

ACTA TECHNICA JAURINENSIS

Vol. 15, No. 1, pp. 1-6, 2022

10.14513/actatechjaur.00581

1

MLOps approach in the cloud-native data pipeline design

István Pölöskei1,*

1Adesso Hungary Kft.

Infopark sétány 1, 1117 Budapest, Hungary

*e-mail: istvan.poeloeskei@adesso.eu

Submitted: 25/12/2020 Accepted: 21/03/2021 Published online: 09/04/2021

Abstract: The data modeling process is challenging and involves hypotheses and trials. In the industry, a

workflow has been constructed around data modeling. The offered modernized workflow expects to

use of the cloud’s full abilities as cloud-native services. For a flourishing big data project, the

organization should have analytics and information-technological know-how. MLOps approach

concentrates on the modeling, eliminating the personnel and technology gap in the deployment. In

this article, the paradigm will be verified with a case-study in the context of composing a data pipeline

in the cloud-native ecosystem. Based on the analysis, the considered strategy is the recommended

way for data pipeline design.

Keywords: MLOps; cloud-native; data pipeline; machine learning

I. INTRODUCTION

Classical algorithms are apparent; they obey a clear

logic in a human-readable manner. A machine

learning model results from the training process by

using unusual methods to reach the best result. The

model evaluation might answer what the best result

indicates. The way to the model is challenging,

comprises assumptions and experiments.

The data and its structure has been evolving. In an

enterprise, a workflow has been built around data

modeling. This base helps mine the information from

the data swiftly and efficiently, providing the

organization’s agility. The proposed modern

workflow requires to use of the cloud’s full

capabilities. Planning a workflow according to the

infrastructure, makes the operation more affordable

and the implementation more powerful. Since the

public cloud providers serve on-demand invoicing,

the reserved resources should be connected to the

running tasks [1].

II. CLOUD-NATIVE

1. Cloud benefits

The brand-new cloud technology innovations make

computing more affordable and manageable than in

the on-premised environment [2]. The training

process of a deep learning model takes some time. It

could occur that the local settings are not able to

manipulate massive datasets. The training quality can

often be efficiently increased by committing more

resources, like attaching computation-intensive

hyperparameter optimization measures [3].

2. Containers

Container technology is a state-of-the-art

virtualization platform [4]. This approach presents an

isolated, transportable bundle of the application with

its dependencies. The currently applied (Docker)

containers are originated from Linux primitives,

implementing a process level separation [4].

Figure 1. Container building process in Docker

Application
bundle

Build process

Image

Containers

https://dx.doi.org/10.14513/actatechjaur.00581

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

1

Docker containers are formed (Fig. 1) from layered

immutable images based on their descriptor

(Dockerfile) [5]. In the enterprise where containers

are started and stopped dynamically by the runtime

environment, it is advised to reduce the startup time;

the container should be light-weight for better

usability in the cloud-native circumstances [5]. In

application development, the building process can be

supported by assigned containers; the production

container contains only the binaries with the runtime

environment.

According to the 12 factors application principle

[6], the conventional container-level application

design must utilize the cloud-native’s potential

opportunities. The terms of the pattern, like stateless

processes, are the primary entry points for cloud-

native use-cases.

3. Cloud-native benefits

The Cloud Native Computing Foundation was

established in 2015 to promote innovative container

technologies [7]. According to their interpretation:

the cloud-native is the set of technologies for

providing scalable applications in the cloud,

including ideas like micro services, DevOps, and

agile [8]. Furthermore, cloud-native is more than

architecture; it is a radical change in providing and

developing a service. The cloud-native applications

use the cloud’s traits with its full potential.

Containers and micro services are the fundamental

characteristics of cloud-native applications [8]. The

functionalities are broken down into tiny autonomous

bits, including an API-based interface. The pieces can

be operating individually; each part has its

deployment and version. The containers' concept

proves each service process-wise sovereignty and

lessens the entire system's complexity [8]. By wholly

practicing cloud principles, it is feasible to serve

compliant and scalable software.

Implementation’s rate is vital. Fleet delivering

features for the business is a strategic advantage.

Introduction with a DevOps mindset and Agile, state-

of-the-art deployment system can accomplish the

business’s demands more efficiently than before [8].

By the usage of the cloud-native best practices, the

suggested architecture makes the application reliable

and fault-tolerant. The framework replaces the broken

element with a fresh instance, operating like a self-

healing system. It preserves the functionalities by

allocating more instances process-wise; the resources'

dynamic usage is possible [9].

The state-of-the-art cloud-native solution is the

Kubernetes, presented by Google [10]. In the

Kubernetes, the containers are merged into POD, the

atomic primitive in the Kubernetes ecosystem.

Through the POD approach, the lifecycle of the

processes can be executed through the orchestrator.

III. DATA PIPELINE

1. Pipeline

The data pipeline is an adhesive code between the

data sources and machine learning algorithms [11].

The code segment, as mentioned earlier, is

continuously growing because the data composition

strongly influences it. The data needs to be

reconstructed and conveyed before the training

commences. A workflow is a feasible solution,

gathering and standardizing the required data, for

providing high-level input for the machine learning

algorithms. Since the entire process is divided into

numerous levels, parallelized computing procedures

are used [12].

The pipeline workflow design is not an

uncomplicated task. Realizing the whole data

processing requires some boilerplate codes.

Workflow builders standardize the orchestration of

data pipelines by using workflow engines and

frameworks.

2. MLOps

Some prototypes are not deployed in the machine

learning use-cases in the production situation because

they may have concerns with the more prominent

data-load or scaling, scheduling, or the integration to

the data sources. For a successful big data project, the

organization should have analytics and infrastructure

expertise; they need to have a comprehensive plan

about deploying the model and the production

dataset’s training cycles.

As a bridge linking the data scientist and software

engineer, a unique responsible role is a viable solution

to tackle machine learning models to production as

soon as possible. This specialist needs to have a

global picture of the model lifecycle, like organizing

each stage’s main interactions [13]. Infrastructural

coordination is necessary for having efficient

architectural usage and automatized, high-quality

input data from diversified sources. It makes the

deployment cycles of the models regular.

The role of MLOps as a Machine Learning branch

of the DevOps is accepted in the machine learning

domain [13]. It is a compound of operation, machine

learning, and business understanding. All of them are

distinct competencies. The DevOps methodology is

for the speed and effectiveness of development and

deployment, providing the project’s adaptability in

line with the agile [13]. MLOps is the same approach

but focuses on the model development for eliminating

the personnel and technology gap in the deployment.

It concentrates on model formulation, evaluation,

deployment, and monitoring. The new cloud-based

solutions promote this approach vigorously.

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

2

3. Data platform

The data solution performs some steps in the data

use-case, like the data-preparation, training, model

verification, feature selection [12]. Achieving a data

solution is challenging because it involves some

perspectives like mathematics, informatics, and

business [14]. It was stimulating to present a solution

for data scientists in the last years, granting the

possibility to deploy their model without code

modifications in a productive environment. The

complexity should be diminished through the modern

data frameworks, giving a portable, scalable, and

efficient infrastructure for the data experts. Managing

the existing, same locally tested code, in the cloud

environment, without an extensive perception of the

cluster is an immense business value. The team can

focus on the business, not on the cloud-native

infrastructure or deployment. The effort to the

productive data solution has been simplified, but the

actual performance is to build an integrated fail-

tolerant data infrastructure.

If the model has been constructed, the business

should apply it. Conventional components also

support the deployment section, like the TensorFlow

Serving library [15]. The implementation unit or

product support should permanently observe the

usage of the model. Sometimes, the prototype should

be aligned with the current data structure or obscure

data patterns (Fig. 2). The model should be retrained

for being up-to-date.

Figure 2. Prototyping process

A CI/CD pipeline like a data platform is an added

advantage because it accommodates the rapid

prototyping process. Data science can explore their

new idea directly in production. The new model can

be deployed smoothly through some automatisms,

producing business value as soon as possible in the

continuously varying business environment.

According to the MLOps principle, the Machine

Learning tasks and artifacts can be combined with

mainstream DevOps instruments [13].

4. Cloud-native pipelines

Kubernetes and TensorFlow are the prime open-

source brands that were started by Google [16]. By

them, some modern infrastructure has been

established for giving improved solutions for novel

problems. As their union, the KubeFlow is a state-of-

the-art toolkit in a self-managed cloud-native

ecosystem [17].

Kubeflow is an open-source cloud-native platform

for developing data pipelines and workflows. It is a

potent mixture of pipeline approach with cloud-native

foundation [17]. It clarifies and normalizes the whole

machine learning sequence in the cloud.

Machine learning and deep learning should be used

with active data-processing in the cloud to determine

contemporary data problems. According to the use-

case discussed earlier, the KubeFlow may work as a

fundamental part of its cloud-native strategy.

5. Workflow as graph

A pipeline can operate on the cluster. This

procedure is cost-effective because the scaling-out is

more affordable than the scaling-up [18]. Since the

workflow is composed as a DAG (directed acyclic

graph), each job can be executed as a DAG node [19].

Each task can be grouped by components (like

python functions). The components, like regular

atomic elements, can interact through their inputs and

outputs. The low-level segments are not responsible

for the cloud-naiveness. In the framework, the

orchestrator is responsible for the supervision of the

elements. The data specialists must not implement the

infrastructure; they can only focus on their business

processes [19].

Other pipelines can re-use each operator or

component. By them, the entire pipeline can be

controlled on the tasks level. The flow is visualized

graphically, and each part has its log-stream. That

facilitates the bug finding and fixing in the

production.

For the coding, the KubeFlow accommodates

jupyter notebooks as a standard coding context [17].

It is a popular conventional solution in the machine-

learning society, strongly supports feature

engineering and model fabricating. Through the built-

in visualization, the data scientist can adequately

decipher the information of the data. By a jupyter

service provision, the most popular dependencies and

libraries can be included by default; the resource

quotas can also be configured. The configured

runtimes can use GPU assistance as well (Fig. 3).

6. Infrastructure based on the pipeline

Establishing the infrastructure on the POD level of

the nodes is complex. New frameworks, like

Kubeflow, allow constructing pipelines at the code

level without explaining them in any descriptor files.

The script can control the whole infrastructure; the

designed program can be scaled based on the load in

a portable style [16]. This is propitious for machine

learning use-cases when the training cycles are more

resource-demanding than the prediction use-cases.

The billing is based on consumption in the cloud; the

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

3

corporation should not keep any additional resources

when it is not necessary.

Figure 3. Kubeflow landscape

The critical advantage of cloud-native

infrastructure, the built-in features for the provision

of the services. ReplicaSets, monitoring, heartbeat.

All these factors and patterns are primary for

consistent and fail-tolerant infrastructure [10]. The

abstraction and standardization of the frameworks

enhance the security and the overall maintainability.

7. GPU based pipelines

The data pipelines in the industry expect regular

training cycles. This is resource consuming, but this

resource should be granted only on demand. Cloud

computing is a valid option for this use-case.

The workflows are compute-intensive but present a

choice for distributed computing. Deep learning is a

potent use-case of GPU programming [20]. By the

native integration of GPU, the training can be

accomplished more adequately without complicated

GPU scripts.

8. TFX

Tensorflow is the state-of-the-art deep learning and

computational framework [21]. Tensorflow Extended

(TFX) library and specification help the Tensorflow

model implementations in the production. A proper

pipeline can be built around the deep learning model

through its elements, like an end-to-end solution (Fig.

4). It is providing a high-performance application in

the cloud-native environment.

Through Tensorflow Extended, a standardized

TensorFlow pipeline can be created for particular

orchestrators like Airflow and Kubeflow [21]. Having

a multi-architectural approach has an advantage

because it cannot be guaranteed that the project can

obey the cloud-native principles. Integration and

workflow management is a necessity, but the target

system does not always use Kubernetes. In that case,

traditional alternatives (like Airflow) must be used.

Figure 4. Tensorflow Extended pipeline

IV. CASE STUDY: DATA PLATFORM IN

MANUFACTURING

1. Situation faced

Data science’s fundamental duty is the observation

and optimization of business processes. This journey

is like a discovery of the production. The base-line

situation is the progressed scrapping rate in

manufacturing; the selected data scientist should

investigate and analyze the root causes.

For the production-ready data-analytics result, the

data team wants to constitute a data platform. The

platform should utilize the public cloud approach;

natively, it needs GPU support besides high

availability. The cloud infrastructure should be sized

according to the actual load; more resources should

be involved in the exacting training steps. This

architecture should support the data science

department’s standard data tools like Jupyter

notebooks and python with deep learning support.

The integration layer should be capable of loading the

required data sources in the organization without any

difficulty.

2. Actions taken

The MLOps approach adds the DevOps toolstack

and cloud-native philosophy to the data workloads.

An MLOps engineer represents the way how the

model should be applied and deployed. Some

orchestration difficulties have already been resolved

through the introduction of KubeFlow in the cloud-

native environment (Fig. 5).

The chosen strategy was shifting from the simple to

more complex features. The base-line model can be

improved for better accuracy through hyperparameter

optimization and feature engineering. With a

simplistic proof of concept, the data platform

architecture can be validated for usability. Based on

the evaluation outcome, the model’s overall

performance has been improved and verified by

mainstream measurements (like accuracy, F1-score,

etc.) [22]. If the model’s correctness meets the

requirements, the deployment begins.

Data fetching
and dataset
generation

Data
checking and

schema
generation

Data
transform

Trainer
(Keras)

Model
Evaluation

and
Validation

Pushing to
the serving

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

4

Figure 1. Realized pipeline. Cloud services have

processed the input data. The created model has

been published

Through the prototype has been adapted several

times, a version controlling is required. The model

selection is also essential because the existing models

could have more excellent performance than the new

release. A basis artifact library can serve the

previously built best model.

The workflow can be altered; it triggers container

level cloud-native fundamental changes. The

produced components can manage the complete

training and evaluation workflow. Monitoring and

logging operations are assigned to primary activities.

The pipeline steps in details:

 Establishing the pipeline cloud-native

architecture based on the repository

 Data pre-processing and data digestion

 Machine learning (classical or deep learning

approach) in dedicated PODs

 Evaluation and model selection

 Deployment to the REST endpoint

The data scientists have built a promising offline

model. The deployment and extension of the pipeline

remain challenging. It takes time to reach the

production level.

3. Results achieved

It is justified to set up a pilot project for a reduced

scope for experiment purposes. The immediate

feedback can solidify the concept shortly (Fig. 6). A

production-level prototype verifies the theoretical

approach and achieves the management’s acceptance.

The testing charge is lower in that case, and the design

can be examined without higher production risks.

Figure 2. The quick feedback loop in production

By acceptance of the MLOps mindset, the research

loops become more expeditious. Through continuous

integration, the pipeline and model can be arranged

rapidly in production. Model optimization, like

hyperparameters harmonizing, claims some trials and

failures. The prompt reactions yield real business

content in production.

The MLOps gives the dynamic construction of

event-based workflows, with the native support of

distributed data processing frameworks,

implementing scale-out opportunities on the top of

the cloud-native design.

4. Lessons learned

At the first iteration, the pipeline was composed of

Jenkins jobs. It was complicated and not resembling

the data science mindset. Between the prototyping

and deployment, there was a considerable gap.

KubeFlow with Tensorflow Extended resolved this

concern. The framework accommodates a firm

context for modeling without narrowing the data

experts’ opportunities. The utilized technology grants

high-level automatization possibilities by the usage of

elements that implement specific subsequent

responsibilities. The Tensorflow Extended represents

a current, comprehensive ML pipeline, from

implementing the new business scenarios to

managing the traditional machine learning activities.

V. CONCLUSION

Some designs never reach production in the

machine learning area. A pipeline, like a structure,

supports loading and digesting the data for machine

learning procedures. The scalability is crucial because

the training expenses are soaring in the latest neural

network-based architectures; the complete workflow

should be performed in an on-demand manner in the

cloud. Cloud-native seems to be a convenient and

future-proof solution. Based on the study, the

examined strategy is the advised way for data pipeline

configuration.

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

5

ACKNOWLEDGEMENT

The publishing of this paper was supported by XY.

AUTHOR CONTRIBUTIONS

I. Pölöskei: Conceptualization, Experiments, Writing

DISCLOSURE STATEMENT

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

REFERENCES

[1] R. Gao, L. Wang, R. Teti, D. Dornfeld, S.

Kumara, M. Mori, M. Helu, Cloud-enabled

prognosis for manufacturing. CIRP Annals -

Manufacturing Technology 64 (2) (2015) pp.

749-772.

https://doi.org/10.1016/j.cirp.2015.05.011

[2] D. A. Tamburri, M. Miglierina, E. Di Nitto,

Cloud applications monitoring: An industrial

study. Information and Software Technology

127 (2020) 106376.

https://doi.org/10.1016/j.infsof.2020.106376

[3] L. Franceschi, M. Donini, P. Frasconi, M.

Pontil, On hyperparameter optimization in

learning systems. 5th International Conference

on Learning Representations, ICLR 2017 -

Workshop Track Proceedings.

[4] M. De Benedictis, A. Lioy, Integrity

verification of Docker containers for a light-

weight cloud environment. Future Generation

Computer Systems 97 (2019) pp. 236-246.

https://doi.org/10.1016/j.future.2019.02.026

[5] A. Martin, S. Raponi, T. Combe, R. Di Pietro,

Docker ecosystem – Vulnerability Analysis.

Computer Communications 122 (2018) pp. 30-

43.

https://doi.org/10.1016/j.comcom.2018.03.011

[6] M. Mohamed, R. Engel, A. Warke, S. Berman,

H. Ludwig, Extensible persistence as a service

for containers. Future Generation Computer

Systems 97 (2019) pp. 10-20.

https://doi.org/10.1016/j.future.2018.12.015

[7] D. Gannon, R. Barga, N. Sundaresan, Cloud-

Native Applications. IEEE Cloud Computing,

4 (2017) pp. 16-21.

https://doi.ieeecomputersociety.org/10.1109/

MCC.2017.4250939

[8] S. Peltonen, L. Mezzalira, D. Taibi,

Motivations, Benefits, and Issues for Adopting

Micro-Frontends: A Multivocal Literature

Review.

https://arxiv.org/abs/2007.00293

[9] M. Malawski, A. Gajek, A. Zima, B. Balis, K.

Figiela, Serverless execution of scientific

workflows: Experiments with HyperFlow,

AWS Lambda and Google Cloud Functions.

Future Generation Computer Systems 110

(2020) pp. 502-514.

https://doi.org/10.1016/j.future.2017.10.029

[10] S. Kho Lin, U. Altaf, G. Jayaputera, J. Li, D.

Marques, D. Meggyesy, S. Sarwar, S. Sharma,

W. Voorsluys, R. Sinnott, A. Novak, V.

Nguyen, K. Pash, Auto-Scaling a Defence

Application across the Cloud Using Docker

and Kubernetes. Proceedings - 11th

IEEE/ACM International Conference on

Utility and Cloud Computing Companion,

UCC Companion 2018.

https://doi.org/10.1109/UCC-

Companion.2018.00076

[11] D. Wu, L. Zhu, X. Xu, S. Sakr, D. Sun, Q. Lu,

Building pipelines for heterogeneous execution

environments for big data processing. IEEE

Software, 33 (2) (2016) pp. 60-67.

https://doi.org/10.1109/MS.2016.35

[12] Z. Peng, Stocks Analysis and Prediction Using

Big Data Analytics. Proceedings - 2019

International Conference on Intelligent

Transportation, Big Data and Smart City,

ICITBS 2019.

https://doi.org/10.1109/ICITBS.2019.00081

[13] I. Karamitsos, S. Albarhami, C.

Apostolopoulos, Applying DevOps Practices

of Continuous Automation for Machine

Learning. Information 11 (7) (2020) 363.

https://doi.org/10.3390/info11070363

[14] J. S. Saltz, S. Yilmazel, O. Yilmazel, Not all

software engineers can become good data

engineers. Proceedings - 2016 IEEE

International Conference on Big Data, Big Data

2016.

https://doi.org/10.1109/BigData.2016.7840939

[15] D. Baylor, K. Haas, K. Katsiapis, S. Leong, R.

Liu, C. Menwald, M. Trott, H. Miao, M.

Zinkevich, N. Polyzotis, Continuous training

for production ML in the tensorflow extended

(TFX) platform. Proceedings of the 2019

USENIX Conference on Operational Machine

Learning, OpML 2019.

https://www.usenix.org/conference/opml19/pr

esentation/baylor

[16] Google, Kubeflow [cited 2020-12-25].

https://www.kubeflow.org/

[17] Z. Li, R. Chard, L. Ward, K. Chard, T. J.

Skluzacek, Y. Babuji, A. Woodard, S. Tuecke,

B. Blaiszik, M. J. Franklin, I. Foster, DLHub:

Simplifying publication, discovery, and use of

machine learning models in science. Journal of

Parallel and Distributed Computing 147 (2021)

pp. 64-76.

https://doi.org/10.1016/j.jpdc.2020.08.006

[18] C. Avci Salma, B. Tekinerdogan, I. N.

Athanasiadis, Domain-Driven Design of Big

https://doi.org/10.1016/j.cirp.2015.05.011
https://doi.org/10.1016/j.infsof.2020.106376
https://doi.org/10.1016/j.future.2019.02.026
https://doi.org/10.1016/j.comcom.2018.03.011
https://doi.org/10.1016/j.future.2018.12.015
https://doi.ieeecomputersociety.org/10.1109/MCC.2017.4250939
https://doi.ieeecomputersociety.org/10.1109/MCC.2017.4250939
https://arxiv.org/abs/2007.00293
https://doi.org/10.1016/j.future.2017.10.029
https://doi.org/10.1109/UCC-Companion.2018.00076
https://doi.org/10.1109/UCC-Companion.2018.00076
https://doi.org/10.1109/MS.2016.35
https://doi.org/10.1109/ICITBS.2019.00081
https://doi.org/10.3390/info11070363
https://doi.org/10.1109/BigData.2016.7840939
https://www.usenix.org/conference/opml19/presentation/baylor
https://www.usenix.org/conference/opml19/presentation/baylor
https://www.kubeflow.org/
https://doi.org/10.1016/j.jpdc.2020.08.006

I. Pölöskei – Acta Technica Jaurinensis, Vol. 15, No. 1, pp. 1-6, 2022

6

Data Systems Based on a Reference

Architecture. Software Architecture for Big

Data and the Cloud (2017) pp. 49-68.

https://doi.org/10.1016/b978-0-12-805467-

3.00004-1

[19] R. Mitchell, L. Pottier, S. Jacobs, R. F. Da

Silva, M. Rynge, K. Vahi, & E. Deelman,

Exploration of Workflow Management

Systems Emerging Features from Users

Perspectives. Proceedings - 2019 IEEE

International Conference on Big Data, Big Data

2019.

https://doi.org/10.1109/BigData47090.2019.90

05494

[20] F. Rouzbeh, P. Griffin, A. Grama, M.

Adibuzzaman, Collaborative Cloud Computing

Framework for Health Data with Open Source

Technologies.

https://doi.org/10.1145/3388440.3412460

[21] Google, Tensorflow [cited 2020-12-25].

https://www.tensorflow.org/

[22] M. Abdar, W. Książek, U. R. Acharya, R. S.

Tan, V. Makarenkov, P. Pławiak, A new

machine learning technique for an accurate

diagnosis of coronary artery disease. Computer

Methods and Programs in Biomedicine 179

(2019) 104992.

https://doi.org/10.1016/j.cmpb.2019.104992

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution NonCommercial (CC BY-NC 4.0) license.

https://doi.org/10.1016/b978-0-12-805467-3.00004-1
https://doi.org/10.1016/b978-0-12-805467-3.00004-1
https://doi.org/10.1109/BigData47090.2019.9005494
https://doi.org/10.1109/BigData47090.2019.9005494
https://doi.org/10.1145/3388440.3412460
https://www.tensorflow.org/
https://doi.org/10.1016/j.cmpb.2019.104992
https://creativecommons.org/licenses/by-nc/4.0/

