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Abstract: Frequency resolution is an essential parameter in acoustical testing, 

even if we are using numerical or experimental method, for example 

when determining frequency response function (FRF) of a dynamic 

mechanical system, or executing modal analysis based on the FRFs. 

Finer resolution leads to more accurate results, at the expense of longer 

calculation/measurement process and larger data size. This parameter 

is generally set based on rules of thumb, prior practice or with big 

margin for safety. This results in waste time and data storage if the 

required frequency resolution is overestimated, or even significant 

errors in the results, if it is underestimated. Present paper offers a direct, 

method for the conscious determination of optimal frequency 

resolution. It is based fully on theoretical considerations, and 

investigates amplitude and phase distortion at resonances as target 

parameters. Beside defining the steps of the process, it is tested on a 

real structure, and the results are presented as well, proving the 

applicability and the appropriateness of the method. With this method, 

development engineers get a practical tool for adjusting the parameters 

of dynamic measurements and simulations. 
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1. Introduction 

During prototype testing, dynamic measurements are vital, some of them are 

mandatory to validate virtual results in concept phase. The low frequency 

measurements are often referred to vehicle comfort, the mid frequency 

measurements are used for validating the global vehicle dynamics and used in 

acoustic assessments [1]. The transfer function (or frequency response function, 

FRF) measurement is one of the most frequently used method in dynamic assessment 

of vehicle parts or structures. The typical input parameters, that help the engineers 

to understand local and global dynamics, are transfer functions, auto- and cross-

power functions as well as the coherence curves. These parameters are dependent on 

each other as well. They are the input for trimmed body experimental modal analysis, 

but they can be input parameters for the evaluation of equivalent torsional stiffness 

of the chassis as well. In general, transient or stationary excitation types are used for 

frequency response function measurements in automotive industry. Measurement 

parameter settings mostly depend on prior results and experience, however 

inappropriate frequency resolution may lead to imprecise damping calculation and 

magnitude distortion, when these values are determined from the FRFs with the 

widely used half-power bandwidth method [2]. The current study focuses on the 

understanding and quantification of these effects. 

Several parameters, such as structural damping, frequency resolution, or the 

frequency range of the modal base, play an important role in the accuracy of excited 

vibration analysis. In case of simulation, the frequency response functions (FRFs) of 

the investigated structure are often synthetized. This simulation based FRF synthesis 

is highly dependent on the used modal range or usage of lower and upper 

compensation of modes - when residual compensation is not used, the upper 

frequency limit of the modal range should be at least twice of the upper limit of the 

frequency range used for the FRF synthesis. Another dominant parameter is the 

frequency resolution. It must be chosen sufficiently small to minimize the amplitude 

distortion of the response functions, but this parameter determines the length of the 

FFT blocks during data processing as well. The better the frequency resolution, the 

longer the acquisition time (1 Hz resolution requires 1 second of data, but 0.1 Hz 

needs 10 seconds during a single acquisition without averaging), moreover, the 

larger the recorded data. 

Equation (1) can be found in the user guide of MSc Nastran finite element solver 

[2]. The equation is applied for a single resonance peak and splits the half power 

bandwidth to n discrete points. This equation provides guidance for a possible 

determination of the correct frequency resolution in case of ξ < 0.1.  



Z. Gazdagh and B. Vehovszky – Acta Technica Jaurinensis, Vol. 14, No. 4, pp. 508-520, 2021 

510 

∆𝜔 =
2 ∙ 𝜉 ∙ 𝜔𝑟

𝑛 − 1
 (1) 

In the context of (1), ξ denotes the damping ratio, 𝜔𝑟 denotes the resonant 

frequency, 𝑛 is the number of discrete points in half power bandwidth and ∆𝜔 is the 

frequency resolution. However, when using this equation, the number of points (n) 

is up to the user, and the method does not take into account the level of amplitude 

distortion and frequency shift. In the following part, a newly developed, 

supplementary method is presented that takes into consideration the above effects as 

well, which are influenced by acquisition parameter settings. 

2. Considerations on amplitude distortion 

Let’s focus on a single mass-spring-damper system, where the frequency transfer 

function can be written in the following form [3]: 

𝐻𝑑(𝑗𝜔) =

1
𝑚𝜔2

[(
𝜔𝑟

𝜔
)

2

− 1] + 2𝑗𝜉 ∙ (
𝜔𝑟

𝜔
)

 (2) 

This relationship describes the receptance (Hd, i.e. the displacement response 

divided by the single exciting input) when system is excited by a unit force at a 

frequency of 𝜔, its mass is m and damping is 𝜉. 

In acoustic measurements, however, the velocity response function (the so-called 

mobility equation) of the structure is generally required, which can be obtained by 

multiplying the displacement response function (2) by 𝑗𝜔 = 
𝜔

−𝑗
 (the relation 𝑗 = −

1

𝑗
 

can easily be understood as 
𝑗

𝑗
= 1 so 

1

𝑗
=

1

𝑗
∙

𝑗

𝑗
=

𝑗

−1
= −𝑗). Aiming further 

simplification, by multiplying the nominator and the denominator equally by (
𝜔

𝜔𝑟
), 

the resulted transfer function (velocity response or mobility equation) can be written 

as: 

𝐻𝑣(𝑗𝜔) =

1
𝑚𝜔𝑟

𝑗 (
𝜔
𝜔𝑟

) − 𝑗 (
𝜔𝑟

𝜔
) + 2𝜉

 (3) 

In order to quantify the amount of distortion caused by the chosen frequency 

resolution, lets perturb the transfer function equation (3) with ±
∆𝜔

2
 frequency shift 

(referring to the ∆𝜔 frequency resolution), which represents the distance between 



Z. Gazdagh and B. Vehovszky – Acta Technica Jaurinensis, Vol. 14, No. 4, pp. 508-520, 2021 

511 

the theoretical and the actually acquired frequency value. As a result, the new 

transfer function can be written as:  

𝐻𝑣 (𝑗 (𝜔 ±
∆𝜔

2
)) =

1
𝑚𝜔𝑟

𝑗 (
𝜔 ±

∆𝜔
2

𝜔𝑟
) − 𝑗 (

𝜔𝑟

𝜔 ±
∆𝜔
2

) + 2𝜉

 
(4) 

We are looking for the worst case, so when the actual frequency (𝜔) is located in 

the middle of two acquired, neighbouring frequency values (𝜔 −
∆𝜔

2
 and 𝜔 +

∆𝜔

2
, see 

Fig. 1 for the case when 𝜔 = 𝜔𝑟). The amplitude distortion 𝜀𝐻(𝑗𝜔) for such case 

can be given by dividing the acquired amplitude (4) by the theoretical one (3), 

resulting: 

𝜀𝐻(𝑗𝜔) = |
|
𝐻𝑣 (𝑗 (𝜔 ±

∆𝜔
2

))

𝐻𝑣(𝑗𝜔) |
| =

|

| 𝑗 (
𝜔
𝜔𝑟

) − 𝑗 (
𝜔𝑟

𝜔
) + 2𝜉

𝑗 (
𝜔 ±

∆𝜔
2

𝜔𝑟
) − 𝑗 (

𝜔𝑟

𝜔 ±
∆𝜔
2

) + 2𝜉|

|

 (5) 

 

 

Figure 1. Resonance peak and frequency resolution – worst case 
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Consider the amplitude distortion at resonance frequency 𝜔𝑟 in the following. 

Substituting 𝜔 = 𝜔𝑟 in equation (5) and highlighting 
±∆𝜔

2𝜔𝑟
, after performing the 

simplifications, the obtained amplitude distortion is: 

𝜀𝐻(𝑗𝜔|𝜔 = 𝜔𝑟) =
1

|𝑗 (
1

2𝜉
∙

±∆𝜔
2𝜔𝑟

∙
2 +

±∆𝜔
2𝜔𝑟

1 +
±∆𝜔
2𝜔𝑟

) + 1|

 

(6) 

Being a complex function, as a result of the absolute value calculation, the 

following equation is obtained: 

𝜀𝐻(𝑗𝜔|𝜔 = 𝜔𝑟) =
1

√(
1

2𝜉
∙

±∆𝜔
2𝜔𝑟

∙
2 +

±∆𝜔
2𝜔𝑟

1 +
±∆𝜔
2𝜔𝑟

)

2

+ 1

 

(7) 

Using equation (7) the level of maximal amplitude distortion 𝜀𝐻 can be determined 

at resonance, which is the function of ξ (damping ratio), 𝜔𝑟 (resonance frequency) 

and ±
∆𝜔

2
 frequency resolution. Note: this value is the theoretical maximum 

distortion, when the resonance frequency (𝜔𝑟) falls exactly in the middle of two 

neighbouring, acquired frequency values (see Fig. 1.) The best case is when the 

acquired frequency hits exactly the resonance frequency, in this case there is no 

distortion, 𝜀𝐻 = 1. 

In order to represent the practical applicability of equation (7), the 𝜀𝐻 amplitude 

distortion is plotted as a function of 
∆𝜔

2𝜔𝑟
 in Fig. 2. Curves are plotted for different 

damping ratios to visualize the influence of damping. Lower damping shows higher 

risk of distortion. 

It is worth mentioning that the amplitude distortion in plus and minus direction is 

not equal as resonance curves are not symmetric (Fig. 1.), however, the difference 

between 𝜀𝐻+ and 𝜀𝐻− is negligibly small, thus Fig. 2. illustrates the average of the 

two values. 
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Figure 2. 𝜀𝐻 amplitude distortion as a function of  
∆𝝎

2𝝎𝒓
 

3. Optimal parameters for FRF measurements 

Let us consider the practical application of the above findings: Using the curves 

of Fig. 2 and setting the permissible distortion to be 90% (meaning 𝜀𝐻 ≥ 0.9) and 

estimating the damping ratio to be 3% (𝜉 = 0.03), the maximum allowable 
∆𝛚

2𝛚𝐫
 value 

is 0.014,  meaning ∆ω = 2.8 𝐻𝑧 maximum allowable frequency resolution beside 

ωr = 100 𝐻𝑧 resonance frequency. By decreasing ωr to 50 Hz, maximum allowable 

frequency resolution decreases to 1.4 Hz. In short: the method gives us direct values 

for frequency resolution, assuming a maximum damping ratio and giving the lowest 

frequency limit of interest. 

In the following, let’s examine the amplitude distortion 𝜀𝐻 in relation with the 

half-power bandwidth range. For this, first take a look at the correlation of damping 

ratio and half-power bandwidth. As it is known, the damping ratio at resonance can 

be calculated by the following equation [4]: 

𝜉 =
𝜔2 − 𝜔1

𝜔𝑟 (𝑡𝑎𝑛
𝜃1

2
+ 𝑡𝑎𝑛

𝜃2

2
)

 (8) 
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where 𝜃1 and 𝜃2 are the angles between 𝜔𝑟 and 𝜔1, and 𝜔𝑟 and 𝜔2, respectively; 𝜔1 

and 𝜔2 being the lower and upper frequency limits or the half power (3 dB) 

frequency band. Assuming 𝜉 ≤ 0.1, the relative phase angles at both ends of the 

3 dB bandwidth (𝜃1 and 𝜃2) are close to 90°, so the equation can be simplified to the 

following form [5]: 

𝜉 =
𝜔3𝑑𝐵

2𝜔𝑟

 (9) 

𝜔3𝑑𝐵 being the half-power bandwidth (𝜔2 − 𝜔1). 

As a general rule, in case of 𝜉 above 0.1, the calculation of 3 dB bandwidth using 

equation (9) is inaccurate, and only equation (8) can be used for damping estimation, 

while below 0.1 equation (9) gives adequate accuracy, meaning that the half-power 

bandwidth is assumed to be proportional to the damping ratio. 

For further consideration, substitute the rearranged format of formula (1)  

(
∆𝜔

2∙𝜉∙𝜔𝑟
=

1

𝑛−1
) in equation (7). The result is as follows: 

𝜀𝐻(𝑗𝜔|𝜔 = 𝜔𝑟) =
1

√(±
1

2(𝑛 − 1)
∙

2 ±
𝜉

𝑛 − 1

1 ±
𝜉

𝑛 − 1

)

2

+ 1

 

(10) 

Equation (10) determines the amplitude distortion 𝜀𝐻 as a function of n (the 

number of discrete frequency values in the half-power bandwidth). Fig. 3. illustrates 

it graphically, by giving the amplitude distortion for 𝜔𝑟 −
∆𝜔

2
 and 𝜔𝑟 +

∆𝜔

2
 for ξ = 0.1 

case (grey) and the average of the two (black). The difference of the two curves tends 

firmly to zero when damping ratio is decreased. The inset diagram shows the average 

curves only for different damping values. One can conclude that the amplitude 

distortion does not depend directly on the resonance frequency (see equation (10)), 

moreover, the dependence on damping is negligible too when 𝜉 ≤ 0.1. 

Note: Fig. 2 and 3 both demonstrates the amplitude distortion, but the former 

focuses on the frequency resolution (which is important from practical point of 

view), while the latter examines the number of discrete frequency points within the 

half-power bandwidth, which is more useful for analytical considerations. The 

correlation of the two is given by equation (1). 
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Figure 3. 𝜀𝐻 amplitude distortion as a function of number of discrete points in the 

half power bandwidth of a resonance at a constant damping ratio (ξ = 0.1 for the 

base diagram and for different ξ values for the inset) 

By using the detailed correlations, the maximum error of amplitude distortion due 

to frequency discretization can be simply controlled, which gives us useful 

suggestions when setting acquisition parameters during dynamic measurements. 

This method can be used in simulations as well to reduce measurement-based error 

in hybrid simulation models. Such models are mentioned in [6] and [9]. Furthermore 

– as damping is generally calculated using the half-power bandwidth principle 

(equation (8) and (9)) into which the amplitude distortion also introduces error – the 

accuracy of damping calculation can also be kept under control. 

The next examples show some further consequences of the appropriateness of 

frequency resolution value. Fig. 4. shows measured FRF curves in Nyquist diagram, 

from which the importance of frequency resolution is obvious: Even though 

measuring with coarser resolution is faster, results may be practically unusable. 

One good method to check the adequacy of frequency resolution is plotting the 

FRF curves in Nyquist diagram [7]. In order to validate the number of discrete points 

in half power bandwidth, an experimental test was carried out and the FRFs were 

plotted in Nyquist diagrams: Fig 4 shows the coarser, while Fig. 5 shows finer 

frequency resolution cases. 
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Figure 4. Measured FRFs with coarse frequency resolution 
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Figure 5. Nyquist diagram of FRFs with higher resolution around resonance 
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The applied measurement method was the so-called impact testing [8, 12], with an 

average of 5 impact measurements. During this transient type testing, exponential 

window was set to be 100%, but on force window 10% exponent was applied to 

remove possible noise from force signal after impact. For FRF estimation, the H1 

estimation method was set, which is the most commonly used estimator [11], 

assuming all the noise to be on the output. The impact hammer was a low weight, 

modally tuned hammer with a steel tip, to ensure the high frequency energy input. 

The impact duration was around 0.3 milliseconds.  

In Fig. 5 two cases with finer frequency resolution are compared for the same 

experiment (red curve with 1 Hz and blue curve with 0.5 Hz). The two ends of the 

3 dB bandwidth are marked with 𝜔1and 𝜔2. In case of the red curve n = 5 and blue 

FRF gives n = 9. Amplitude distortions were calculated as 𝜀𝐻,1𝐻𝑧 = 0.92 and 

𝜀𝐻,0.5𝐻𝑧 = 0.976. 

The damping ratio and resonance amplitude were also calculated (Table 1.) One 

can see that coarser resolution result not only in larger amplitude distortion but 

inaccurate damping value as well. 

Table 1. Damping ratio and FRF amplitude of resonance frequency 

Frequency 

Resolution 

Damping 

ratio 

FRF 

amplitude 

1 Hz 0.09 % 12.63 g/N 

0.5 Hz 0.1 % 12.76 g/N 

 

The same FRFs are plotted in Bode diagram, see Fig 6. Small change in frequency 

resolution between the two FRF measurement lead already to a frequency shift of 

the resonance peak and produces different damping ratio when using the 3 dB 

bandwidth equation (8). 
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Figure 6. Bode Plot of FRFs near resonance 

4. Conclusion 

The method presented in this article offers a solution for the correct choice of the 

frequency resolution as a measurement setup parameter, taking into account the 

potential amplitude distortion of the FRFs. The level of distortion is determined as a 

function of frequency resolution, damping ratio and resonance frequency. Using this 

equation, one can determine the minimum frequency resolution which is required to 

keep the maximal amplitude distortion in a given range. 

The number of discrete points within the half-power bandwidth is also evaluated, 

which makes easy to work with, as resonance frequency in this case is not a variable, 

and neither damping has significant influence (if lower than 0.1). By defining the 

appropriate criteria for measurement accuracy, the described functions and graphs 

provide good guidance for the selection of suitable parameters, so that amplitude of 

the frequency response function can be measured with pre-defined accuracy, and the 

error of damping value can be controlled as well. The application area covers the 

field of modal analysis [10] and other FRF based measurements. 
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A potential continuation of the work is the analysis of the effect of exponential 

windowing used during the impact testing, which also causes pseudo-damping effect 

[13]. It would be useful to form similar direct suggestions for the optimal parameter 

selection. 
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