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Abstract: In this study, the Young modulus (E) of different coals was investigated using artificial neural 

networks (ANN). For this purpose, a comprehensive literature survey was carried out to compile such 

datasets available for the ANN analyses. As a result of the literature survey, a database composed of 

81 datasets was formed. In the ANN analyses, uniaxial compressive strength (UCS) and dry density 

(ρd) of coals were adopted as input parameters. The ANN analysis results demonstrated that the 

predictive model established in this study could be reliably used to estimate the E for different coals. 

The correlation of determination value (R2) for the developed model is 0.85, which shows its relative 

success. In this context, this study can be declared a case study showing the applicability of ANN for 

the evaluation of E for a wide range of coal types. However, the number of samples and independent 

variables should be increased to obtain more comprehensive models in future studies. 
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I. INTRODUCTION 

The stability of coal measures strata in 

underground mines is of prime importance in 

sustainable and safe coal mining operations. The 

stability of coal measures strata has been 

investigated mainly using numerical modeling 

techniques [1–3]. In numerical modeling of rock 

masses, several rock strength properties such as 

uniaxial compressive strength (UCS), Young 

modulus (E), and Poisson’s ratio (v) are required as 

input parameters. By adopting the above-mentioned 

rock properties, coal-bearing rock masses can be 

modeled using several methodologies such as the 

finite element method (FEM) and the discrete 

element method (DEM) [4–6]. Of the rock 

properties, the UCS and E are of prime importance 

to set forth the stability of coal pillars and the stress-

strain relationship of coal-bearing strata. However, 

considering the heterogeneous structure of coals, the 

determination of E in the laboratory is tedious and 

requires special equipment such as high precision 

stiff loading machines, strain gauges, deformation 

jackets, or linear variable differential transformers 

(LVDTs). Hence, several theories have been 

postulated to estimate the E of different rock types in 

the literature [7−11]. Recently, soft computing 

algorithms such as adaptive neuro-fuzzy inference 

systems (ANFIS) and artificial neural networks 

(ANN) have gained popularity in dealing with most 

engineering geological problems because of their 

flexibility and high precision accuracy. [12–16]. 

However, apart from the studies by Pan et al. [17] 

and Lawal et al. [18], the implementation of 

regression and soft computing tools for the 

evaluation of E for different coals is quite limited. 

Therefore, there is a need to obtain comprehensive 

empirical models to evaluate the E of different coal 

types. For this purpose, a comprehensive literature 

survey was conducted to compile such datasets for 

soft computing analyses in this study. The most 

important theoretical and practical findings obtained 

from this literature survey are summarized as 

follows: 

 The strength properties of coals increase 

in parallel with their rank [17]. 

 The variations in pulse wave velocity 

(Vp) are highly dependent upon the E of 

coals [19]. 

 The UCS of coals can be estimated from 

Schmidt Hammer tests [20−23]. 

However, the above findings are valid mainly for 

a small area of interest. Therefore, they have some 

limitations in dealing with larger datasets with 

different coal origins. Consequently, soft computing 
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analyses with larger datasets are required to obtain 

more comprehensive relationships for the evaluation 

of coal strength and deformation properties. 

In this study, the E of different coals was 

investigated using ANN analyses. On the basis of the 

collected data, a comprehensive empirical model is 

introduced. The details and mathematical 

expressions of the established model are also 

presented in this study to allow users to implement 

the proposed model more efficiently. 

II. DATABASE DEVELOPMENT 

A comprehensive literature survey was conducted 

to compile quantitative data on the strength and 

deformation properties of different coal types. 

Unfortunately, a significant number of previous 

studies could not have been considered due to a lack 

of information on the physical and mechanical 

properties of coal, which are important as input 

parameters. As a result of the literature survey, a 

database composed of 81 datasets was collected 

including the dry density (ρd), UCS, and E (Table 1). 

Using the database summarized in Table 1, several 

ANN analyses were performed to establish a 

comprehensive mathematical model for the 

evaluation of the E of different coals. Before 

performing the ANN analyses, the simple 

correlations of the considered variables were 

revealed by Pearson’s correlation coefficient (r) and 

spearmen rho values, which are listed in Table 2. 

Accordingly, the ρd and UCS are moderately 

associated with the E of different coal types. 

Therefore, these two independent variables were 

selected as input parameters in ANN analyses. 

III. ARTIFICIAL NEURAL NETWORKS (ANN) 

ANALYSES 

ANN-based methods can analyze data, learn, save 

knowledge, and use it for future predictions [29, 30]. 

This parallel distribution learning algorithm applies 

to many problems, from social science to applied 

science. In most ANN models, a feedforward 

backpropagation algorithm is adopted. In this study, 

the neural network toolbox (nntool) was utilized to 

establish several neural networks in the MATLAB 

environment. Various possible network architectures 

with variable hidden layers and neurons were 

attempted to determine the most reliable ANN 

structure. For estimating the E for different coal 

types, the most convenient ANN architecture was 

found to be 2–6–1 (Fig. 1). The independent 

variables for the ANN analyses were selected as the 

UCS and ρd. To increase training efficiency during 

ANN analyses, the dataset was also normalized 

between –1 and 1, using equation (1). 

𝑉𝑛 = 2 ∙
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

− 1 (1) 

where xi is the relevant parameter to be 

normalized, xmin, and xmax are the minimum and. 

maximum values in the dataset. 

As a result of the ANN analyses, the E for different 

coal types can be estimated using equation (2). The 

subfunctions of equation (2) were determined based 

on the deterministic approach previously described 

by Das [31] and they are listed in equations (3) to 

(10), where equations (9) to (10) are the 

normalization functions. According to the ANN 

analyses, the proposed model (equation (2)) 

correlates with a determination value (R2) of 0.85, 

which shows its relative success. 

𝐸 = 1.8233 ∙ 𝑡𝑎𝑛ℎ (∑ 𝐴𝑖 + 1.1645

6

𝑖=1

)

+ 2.0264; 𝑅2 = 0.85 

(2) 

𝐴1 = 1.0654 ∙ 𝑡𝑎𝑛ℎ(7.5356𝑛 ∙ 𝑈𝐶𝑆
− 1.6385𝑛 ∙ 𝜌𝑑

− 1.6398) 

(3) 

𝐴2 = 0.85969 ∙ 𝑡𝑎𝑛ℎ(−14.0079𝑛 ∙ 𝑈𝐶𝑆
+ 7.484𝑛 ∙ 𝜌𝑑

− 0.5834) 

(4) 

𝐴3 = −4.787 ∙ 𝑡𝑎𝑛ℎ(1.6683𝑛 ∙ 𝑈𝐶𝑆
− 4.2348𝑛 ∙ 𝜌𝑑

− 2.1176) 

(5) 

Table 1. Datasets considered in this study 

ρd [g/cm3] UCS [MPa] E [GPa] n Ref. 

1.75–2.15 8.207–54.702 1.457–3.213 4 [19] 

1.40–1.90 31.01–33.00 3.52–3.70 2 [24] 

1.83–1.89 34.12–35.68 2.38–2.41 6 [25] 

1.20–1.70 6.75–22.30 0.23–0.78 9 [26] 

1.27–1.80 3.08–28.77 0.81–3.82 15 [27] 

1.37–1.98 17.38–32.39 2.19–2.43 45 [28] 

 

Table 2. Correlations of independent variables 

for the evaluation of E for different coal types 

Statistical 

indicator 

ρd UCS 

Pearson’s 

correlation 

coefficient, r 

0.566 0.565 

Spearman 

rho value 
0.766 0.500 

 

 

Figure 1. ANN architecture adopted in this study 
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𝐴4 = 2.4436 ∙ 𝑡𝑎𝑛ℎ(0.56564𝑛 ∙ 𝑈𝐶𝑆
+ 3.5425𝑛 ∙ 𝜌𝑑

− 0.43686) 

(6) 

𝐴5 = −7.7371 ∙ 𝑡𝑎𝑛ℎ(−1.2373𝑛 ∙ 𝑈𝐶𝑆
+ 2.4793𝑛 ∙ 𝜌𝑑

− 0.93343) 

(7) 

𝐴6 = 0.25474 ∙ 𝑡𝑎𝑛ℎ(4.5541𝑛 ∙ 𝑈𝐶𝑆
− 4.5541𝑛 ∙ 𝜌𝑑

+ 8.0908) 

(8) 

𝑈𝐶𝑆 = 0.0387 ∙ 𝑈𝐶𝑆 − 1.1193𝑛  (9) 

𝜌𝑑
𝑛 = 2.1075 ∙ 𝜌𝑑 − 3.5311 (10) 

IV. RESULTS AND DISCUSSION 

Based on the ANN analyses, the proposed 

empirical model (Eq 2) was developed in this study. 

The performance of the proposed model was 

checked by correlating the predicted and measured E 

values for different coal types, which were 

previously reported by several researchers. 

Consequently, the predicted and measured E values 

for different types of coal are in good agreement 

(Fig. 2). Therefore, the model established in this 

study can be reliably used to estimate the E of 

different coals. 

The deformation properties of coals are well-

known phenomena for coalbed methane recovery 

and CO2 sequestration [32]. They are also important 

in estimating the bearing capacity of the coal masses 

[23]. Therefore, comprehensive models are needed 

for the evaluation of E for different coal types. In 

most engineering projects related to the underground 

coal mines, the UCS and ρd values have been 

measured routinely. Hence, the E of different coal 

types can also be estimated using these coal 

properties. In this context, this study can be declared 

a case study showing the applicability of ANN for 

the evaluation of E for a wide range of coal types. 

However, the number of samples and independent 

variables should be increased to obtain more 

comprehensive models in future studies. Anyhow, 

the present study can be declared a case study 

showing the applicability of ANN analyses for the 

evaluation of E for different coal types. 

V. RESULTS AND DISCUSSION 

The E of coals is a fundamental parameter for 

determining the deformation behavior of the coal 

masses. However, because of the heterogeneity and 

complexity of the coal strata, the determination of E 

for different types of coal is challenging and requires 

special equipment in the laboratory. Therefore, it is 

necessary to obtain reliable and comprehensive 

models to estimate E for a wide range of rock types. 

With this study, a comprehensive predictive model 

is introduced to estimate the E of different coals. For 

this purpose, a comprehensive literature survey was 

carried out to compile datasets available for soft 

computing analyses. Consequently, a database 

composed of 81 datasets was formed (Table 1). Soft 

computing analyzes based on ANN were then 

performed to build a novel predictive model for the 

evaluation of E for different coals.  

In the ANN analyses, the UCS and ρd values of 

coals were considered as input parameters. As a 

result of ANN analyzes, Eq. 2 was developed, which 

successfully estimated the E of the coals. For the 

sake of clarity, the sub equation systems behind 

equation (2) were also presented in this paper 

(equations (3) to (10)), to let users implement the 

proposed model efficiently. According to the 

performance of the proposed ANN model, it was 

determined that the predicted and measured E values 

are in good agreement (Fig. 2), indicating the 

relative success of the model. However, the number 

of samples and independent variables should be 

increased to obtain more comprehensive models in 

future studies. 
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Figure 2. Predicted and measured E values for 
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