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Abstract: The data modeling process is challenging and involves hypotheses and trials. In the industry, a 

workflow has been constructed around data modeling. The offered modernized workflow expects to 

use of the cloud’s full abilities as cloud-native services. For a flourishing big data project, the 

organization should have analytics and information-technological know-how. MLOps approach 

concentrates on the modeling, eliminating the personnel and technology gap in the deployment. In 

this article, the paradigm will be verified with a case-study in the context of composing a data pipeline 

in the cloud-native ecosystem. Based on the analysis, the considered strategy is the recommended 

way for data pipeline design. 
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I. INTRODUCTION 

Classical algorithms are apparent; they obey a clear 

logic in a human-readable manner. A machine 

learning model results from the training process by 

using unusual methods to reach the best result. The 

model evaluation might answer what the best result 

indicates. The way to the model is challenging, 

comprises assumptions and experiments. 

The data and its structure has been evolving. In an 

enterprise, a workflow has been built around data 

modeling. This base helps mine the information from 

the data swiftly and efficiently, providing the 

organization’s agility. The proposed modern 

workflow requires to use of the cloud’s full 

capabilities. Planning a workflow according to the 

infrastructure, makes the operation more affordable 

and the implementation more powerful. Since the 

public cloud providers serve on-demand invoicing, 

the reserved resources should be connected to the 

running tasks [1]. 

II. CLOUD-NATIVE 

1. Cloud benefits 

The brand-new cloud technology innovations make 

computing more affordable and manageable than in 

the on-premised environment [2]. The training 

process of a deep learning model takes some time. It 

could occur that the local settings are not able to 

manipulate massive datasets. The training quality can 

often be efficiently increased by committing more 

resources, like attaching computation-intensive 

hyperparameter optimization measures [3]. 

2. Containers 

Container technology is a state-of-the-art 

virtualization platform [4]. This approach presents an 

isolated, transportable bundle of the application with 

its dependencies. The currently applied (Docker) 

containers are originated from Linux primitives, 

implementing a process level separation [4]. 

 

Figure 1. Container building process in Docker 
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Docker containers are formed (Fig. 1) from layered 

immutable images based on their descriptor 

(Dockerfile) [5]. In the enterprise where containers 

are started and stopped dynamically by the runtime 

environment, it is advised to reduce the startup time; 

the container should be light-weight for better 

usability in the cloud-native circumstances [5]. In 

application development, the building process can be 

supported by assigned containers; the production 

container contains only the binaries with the runtime 

environment. 

According to the 12 factors application principle 

[6], the conventional container-level application 

design must utilize the cloud-native’s potential 

opportunities. The terms of the pattern, like stateless 

processes, are the primary entry points for cloud-

native use-cases. 

3. Cloud-native benefits 

The Cloud Native Computing Foundation was 

established in 2015 to promote innovative container 

technologies [7]. According to their interpretation: 

the cloud-native is the set of technologies for 

providing scalable applications in the cloud, 

including ideas like micro services, DevOps, and 

agile [8]. Furthermore, cloud-native is more than 

architecture; it is a radical change in providing and 

developing a service. The cloud-native applications 

use the cloud’s traits with its full potential. 

Containers and micro services are the fundamental 

characteristics of cloud-native applications [8]. The 

functionalities are broken down into tiny autonomous 

bits, including an API-based interface. The pieces can 

be operating individually; each part has its 

deployment and version. The containers' concept 

proves each service process-wise sovereignty and 

lessens the entire system's complexity [8]. By wholly 

practicing cloud principles, it is feasible to serve 

compliant and scalable software.  

Implementation’s rate is vital. Fleet delivering 

features for the business is a strategic advantage. 

Introduction with a DevOps mindset and Agile, state-

of-the-art deployment system can accomplish the 

business’s demands more efficiently than before [8]. 

By the usage of the cloud-native best practices, the 

suggested architecture makes the application reliable 

and fault-tolerant. The framework replaces the broken 

element with a fresh instance, operating like a self-

healing system. It preserves the functionalities by 

allocating more instances process-wise; the resources' 

dynamic usage is possible [9]. 

The state-of-the-art cloud-native solution is the 

Kubernetes, presented by Google [10]. In the 

Kubernetes, the containers are merged into POD, the 

atomic primitive in the Kubernetes ecosystem. 

Through the POD approach, the lifecycle of the 

processes can be executed through the orchestrator. 

III. DATA PIPELINE 

1. Pipeline 

The data pipeline is an adhesive code between the 

data sources and machine learning algorithms [11]. 

The code segment, as mentioned earlier, is 

continuously growing because the data composition 

strongly influences it. The data needs to be 

reconstructed and conveyed before the training 

commences. A workflow is a feasible solution, 

gathering and standardizing the required data, for 

providing high-level input for the machine learning 

algorithms. Since the entire process is divided into 

numerous levels, parallelized computing procedures 

are used [12]. 

The pipeline workflow design is not an 

uncomplicated task. Realizing the whole data 

processing requires some boilerplate codes. 

Workflow builders standardize the orchestration of 

data pipelines by using workflow engines and 

frameworks. 

2. MLOps 

Some prototypes are not deployed in the machine 

learning use-cases in the production situation because 

they may have concerns with the more prominent 

data-load or scaling, scheduling, or the integration to 

the data sources. For a successful big data project, the 

organization should have analytics and infrastructure 

expertise; they need to have a comprehensive plan 

about deploying the model and the production 

dataset’s training cycles.  

As a bridge linking the data scientist and software 

engineer, a unique responsible role is a viable solution 

to tackle machine learning models to production as 

soon as possible. This specialist needs to have a 

global picture of the model lifecycle, like organizing 

each stage’s main interactions [13]. Infrastructural 

coordination is necessary for having efficient 

architectural usage and automatized, high-quality 

input data from diversified sources. It makes the 

deployment cycles of the models regular. 

The role of MLOps as a Machine Learning branch 

of the DevOps is accepted in the machine learning 

domain [13]. It is a compound of operation, machine 

learning, and business understanding. All of them are 

distinct competencies. The DevOps methodology is 

for the speed and effectiveness of development and 

deployment, providing the project’s adaptability in 

line with the agile [13]. MLOps is the same approach 

but focuses on the model development for eliminating 

the personnel and technology gap in the deployment. 

It concentrates on model formulation, evaluation, 

deployment, and monitoring. The new cloud-based 

solutions promote this approach vigorously. 
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3. Data platform 

The data solution performs some steps in the data 

use-case, like the data-preparation, training, model 

verification, feature selection [12]. Achieving a data 

solution is challenging because it involves some 

perspectives like mathematics, informatics, and 

business [14]. It was stimulating to present a solution 

for data scientists in the last years, granting the 

possibility to deploy their model without code 

modifications in a productive environment. The 

complexity should be diminished through the modern 

data frameworks, giving a portable, scalable, and 

efficient infrastructure for the data experts. Managing 

the existing, same locally tested code, in the cloud 

environment, without an extensive perception of the 

cluster is an immense business value. The team can 

focus on the business, not on the cloud-native 

infrastructure or deployment. The effort to the 

productive data solution has been simplified, but the 

actual performance is to build an integrated fail-

tolerant data infrastructure. 

If the model has been constructed, the business 

should apply it. Conventional components also 

support the deployment section, like the TensorFlow 

Serving library [15]. The implementation unit or 

product support should permanently observe the 

usage of the model. Sometimes, the prototype should 

be aligned with the current data structure or obscure 

data patterns (Fig. 2). The model should be retrained 

for being up-to-date. 

 

Figure 2. Prototyping process 

A CI/CD pipeline like a data platform is an added 

advantage because it accommodates the rapid 

prototyping process. Data science can explore their 

new idea directly in production. The new model can 

be deployed smoothly through some automatisms, 

producing business value as soon as possible in the 

continuously varying business environment. 

According to the MLOps principle, the Machine 

Learning tasks and artifacts can be combined with 

mainstream DevOps instruments [13]. 

4. Cloud-native pipelines 

Kubernetes and TensorFlow are the prime open-

source brands that were started by Google [16]. By 

them, some modern infrastructure has been 

established for giving improved solutions for novel 

problems. As their union, the KubeFlow is a state-of-

the-art toolkit in a self-managed cloud-native 

ecosystem [17].  

Kubeflow is an open-source cloud-native platform 

for developing data pipelines and workflows. It is a 

potent mixture of pipeline approach with cloud-native 

foundation [17]. It clarifies and normalizes the whole 

machine learning sequence in the cloud. 

Machine learning and deep learning should be used 

with active data-processing in the cloud to determine 

contemporary data problems. According to the use-

case discussed earlier, the KubeFlow may work as a 

fundamental part of its cloud-native strategy. 

5. Workflow as graph 

A pipeline can operate on the cluster. This 

procedure is cost-effective because the scaling-out is 

more affordable than the scaling-up [18]. Since the 

workflow is composed as a DAG (directed acyclic 

graph), each job can be executed as a DAG node [19]. 

Each task can be grouped by components (like 

python functions). The components, like regular 

atomic elements, can interact through their inputs and 

outputs. The low-level segments are not responsible 

for the cloud-naiveness. In the framework, the 

orchestrator is responsible for the supervision of the 

elements. The data specialists must not implement the 

infrastructure; they can only focus on their business 

processes [19]. 

Other pipelines can re-use each operator or 

component. By them, the entire pipeline can be 

controlled on the tasks level. The flow is visualized 

graphically, and each part has its log-stream. That 

facilitates the bug finding and fixing in the 

production. 

For the coding, the KubeFlow accommodates 

jupyter notebooks as a standard coding context [17]. 

It is a popular conventional solution in the machine-

learning society, strongly supports feature 

engineering and model fabricating. Through the built-

in visualization, the data scientist can adequately 

decipher the information of the data. By a jupyter 

service provision, the most popular dependencies and 

libraries can be included by default; the resource 

quotas can also be configured. The configured 

runtimes can use GPU assistance as well (Fig. 3). 

6. Infrastructure based on the pipeline 

Establishing the infrastructure on the POD level of 

the nodes is complex. New frameworks, like 

Kubeflow, allow constructing pipelines at the code 

level without explaining them in any descriptor files. 

The script can control the whole infrastructure; the 

designed program can be scaled based on the load in 

a portable style [16]. This is propitious for machine 

learning use-cases when the training cycles are more 

resource-demanding than the prediction use-cases. 

The billing is based on consumption in the cloud; the 
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corporation should not keep any additional resources 

when it is not necessary. 

 

Figure 3. Kubeflow landscape 

The critical advantage of cloud-native 

infrastructure, the built-in features for the provision 

of the services. ReplicaSets, monitoring, heartbeat. 

All these factors and patterns are primary for 

consistent and fail-tolerant infrastructure [10]. The 

abstraction and standardization of the frameworks 

enhance the security and the overall maintainability. 

7. GPU based pipelines 

The data pipelines in the industry expect regular 

training cycles. This is resource consuming, but this 

resource should be granted only on demand. Cloud 

computing is a valid option for this use-case. 

The workflows are compute-intensive but present a 

choice for distributed computing. Deep learning is a 

potent use-case of GPU programming [20]. By the 

native integration of GPU, the training can be 

accomplished more adequately without complicated 

GPU scripts. 

8. TFX 

Tensorflow is the state-of-the-art deep learning and 

computational framework [21]. Tensorflow Extended 

(TFX) library and specification help the Tensorflow 

model implementations in the production. A proper 

pipeline can be built around the deep learning model 

through its elements, like an end-to-end solution (Fig. 

4). It is providing a high-performance application in 

the cloud-native environment. 

Through Tensorflow Extended, a standardized 

TensorFlow pipeline can be created for particular 

orchestrators like Airflow and Kubeflow [21]. Having 

a multi-architectural approach has an advantage 

because it cannot be guaranteed that the project can 

obey the cloud-native principles. Integration and 

workflow management is a necessity, but the target 

system does not always use Kubernetes. In that case, 

traditional alternatives (like Airflow) must be used. 

 

Figure 4. Tensorflow Extended pipeline 

IV. CASE STUDY: DATA PLATFORM IN 

MANUFACTURING 

1. Situation faced 

Data science’s fundamental duty is the observation 

and optimization of business processes. This journey 

is like a discovery of the production. The base-line 

situation is the progressed scrapping rate in 

manufacturing; the selected data scientist should 

investigate and analyze the root causes. 

For the production-ready data-analytics result, the 

data team wants to constitute a data platform. The 

platform should utilize the public cloud approach; 

natively, it needs GPU support besides high 

availability. The cloud infrastructure should be sized 

according to the actual load; more resources should 

be involved in the exacting training steps. This 

architecture should support the data science 

department’s standard data tools like Jupyter 

notebooks and python with deep learning support. 

The integration layer should be capable of loading the 

required data sources in the organization without any 

difficulty. 

2. Actions taken 

The MLOps approach adds the DevOps toolstack 

and cloud-native philosophy to the data workloads. 

An MLOps engineer represents the way how the 

model should be applied and deployed. Some 

orchestration difficulties have already been resolved 

through the introduction of KubeFlow in the cloud-

native environment (Fig. 5).  

The chosen strategy was shifting from the simple to 

more complex features. The base-line model can be 

improved for better accuracy through hyperparameter 

optimization and feature engineering. With a 

simplistic proof of concept, the data platform 

architecture can be validated for usability. Based on 

the evaluation outcome, the model’s overall 

performance has been improved and verified by 

mainstream measurements (like accuracy, F1-score, 

etc.) [22]. If the model’s correctness meets the 

requirements, the deployment begins. 

Data fetching 
and dataset 
generation

Data 
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generation

Data 
transform
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Figure 1. Realized pipeline. Cloud services have 

processed the input data. The created model has 

been published 

Through the prototype has been adapted several 

times, a version controlling is required. The model 

selection is also essential because the existing models 

could have more excellent performance than the new 

release. A basis artifact library can serve the 

previously built best model. 

The workflow can be altered; it triggers container 

level cloud-native fundamental changes. The 

produced components can manage the complete 

training and evaluation workflow. Monitoring and 

logging operations are assigned to primary activities. 

The pipeline steps in details: 

 Establishing the pipeline cloud-native 

architecture based on the repository 

 Data pre-processing and data digestion 

 Machine learning (classical or deep learning 

approach) in dedicated PODs 

 Evaluation and model selection 

 Deployment to the REST endpoint 

The data scientists have built a promising offline 

model. The deployment and extension of the pipeline 

remain challenging. It takes time to reach the 

production level. 

3. Results achieved 

It is justified to set up a pilot project for a reduced 

scope for experiment purposes. The immediate 

feedback can solidify the concept shortly (Fig. 6). A 

production-level prototype verifies the theoretical 

approach and achieves the management’s acceptance. 

The testing charge is lower in that case, and the design 

can be examined without higher production risks. 

 

Figure 2. The quick feedback loop in production 

By acceptance of the MLOps mindset, the research 

loops become more expeditious. Through continuous 

integration, the pipeline and model can be arranged 

rapidly in production. Model optimization, like 

hyperparameters harmonizing, claims some trials and 

failures. The prompt reactions yield real business 

content in production. 

The MLOps gives the dynamic construction of 

event-based workflows, with the native support of 

distributed data processing frameworks, 

implementing scale-out opportunities on the top of 

the cloud-native design. 

4. Lessons learned 

At the first iteration, the pipeline was composed of 

Jenkins jobs. It was complicated and not resembling 

the data science mindset. Between the prototyping 

and deployment, there was a considerable gap. 

KubeFlow with Tensorflow Extended resolved this 

concern. The framework accommodates a firm 

context for modeling without narrowing the data 

experts’ opportunities. The utilized technology grants 

high-level automatization possibilities by the usage of 

elements that implement specific subsequent 

responsibilities. The Tensorflow Extended represents 

a current, comprehensive ML pipeline, from 

implementing the new business scenarios to 

managing the traditional machine learning activities. 

V. CONCLUSION 

Some designs never reach production in the 

machine learning area. A pipeline, like a structure, 

supports loading and digesting the data for machine 

learning procedures. The scalability is crucial because 

the training expenses are soaring in the latest neural 

network-based architectures; the complete workflow 

should be performed in an on-demand manner in the 

cloud. Cloud-native seems to be a convenient and 

future-proof solution. Based on the study, the 

examined strategy is the advised way for data pipeline 

configuration. 
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