

ACTA TECHNICA JAURINENSIS

Vol. 15, No. 1, pp. 1-6, 2022

10.14513/actatechjaur.00581

1

Research Article

MLOps approach in the cloud-native data pipeline design

István Pölöskei1,*

1Adesso Hungary Kft.
Infopark sétány 1, 1117 Budapest, Hungary

*e-mail: istvan.poeloeskei@adesso.eu

Submitted: 25/12/2020 Accepted: 21/03/2021 Published online: 09/04/2021

Abstract: The data modeling process is challenging and involves hypotheses and trials. In the industry, a
workflow has been constructed around data modeling. The offered modernized workflow expects to
use of the cloud’s full abilities as cloud-native services. For a flourishing big data project, the
organization should have analytics and information-technological know-how. MLOps approach
concentrates on the modeling, eliminating the personnel and technology gap in the deployment. In
this article, the paradigm will be verified with a case-study in the context of composing a data pipeline
in the cloud-native ecosystem. Based on the analysis, the considered strategy is the recommended
way for data pipeline design.

Keywords: MLOps; cloud-native; data pipeline; machine learning

I. INTRODUCTION

Classical algorithms are apparent; they obey a clear
logic in a human-readable manner. A machine
learning model results from the training process by
using unusual methods to reach the best result. The
model evaluation might answer what the best result
indicates. The way to the model is challenging,
comprises assumptions and experiments.

The data and its structure has been evolving. In an
enterprise, a workflow has been built around data
modeling. This base helps mine the information from
the data swiftly and efficiently, providing the
organization’s agility. The proposed modern
workflow requires to use of the cloud’s full
capabilities. Planning a workflow according to the
infrastructure, makes the operation more affordable
and the implementation more powerful. Since the
public cloud providers serve on-demand invoicing,
the reserved resources should be connected to the
running tasks [1].

II. CLOUD-NATIVE

1. Cloud benefits

The brand-new cloud technology innovations make
computing more affordable and manageable than in
the on-premised environment [2]. The training
process of a deep learning model takes some time. It
could occur that the local settings are not able to
manipulate massive datasets. The training quality can

often be efficiently increased by committing more
resources, like attaching computation-intensive
hyperparameter optimization measures [3].

2. Containers

Container technology is a state-of-the-art
virtualization platform [4]. This approach presents an
isolated, transportable bundle of the application with
its dependencies. The currently applied (Docker)
containers are originated from Linux primitives,
implementing a process level separation [4].

Figure 1. Container building process in Docker

Application
bundle

Build process

Image

Containers

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

1

Docker containers are formed (Fig. 1) from layered
immutable images based on their descriptor
(Dockerfile) [5]. In the enterprise where containers
are started and stopped dynamically by the runtime
environment, it is advised to reduce the startup time;
the container should be light-weight for better
usability in the cloud-native circumstances [5]. In
application development, the building process can be
supported by assigned containers; the production
container contains only the binaries with the runtime
environment.

According to the 12 factors application principle
[6], the conventional container-level application
design must utilize the cloud-native’s potential
opportunities. The terms of the pattern, like stateless
processes, are the primary entry points for cloud-
native use-cases.

3. Cloud-native benefits

The Cloud Native Computing Foundation was
established in 2015 to promote innovative container
technologies [7]. According to their interpretation:
the cloud-native is the set of technologies for
providing scalable applications in the cloud,
including ideas like micro services, DevOps, and
agile [8]. Furthermore, cloud-native is more than
architecture; it is a radical change in providing and
developing a service. The cloud-native applications
use the cloud’s traits with its full potential.

Containers and micro services are the fundamental
characteristics of cloud-native applications [8]. The
functionalities are broken down into tiny autonomous
bits, including an API-based interface. The pieces can
be operating individually; each part has its
deployment and version. The containers' concept
proves each service process-wise sovereignty and
lessens the entire system's complexity [8]. By wholly
practicing cloud principles, it is feasible to serve
compliant and scalable software.

Implementation’s rate is vital. Fleet delivering
features for the business is a strategic advantage.
Introduction with a DevOps mindset and Agile, state-
of-the-art deployment system can accomplish the
business’s demands more efficiently than before [8].

By the usage of the cloud-native best practices, the
suggested architecture makes the application reliable
and fault-tolerant. The framework replaces the broken
element with a fresh instance, operating like a self-
healing system. It preserves the functionalities by
allocating more instances process-wise; the resources'
dynamic usage is possible [9].

The state-of-the-art cloud-native solution is the
Kubernetes, presented by Google [10]. In the
Kubernetes, the containers are merged into POD, the
atomic primitive in the Kubernetes ecosystem.
Through the POD approach, the lifecycle of the
processes can be executed through the orchestrator.

III. DATA PIPELINE

1. Pipeline

The data pipeline is an adhesive code between the
data sources and machine learning algorithms [11].
The code segment, as mentioned earlier, is
continuously growing because the data composition
strongly influences it. The data needs to be
reconstructed and conveyed before the training
commences. A workflow is a feasible solution,
gathering and standardizing the required data, for
providing high-level input for the machine learning
algorithms. Since the entire process is divided into
numerous levels, parallelized computing procedures
are used [12].

The pipeline workflow design is not an
uncomplicated task. Realizing the whole data
processing requires some boilerplate codes.
Workflow builders standardize the orchestration of
data pipelines by using workflow engines and
frameworks.

2. MLOps

Some prototypes are not deployed in the machine
learning use-cases in the production situation because
they may have concerns with the more prominent
data-load or scaling, scheduling, or the integration to
the data sources. For a successful big data project, the
organization should have analytics and infrastructure
expertise; they need to have a comprehensive plan
about deploying the model and the production
dataset’s training cycles.

As a bridge linking the data scientist and software
engineer, a unique responsible role is a viable solution
to tackle machine learning models to production as
soon as possible. This specialist needs to have a
global picture of the model lifecycle, like organizing
each stage’s main interactions [13]. Infrastructural
coordination is necessary for having efficient
architectural usage and automatized, high-quality
input data from diversified sources. It makes the
deployment cycles of the models regular.

The role of MLOps as a Machine Learning branch
of the DevOps is accepted in the machine learning
domain [13]. It is a compound of operation, machine
learning, and business understanding. All of them are
distinct competencies. The DevOps methodology is
for the speed and effectiveness of development and
deployment, providing the project’s adaptability in
line with the agile [13]. MLOps is the same approach
but focuses on the model development for eliminating
the personnel and technology gap in the deployment.
It concentrates on model formulation, evaluation,
deployment, and monitoring. The new cloud-based
solutions promote this approach vigorously.

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

2

3. Data platform

The data solution performs some steps in the data
use-case, like the data-preparation, training, model
verification, feature selection [12]. Achieving a data
solution is challenging because it involves some
perspectives like mathematics, informatics, and
business [14]. It was stimulating to present a solution
for data scientists in the last years, granting the
possibility to deploy their model without code
modifications in a productive environment. The
complexity should be diminished through the modern
data frameworks, giving a portable, scalable, and
efficient infrastructure for the data experts. Managing
the existing, same locally tested code, in the cloud
environment, without an extensive perception of the
cluster is an immense business value. The team can
focus on the business, not on the cloud-native
infrastructure or deployment. The effort to the
productive data solution has been simplified, but the
actual performance is to build an integrated fail-
tolerant data infrastructure.

If the model has been constructed, the business
should apply it. Conventional components also
support the deployment section, like the TensorFlow
Serving library [15]. The implementation unit or
product support should permanently observe the
usage of the model. Sometimes, the prototype should
be aligned with the current data structure or obscure
data patterns (Fig. 2). The model should be retrained
for being up-to-date.

Figure 2. Prototyping process

A CI/CD pipeline like a data platform is an added
advantage because it accommodates the rapid
prototyping process. Data science can explore their
new idea directly in production. The new model can
be deployed smoothly through some automatisms,
producing business value as soon as possible in the
continuously varying business environment.
According to the MLOps principle, the Machine
Learning tasks and artifacts can be combined with
mainstream DevOps instruments [13].

4. Cloud-native pipelines

Kubernetes and TensorFlow are the prime open-
source brands that were started by Google [16]. By
them, some modern infrastructure has been
established for giving improved solutions for novel
problems. As their union, the KubeFlow is a state-of-

the-art toolkit in a self-managed cloud-native
ecosystem [17].

Kubeflow is an open-source cloud-native platform
for developing data pipelines and workflows. It is a
potent mixture of pipeline approach with cloud-native
foundation [17]. It clarifies and normalizes the whole
machine learning sequence in the cloud.

Machine learning and deep learning should be used
with active data-processing in the cloud to determine
contemporary data problems. According to the use-
case discussed earlier, the KubeFlow may work as a
fundamental part of its cloud-native strategy.

5. Workflow as graph

A pipeline can operate on the cluster. This
procedure is cost-effective because the scaling-out is
more affordable than the scaling-up [18]. Since the
workflow is composed as a DAG (directed acyclic
graph), each job can be executed as a DAG node [19].

Each task can be grouped by components (like
python functions). The components, like regular
atomic elements, can interact through their inputs and
outputs. The low-level segments are not responsible
for the cloud-naiveness. In the framework, the
orchestrator is responsible for the supervision of the
elements. The data specialists must not implement the
infrastructure; they can only focus on their business
processes [19].

Other pipelines can re-use each operator or
component. By them, the entire pipeline can be
controlled on the tasks level. The flow is visualized
graphically, and each part has its log-stream. That
facilitates the bug finding and fixing in the
production.

For the coding, the KubeFlow accommodates
jupyter notebooks as a standard coding context [17].
It is a popular conventional solution in the machine-
learning society, strongly supports feature
engineering and model fabricating. Through the built-
in visualization, the data scientist can adequately
decipher the information of the data. By a jupyter
service provision, the most popular dependencies and
libraries can be included by default; the resource
quotas can also be configured. The configured
runtimes can use GPU assistance as well (Fig. 3).

6. Infrastructure based on the pipeline

Establishing the infrastructure on the POD level of
the nodes is complex. New frameworks, like
Kubeflow, allow constructing pipelines at the code
level without explaining them in any descriptor files.
The script can control the whole infrastructure; the
designed program can be scaled based on the load in
a portable style [16]. This is propitious for machine
learning use-cases when the training cycles are more
resource-demanding than the prediction use-cases.
The billing is based on consumption in the cloud; the

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

3

corporation should not keep any additional resources
when it is not necessary.

Figure 3. Kubeflow landscape

The critical advantage of cloud-native
infrastructure, the built-in features for the provision
of the services. ReplicaSets, monitoring, heartbeat.
All these factors and patterns are primary for
consistent and fail-tolerant infrastructure [10]. The
abstraction and standardization of the frameworks
enhance the security and the overall maintainability.

7. GPU based pipelines

The data pipelines in the industry expect regular
training cycles. This is resource consuming, but this
resource should be granted only on demand. Cloud
computing is a valid option for this use-case.

The workflows are compute-intensive but present a
choice for distributed computing. Deep learning is a
potent use-case of GPU programming [20]. By the
native integration of GPU, the training can be
accomplished more adequately without complicated
GPU scripts.

8. TFX

Tensorflow is the state-of-the-art deep learning and
computational framework [21]. Tensorflow Extended
(TFX) library and specification help the Tensorflow
model implementations in the production. A proper
pipeline can be built around the deep learning model
through its elements, like an end-to-end solution (Fig.
4). It is providing a high-performance application in
the cloud-native environment.

Through Tensorflow Extended, a standardized
TensorFlow pipeline can be created for particular
orchestrators like Airflow and Kubeflow [21]. Having
a multi-architectural approach has an advantage
because it cannot be guaranteed that the project can
obey the cloud-native principles. Integration and
workflow management is a necessity, but the target

system does not always use Kubernetes. In that case,
traditional alternatives (like Airflow) must be used.

Figure 4. Tensorflow Extended pipeline

IV. CASE STUDY: DATA PLATFORM IN

MANUFACTURING

1. Situation faced

Data science’s fundamental duty is the observation
and optimization of business processes. This journey
is like a discovery of the production. The base-line
situation is the progressed scrapping rate in
manufacturing; the selected data scientist should
investigate and analyze the root causes.

For the production-ready data-analytics result, the
data team wants to constitute a data platform. The
platform should utilize the public cloud approach;
natively, it needs GPU support besides high
availability. The cloud infrastructure should be sized
according to the actual load; more resources should
be involved in the exacting training steps. This
architecture should support the data science
department’s standard data tools like Jupyter
notebooks and python with deep learning support.
The integration layer should be capable of loading the
required data sources in the organization without any
difficulty.

2. Actions taken

The MLOps approach adds the DevOps toolstack
and cloud-native philosophy to the data workloads.
An MLOps engineer represents the way how the
model should be applied and deployed. Some
orchestration difficulties have already been resolved
through the introduction of KubeFlow in the cloud-
native environment (Fig. 5).

The chosen strategy was shifting from the simple to
more complex features. The base-line model can be
improved for better accuracy through hyperparameter
optimization and feature engineering. With a
simplistic proof of concept, the data platform
architecture can be validated for usability. Based on
the evaluation outcome, the model’s overall
performance has been improved and verified by
mainstream measurements (like accuracy, F1-score,
etc.) [22]. If the model’s correctness meets the
requirements, the deployment begins.

Data fetching
and dataset
generation

Data
checking and

schema
generation

Data
transform

Trainer
(Keras)

Model
Evaluation

and
Validation

Pushing to
the serving

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

4

Figure 1. Realized pipeline. Cloud services have
processed the input data. The created model has

been published

Through the prototype has been adapted several
times, a version controlling is required. The model
selection is also essential because the existing models
could have more excellent performance than the new
release. A basis artifact library can serve the
previously built best model.

The workflow can be altered; it triggers container
level cloud-native fundamental changes. The
produced components can manage the complete
training and evaluation workflow. Monitoring and
logging operations are assigned to primary activities.
The pipeline steps in details:
 Establishing the pipeline cloud-native

architecture based on the repository
 Data pre-processing and data digestion
 Machine learning (classical or deep learning

approach) in dedicated PODs
 Evaluation and model selection
 Deployment to the REST endpoint

The data scientists have built a promising offline
model. The deployment and extension of the pipeline
remain challenging. It takes time to reach the
production level.

3. Results achieved

It is justified to set up a pilot project for a reduced
scope for experiment purposes. The immediate
feedback can solidify the concept shortly (Fig. 6). A
production-level prototype verifies the theoretical
approach and achieves the management’s acceptance.
The testing charge is lower in that case, and the design
can be examined without higher production risks.

Figure 2. The quick feedback loop in production

By acceptance of the MLOps mindset, the research
loops become more expeditious. Through continuous
integration, the pipeline and model can be arranged
rapidly in production. Model optimization, like
hyperparameters harmonizing, claims some trials and
failures. The prompt reactions yield real business
content in production.

The MLOps gives the dynamic construction of
event-based workflows, with the native support of
distributed data processing frameworks,
implementing scale-out opportunities on the top of
the cloud-native design.

4. Lessons learned

At the first iteration, the pipeline was composed of
Jenkins jobs. It was complicated and not resembling
the data science mindset. Between the prototyping
and deployment, there was a considerable gap.
KubeFlow with Tensorflow Extended resolved this
concern. The framework accommodates a firm
context for modeling without narrowing the data
experts’ opportunities. The utilized technology grants
high-level automatization possibilities by the usage of
elements that implement specific subsequent
responsibilities. The Tensorflow Extended represents
a current, comprehensive ML pipeline, from
implementing the new business scenarios to
managing the traditional machine learning activities.

V. CONCLUSION

Some designs never reach production in the
machine learning area. A pipeline, like a structure,
supports loading and digesting the data for machine
learning procedures. The scalability is crucial because
the training expenses are soaring in the latest neural
network-based architectures; the complete workflow
should be performed in an on-demand manner in the
cloud. Cloud-native seems to be a convenient and
future-proof solution. Based on the study, the
examined strategy is the advised way for data pipeline
configuration.

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

5

ACKNOWLEDGEMENT

The publishing of this paper was supported by XY.

AUTHOR CONTRIBUTIONS

I. Pölöskei: Conceptualization, Experiments, Writing

DISCLOSURE STATEMENT

The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.

REFERENCES

[1] R. Gao, L. Wang, R. Teti, D. Dornfeld, S.
Kumara, M. Mori, M. Helu, Cloud-enabled
prognosis for manufacturing. CIRP Annals -
Manufacturing Technology 64 (2) (2015) pp.
749-772.
https://doi.org/10.1016/j.cirp.2015.05.011

[2] D. A. Tamburri, M. Miglierina, E. Di Nitto,
Cloud applications monitoring: An industrial
study. Information and Software Technology
127 (2020) 106376.
https://doi.org/10.1016/j.infsof.2020.106376

[3] L. Franceschi, M. Donini, P. Frasconi, M.
Pontil, On hyperparameter optimization in
learning systems. 5th International Conference
on Learning Representations, ICLR 2017 -
Workshop Track Proceedings.

[4] M. De Benedictis, A. Lioy, Integrity
verification of Docker containers for a light-
weight cloud environment. Future Generation
Computer Systems 97 (2019) pp. 236-246.
https://doi.org/10.1016/j.future.2019.02.026

[5] A. Martin, S. Raponi, T. Combe, R. Di Pietro,
Docker ecosystem – Vulnerability Analysis.
Computer Communications 122 (2018) pp. 30-
43.
https://doi.org/10.1016/j.comcom.2018.03.011

[6] M. Mohamed, R. Engel, A. Warke, S. Berman,
H. Ludwig, Extensible persistence as a service
for containers. Future Generation Computer
Systems 97 (2019) pp. 10-20.
https://doi.org/10.1016/j.future.2018.12.015

[7] D. Gannon, R. Barga, N. Sundaresan, Cloud-
Native Applications. IEEE Cloud Computing,
4 (2017) pp. 16-21.
https://doi.ieeecomputersociety.org/10.1109/
MCC.2017.4250939

[8] S. Peltonen, L. Mezzalira, D. Taibi,
Motivations, Benefits, and Issues for Adopting
Micro-Frontends: A Multivocal Literature
Review.
https://arxiv.org/abs/2007.00293

[9] M. Malawski, A. Gajek, A. Zima, B. Balis, K.
Figiela, Serverless execution of scientific
workflows: Experiments with HyperFlow,
AWS Lambda and Google Cloud Functions.
Future Generation Computer Systems 110
(2020) pp. 502-514.
https://doi.org/10.1016/j.future.2017.10.029

[10] S. Kho Lin, U. Altaf, G. Jayaputera, J. Li, D.
Marques, D. Meggyesy, S. Sarwar, S. Sharma,
W. Voorsluys, R. Sinnott, A. Novak, V.

Nguyen, K. Pash, Auto-Scaling a Defence
Application across the Cloud Using Docker
and Kubernetes. Proceedings - 11th
IEEE/ACM International Conference on
Utility and Cloud Computing Companion,
UCC Companion 2018.
https://doi.org/10.1109/UCC-
Companion.2018.00076

[11] D. Wu, L. Zhu, X. Xu, S. Sakr, D. Sun, Q. Lu,
Building pipelines for heterogeneous execution
environments for big data processing. IEEE
Software, 33 (2) (2016) pp. 60-67.
https://doi.org/10.1109/MS.2016.35

[12] Z. Peng, Stocks Analysis and Prediction Using
Big Data Analytics. Proceedings - 2019
International Conference on Intelligent
Transportation, Big Data and Smart City,
ICITBS 2019.
https://doi.org/10.1109/ICITBS.2019.00081

[13] I. Karamitsos, S. Albarhami, C.
Apostolopoulos, Applying DevOps Practices
of Continuous Automation for Machine
Learning. Information 11 (7) (2020) 363.
https://doi.org/10.3390/info11070363

[14] J. S. Saltz, S. Yilmazel, O. Yilmazel, Not all
software engineers can become good data
engineers. Proceedings - 2016 IEEE
International Conference on Big Data, Big Data
2016.
https://doi.org/10.1109/BigData.2016.7840939

[15] D. Baylor, K. Haas, K. Katsiapis, S. Leong, R.
Liu, C. Menwald, M. Trott, H. Miao, M.
Zinkevich, N. Polyzotis, Continuous training
for production ML in the tensorflow extended
(TFX) platform. Proceedings of the 2019
USENIX Conference on Operational Machine
Learning, OpML 2019.
https://www.usenix.org/conference/opml19/pr
esentation/baylor

[16] Google, Kubeflow [cited 2020-12-25].
https://www.kubeflow.org/

[17] Z. Li, R. Chard, L. Ward, K. Chard, T. J.
Skluzacek, Y. Babuji, A. Woodard, S. Tuecke,
B. Blaiszik, M. J. Franklin, I. Foster, DLHub:
Simplifying publication, discovery, and use of
machine learning models in science. Journal of
Parallel and Distributed Computing 147 (2021)
pp. 64-76.
https://doi.org/10.1016/j.jpdc.2020.08.006

[18] C. Avci Salma, B. Tekinerdogan, I. N.
Athanasiadis, Domain-Driven Design of Big

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

6

Data Systems Based on a Reference
Architecture. Software Architecture for Big
Data and the Cloud (2017) pp. 49-68.
https://doi.org/10.1016/b978-0-12-805467-
3.00004-1

[19] R. Mitchell, L. Pottier, S. Jacobs, R. F. Da
Silva, M. Rynge, K. Vahi, & E. Deelman,
Exploration of Workflow Management
Systems Emerging Features from Users
Perspectives. Proceedings - 2019 IEEE
International Conference on Big Data, Big Data
2019.
https://doi.org/10.1109/BigData47090.2019.90
05494

[20] F. Rouzbeh, P. Griffin, A. Grama, M.
Adibuzzaman, Collaborative Cloud Computing
Framework for Health Data with Open Source
Technologies.
https://doi.org/10.1145/3388440.3412460

[21] Google, Tensorflow [cited 2020-12-25].
https://www.tensorflow.org/

[22] M. Abdar, W. Książek, U. R. Acharya, R. S.
Tan, V. Makarenkov, P. Pławiak, A new
machine learning technique for an accurate
diagnosis of coronary artery disease. Computer
Methods and Programs in Biomedicine 179
(2019) 104992.
https://doi.org/10.1016/j.cmpb.2019.104992

This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution NonCommercial (CC BY-NC 4.0) license.

