital Model and NSGA-II Optimization Engine
	VI. Conclusion
	Acknowledgement
	author contributions
	Disclosure statement
	ORCID
	References

