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Abstract: The data modeling process is challenging and involves hypotheses and trials. In the industry, a 
workflow has been constructed around data modeling. The offered modernized workflow expects to 
use of the cloud’s full abilities as cloud-native services. For a flourishing big data project, the 
organization should have analytics and information-technological know-how. MLOps approach 
concentrates on the modeling, eliminating the personnel and technology gap in the deployment. In 
this article, the paradigm will be verified with a case-study in the context of composing a data pipeline 
in the cloud-native ecosystem. Based on the analysis, the considered strategy is the recommended 
way for data pipeline design. 
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I. INTRODUCTION 

Classical algorithms are apparent; they obey a clear 
logic in a human-readable manner. A machine 
learning model results from the training process by 
using unusual methods to reach the best result. The 
model evaluation might answer what the best result 
indicates. The way to the model is challenging, 
comprises assumptions and experiments. 

The data and its structure has been evolving. In an 
enterprise, a workflow has been built around data 
modeling. This base helps mine the information from 
the data swiftly and efficiently, providing the 
organization’s agility. The proposed modern 
workflow requires to use of the cloud’s full 
capabilities. Planning a workflow according to the 
infrastructure, makes the operation more affordable 
and the implementation more powerful. Since the 
public cloud providers serve on-demand invoicing, 
the reserved resources should be connected to the 
running tasks [1]. 

II. CLOUD-NATIVE 

1. Cloud benefits 

The brand-new cloud technology innovations make 
computing more affordable and manageable than in 
the on-premised environment [2]. The training 
process of a deep learning model takes some time. It 
could occur that the local settings are not able to 
manipulate massive datasets. The training quality can 

often be efficiently increased by committing more 
resources, like attaching computation-intensive 
hyperparameter optimization measures [3]. 

2. Containers 

Container technology is a state-of-the-art 
virtualization platform [4]. This approach presents an 
isolated, transportable bundle of the application with 
its dependencies. The currently applied (Docker) 
containers are originated from Linux primitives, 
implementing a process level separation [4]. 

 

Figure 1. Container building process in Docker 
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Docker containers are formed (Fig. 1) from layered 
immutable images based on their descriptor 
(Dockerfile) [5]. In the enterprise where containers 
are started and stopped dynamically by the runtime 
environment, it is advised to reduce the startup time; 
the container should be light-weight for better 
usability in the cloud-native circumstances [5]. In 
application development, the building process can be 
supported by assigned containers; the production 
container contains only the binaries with the runtime 
environment. 

According to the 12 factors application principle 
[6], the conventional container-level application 
design must utilize the cloud-native’s potential 
opportunities. The terms of the pattern, like stateless 
processes, are the primary entry points for cloud-
native use-cases. 

3. Cloud-native benefits 

The Cloud Native Computing Foundation was 
established in 2015 to promote innovative container 
technologies [7]. According to their interpretation: 
the cloud-native is the set of technologies for 
providing scalable applications in the cloud, 
including ideas like micro services, DevOps, and 
agile [8]. Furthermore, cloud-native is more than 
architecture; it is a radical change in providing and 
developing a service. The cloud-native applications 
use the cloud’s traits with its full potential. 

Containers and micro services are the fundamental 
characteristics of cloud-native applications [8]. The 
functionalities are broken down into tiny autonomous 
bits, including an API-based interface. The pieces can 
be operating individually; each part has its 
deployment and version. The containers' concept 
proves each service process-wise sovereignty and 
lessens the entire system's complexity [8]. By wholly 
practicing cloud principles, it is feasible to serve 
compliant and scalable software.  

Implementation’s rate is vital. Fleet delivering 
features for the business is a strategic advantage. 
Introduction with a DevOps mindset and Agile, state-
of-the-art deployment system can accomplish the 
business’s demands more efficiently than before [8]. 

By the usage of the cloud-native best practices, the 
suggested architecture makes the application reliable 
and fault-tolerant. The framework replaces the broken 
element with a fresh instance, operating like a self-
healing system. It preserves the functionalities by 
allocating more instances process-wise; the resources' 
dynamic usage is possible [9]. 

The state-of-the-art cloud-native solution is the 
Kubernetes, presented by Google [10]. In the 
Kubernetes, the containers are merged into POD, the 
atomic primitive in the Kubernetes ecosystem. 
Through the POD approach, the lifecycle of the 
processes can be executed through the orchestrator. 

III. DATA PIPELINE 

1. Pipeline 

The data pipeline is an adhesive code between the 
data sources and machine learning algorithms [11]. 
The code segment, as mentioned earlier, is 
continuously growing because the data composition 
strongly influences it. The data needs to be 
reconstructed and conveyed before the training 
commences. A workflow is a feasible solution, 
gathering and standardizing the required data, for 
providing high-level input for the machine learning 
algorithms. Since the entire process is divided into 
numerous levels, parallelized computing procedures 
are used [12]. 

The pipeline workflow design is not an 
uncomplicated task. Realizing the whole data 
processing requires some boilerplate codes. 
Workflow builders standardize the orchestration of 
data pipelines by using workflow engines and 
frameworks. 

2. MLOps 

Some prototypes are not deployed in the machine 
learning use-cases in the production situation because 
they may have concerns with the more prominent 
data-load or scaling, scheduling, or the integration to 
the data sources. For a successful big data project, the 
organization should have analytics and infrastructure 
expertise; they need to have a comprehensive plan 
about deploying the model and the production 
dataset’s training cycles.  

As a bridge linking the data scientist and software 
engineer, a unique responsible role is a viable solution 
to tackle machine learning models to production as 
soon as possible. This specialist needs to have a 
global picture of the model lifecycle, like organizing 
each stage’s main interactions [13]. Infrastructural 
coordination is necessary for having efficient 
architectural usage and automatized, high-quality 
input data from diversified sources. It makes the 
deployment cycles of the models regular. 

The role of MLOps as a Machine Learning branch 
of the DevOps is accepted in the machine learning 
domain [13]. It is a compound of operation, machine 
learning, and business understanding. All of them are 
distinct competencies. The DevOps methodology is 
for the speed and effectiveness of development and 
deployment, providing the project’s adaptability in 
line with the agile [13]. MLOps is the same approach 
but focuses on the model development for eliminating 
the personnel and technology gap in the deployment. 
It concentrates on model formulation, evaluation, 
deployment, and monitoring. The new cloud-based 
solutions promote this approach vigorously. 
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3. Data platform 

The data solution performs some steps in the data 
use-case, like the data-preparation, training, model 
verification, feature selection [12]. Achieving a data 
solution is challenging because it involves some 
perspectives like mathematics, informatics, and 
business [14]. It was stimulating to present a solution 
for data scientists in the last years, granting the 
possibility to deploy their model without code 
modifications in a productive environment. The 
complexity should be diminished through the modern 
data frameworks, giving a portable, scalable, and 
efficient infrastructure for the data experts. Managing 
the existing, same locally tested code, in the cloud 
environment, without an extensive perception of the 
cluster is an immense business value. The team can 
focus on the business, not on the cloud-native 
infrastructure or deployment. The effort to the 
productive data solution has been simplified, but the 
actual performance is to build an integrated fail-
tolerant data infrastructure. 

If the model has been constructed, the business 
should apply it. Conventional components also 
support the deployment section, like the TensorFlow 
Serving library [15]. The implementation unit or 
product support should permanently observe the 
usage of the model. Sometimes, the prototype should 
be aligned with the current data structure or obscure 
data patterns (Fig. 2). The model should be retrained 
for being up-to-date. 

 

Figure 2. Prototyping process 

A CI/CD pipeline like a data platform is an added 
advantage because it accommodates the rapid 
prototyping process. Data science can explore their 
new idea directly in production. The new model can 
be deployed smoothly through some automatisms, 
producing business value as soon as possible in the 
continuously varying business environment. 
According to the MLOps principle, the Machine 
Learning tasks and artifacts can be combined with 
mainstream DevOps instruments [13]. 

4. Cloud-native pipelines 

Kubernetes and TensorFlow are the prime open-
source brands that were started by Google [16]. By 
them, some modern infrastructure has been 
established for giving improved solutions for novel 
problems. As their union, the KubeFlow is a state-of-

the-art toolkit in a self-managed cloud-native 
ecosystem [17].  

Kubeflow is an open-source cloud-native platform 
for developing data pipelines and workflows. It is a 
potent mixture of pipeline approach with cloud-native 
foundation [17]. It clarifies and normalizes the whole 
machine learning sequence in the cloud. 

Machine learning and deep learning should be used 
with active data-processing in the cloud to determine 
contemporary data problems. According to the use-
case discussed earlier, the KubeFlow may work as a 
fundamental part of its cloud-native strategy. 

5. Workflow as graph 

A pipeline can operate on the cluster. This 
procedure is cost-effective because the scaling-out is 
more affordable than the scaling-up [18]. Since the 
workflow is composed as a DAG (directed acyclic 
graph), each job can be executed as a DAG node [19]. 

Each task can be grouped by components (like 
python functions). The components, like regular 
atomic elements, can interact through their inputs and 
outputs. The low-level segments are not responsible 
for the cloud-naiveness. In the framework, the 
orchestrator is responsible for the supervision of the 
elements. The data specialists must not implement the 
infrastructure; they can only focus on their business 
processes [19]. 

Other pipelines can re-use each operator or 
component. By them, the entire pipeline can be 
controlled on the tasks level. The flow is visualized 
graphically, and each part has its log-stream. That 
facilitates the bug finding and fixing in the 
production. 

For the coding, the KubeFlow accommodates 
jupyter notebooks as a standard coding context [17]. 
It is a popular conventional solution in the machine-
learning society, strongly supports feature 
engineering and model fabricating. Through the built-
in visualization, the data scientist can adequately 
decipher the information of the data. By a jupyter 
service provision, the most popular dependencies and 
libraries can be included by default; the resource 
quotas can also be configured. The configured 
runtimes can use GPU assistance as well (Fig. 3). 

6. Infrastructure based on the pipeline 

Establishing the infrastructure on the POD level of 
the nodes is complex. New frameworks, like 
Kubeflow, allow constructing pipelines at the code 
level without explaining them in any descriptor files. 
The script can control the whole infrastructure; the 
designed program can be scaled based on the load in 
a portable style [16]. This is propitious for machine 
learning use-cases when the training cycles are more 
resource-demanding than the prediction use-cases. 
The billing is based on consumption in the cloud; the 
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corporation should not keep any additional resources 
when it is not necessary. 

 

Figure 3. Kubeflow landscape 

The critical advantage of cloud-native 
infrastructure, the built-in features for the provision 
of the services. ReplicaSets, monitoring, heartbeat. 
All these factors and patterns are primary for 
consistent and fail-tolerant infrastructure [10]. The 
abstraction and standardization of the frameworks 
enhance the security and the overall maintainability. 

7. GPU based pipelines 

The data pipelines in the industry expect regular 
training cycles. This is resource consuming, but this 
resource should be granted only on demand. Cloud 
computing is a valid option for this use-case. 

The workflows are compute-intensive but present a 
choice for distributed computing. Deep learning is a 
potent use-case of GPU programming [20]. By the 
native integration of GPU, the training can be 
accomplished more adequately without complicated 
GPU scripts. 

8. TFX 

Tensorflow is the state-of-the-art deep learning and 
computational framework [21]. Tensorflow Extended 
(TFX) library and specification help the Tensorflow 
model implementations in the production. A proper 
pipeline can be built around the deep learning model 
through its elements, like an end-to-end solution (Fig. 
4). It is providing a high-performance application in 
the cloud-native environment. 

Through Tensorflow Extended, a standardized 
TensorFlow pipeline can be created for particular 
orchestrators like Airflow and Kubeflow [21]. Having 
a multi-architectural approach has an advantage 
because it cannot be guaranteed that the project can 
obey the cloud-native principles. Integration and 
workflow management is a necessity, but the target 

system does not always use Kubernetes. In that case, 
traditional alternatives (like Airflow) must be used. 

 

Figure 4. Tensorflow Extended pipeline 

IV. CASE STUDY: DATA PLATFORM IN 

MANUFACTURING 

1. Situation faced 

Data science’s fundamental duty is the observation 
and optimization of business processes. This journey 
is like a discovery of the production. The base-line 
situation is the progressed scrapping rate in 
manufacturing; the selected data scientist should 
investigate and analyze the root causes. 

For the production-ready data-analytics result, the 
data team wants to constitute a data platform. The 
platform should utilize the public cloud approach; 
natively, it needs GPU support besides high 
availability. The cloud infrastructure should be sized 
according to the actual load; more resources should 
be involved in the exacting training steps. This 
architecture should support the data science 
department’s standard data tools like Jupyter 
notebooks and python with deep learning support. 
The integration layer should be capable of loading the 
required data sources in the organization without any 
difficulty. 

2. Actions taken 

The MLOps approach adds the DevOps toolstack 
and cloud-native philosophy to the data workloads. 
An MLOps engineer represents the way how the 
model should be applied and deployed. Some 
orchestration difficulties have already been resolved 
through the introduction of KubeFlow in the cloud-
native environment (Fig. 5).  

The chosen strategy was shifting from the simple to 
more complex features. The base-line model can be 
improved for better accuracy through hyperparameter 
optimization and feature engineering. With a 
simplistic proof of concept, the data platform 
architecture can be validated for usability. Based on 
the evaluation outcome, the model’s overall 
performance has been improved and verified by 
mainstream measurements (like accuracy, F1-score, 
etc.) [22]. If the model’s correctness meets the 
requirements, the deployment begins. 
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Figure 1. Realized pipeline. Cloud services have 
processed the input data. The created model has 

been published 

Through the prototype has been adapted several 
times, a version controlling is required. The model 
selection is also essential because the existing models 
could have more excellent performance than the new 
release. A basis artifact library can serve the 
previously built best model. 

The workflow can be altered; it triggers container 
level cloud-native fundamental changes. The 
produced components can manage the complete 
training and evaluation workflow. Monitoring and 
logging operations are assigned to primary activities. 
The pipeline steps in details: 
 Establishing the pipeline cloud-native 

architecture based on the repository 
 Data pre-processing and data digestion 
 Machine learning (classical or deep learning 

approach) in dedicated PODs 
 Evaluation and model selection 
 Deployment to the REST endpoint 

The data scientists have built a promising offline 
model. The deployment and extension of the pipeline 
remain challenging. It takes time to reach the 
production level. 

3. Results achieved 

It is justified to set up a pilot project for a reduced 
scope for experiment purposes. The immediate 
feedback can solidify the concept shortly (Fig. 6). A 
production-level prototype verifies the theoretical 
approach and achieves the management’s acceptance. 
The testing charge is lower in that case, and the design 
can be examined without higher production risks. 

 

Figure 2. The quick feedback loop in production 

By acceptance of the MLOps mindset, the research 
loops become more expeditious. Through continuous 
integration, the pipeline and model can be arranged 
rapidly in production. Model optimization, like 
hyperparameters harmonizing, claims some trials and 
failures. The prompt reactions yield real business 
content in production. 

The MLOps gives the dynamic construction of 
event-based workflows, with the native support of 
distributed data processing frameworks, 
implementing scale-out opportunities on the top of 
the cloud-native design. 

4. Lessons learned 

At the first iteration, the pipeline was composed of 
Jenkins jobs. It was complicated and not resembling 
the data science mindset. Between the prototyping 
and deployment, there was a considerable gap. 
KubeFlow with Tensorflow Extended resolved this 
concern. The framework accommodates a firm 
context for modeling without narrowing the data 
experts’ opportunities. The utilized technology grants 
high-level automatization possibilities by the usage of 
elements that implement specific subsequent 
responsibilities. The Tensorflow Extended represents 
a current, comprehensive ML pipeline, from 
implementing the new business scenarios to 
managing the traditional machine learning activities. 

V. CONCLUSION 

Some designs never reach production in the 
machine learning area. A pipeline, like a structure, 
supports loading and digesting the data for machine 
learning procedures. The scalability is crucial because 
the training expenses are soaring in the latest neural 
network-based architectures; the complete workflow 
should be performed in an on-demand manner in the 
cloud. Cloud-native seems to be a convenient and 
future-proof solution. Based on the study, the 
examined strategy is the advised way for data pipeline 
configuration. 
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