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Abstract: This study decribes the Tensor Product (TP) based model construction
through the nonlinear dynamic system of the inverted pendulum. It
presents the steps of TP modeling, various weighting functions and the
Linear Matrix Inequality (LMI) based approach. LMI control has been
used to stabilize the nonlinear system. This study shows the quasi-Linear
Parameter-Varying (qLPV) state-space modeling and the Higher-Order
Singular Value Decomposition (HOSVD) based TP model transforma-
tion. Some research in this issue already exists, but only the furuta,
rotary, single and parallel-type double pendulum have been examined.
In this paper the TP model transformation of the inverted pendulum is
analyzed in terms of stability.

Keywords: tensor product based control; nonlinear dynamic systems; linear matrix
inequality; inverted pendulum

1. Introduction

Modeling and control of complicated nonlinear systems with multiple objectives are
actually a challenge in control engineering. Many researchers investigate the H2, H∞
[1], LQ-optimization, pole-placement [2] methods in control theory, which can be
solved by LMI based approaches. Application of LMIs can reduce a wide species of
problems appearing in systems and control engineering [3].

This paper introduces a qLPV model [4] of the inverted pendulum. The LPV
systems [5] approach the nonlinear system in linear way, however the properties of
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the qLPV system are equivalent the nonlinear properties. It enables the representation
of the nonlinear system without a complicated linearization method. LPV systems
appear in the structure of Linear-Time Invariant (LTI) state-space representations. In
this paper the LTI vertex system of the problem, the LMI design technique through the
Parallel Distributed Compensation (PDC) and the HOSVD based TP transformation
have been used. Close to Normalised (CNO) type weighting functions for an example
have been applied MATLAB TP Toolbox [6]. TP transformation of pendulum has
been investigated in some research for example rotary [7], furuta [8], single [9] [10]
and parallel-type double pendulum [11]. This example is a good task to examine the
TP model transformation and the stability of the nonlinear system.

The paper is organised as follows: in Section 2, the TP model transformation has
introduced through the HOSVD based approach, the weighting functions and the
qLPV model. Section 3 presents the LMI based controller design to obtain stable
closed loop system based on the Lyapunov stability conditions. Due to nonlinearity,
stable controller has been designed via LMI stability conditions. In Section 4, TP
model transformation of the inverted pendulum has been presented, based on the
Section 2-3.

2. TP model transformation

Control design of the TP model transformation was proposed by Baranyi et al. [12]
[13]. The TP model structure [14] represents a multivariable tensor function. In fact,
the TP model representation is a finite element convex polytopic representation [15]
[16] [17]. In this paper the nonlinear system has approximated by the TP model
transformation. The mathematical structure of this method is based on the HOSVD
theory.

Singular value decomposition (SVD) [18] is a two dimensional matrix method
used in the field of linear algebra. It is widespread in mathematics but this method
is not suitable for analyzing multidimensional data. For multidimensional problems
HOSVD methods [19] can be used. Multidimensional arrays or tensors represent data
structures with more than two dimensions.

The HOSVD based computation extends its application to the qLPV model’s
continuos multivariable function. This produces numerically the TP model. TP
transformation of HOSVD based approach generates the weighting funcions and the
LTI vertex systems. The steps of transformating the TP model are the following [13]:
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• The given qLPV model must be discretized, which means the system matrix
S(p) is converted numerically into a tensor representation, where p = p(t) ∈ Ω
is a time-varying parameter vector within the closed hypercube Ω = [a1,b1]×
[a2,b2] × ... × [an,bn] ⊂ Rn. At first the problem space Ω is defined, which
is a closed hypercube and the TP model is interpretable only in this space. M
denotes the discretization grid defined in Ω.

• The TP model sctructure is extracted via the HOSVD structure to obtain the
tensor product form.

• Weighting functions are defined. It is a computational method on HOSVD
that can be converted numerically the qLPV model into that frame. The qLPV
state-space representation is able to describe nonlinear systems because of com-
binating the LTI vertices and the nonlinear weighting functions wi = wi(p(t))
i.e. weighting functions depend on the parameters. Types of the weighting
functions are [13] [14]:

– (SN) Sum Normalised: the weighting function is SN if the sum of weighting
functions for all p(t) ∈ Ω is equal to 1;

– (NN) Non-Negative: values of the weighting functions are non- negative;

– (NO) Normalised: if the weighting function is SN and NN type and its
largest value is 1;

– (CNO) Close to Normalised: if it is SN and NN type and its largest value
is 1 or close to 1;

– (INO) Inverse Normalised: the weighting function is INO if its smallest
value is 0;

– (RNO) Relaxed Normalised: the weighting function is RNO if its largest
value is SN and NN type and that value is only between 0 and 1;

– (IRNO) Inverse Relaxed Normalised: the weighting function is IRNO if its
smallest value is 0 and its largest value is SN and NN type and that value
is only between 0 and 1.

The conditions of convexity is not satisfied via HOSVD method [20] [21]. Thus,
the convex hull created by the TP vertex system must be manipulated. The CNO type
weighting function is used in this work to determine TP transformation of the inverted
pendulum, see in Section 4.
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The continuous systems [22] are written by this form:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t), (1)

y(t) = C(p(t))x(t) + D(p(t))u(t), (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ Rq is the
output vector [14]. Equations (1) and (2) can be defined by combinating LTI systems.
Thus, the representation can be written for instance:

ẋ(t) =

r∑
i=1

wi(p(t))(Aix + Biu), (3)

y(t) =

r∑
i=1

wi(p(t))(Cix + Diu), (4)

where Ai(t) ∈ Rn×n, Bi(t) ∈ Rn×m, Ci(t) ∈ Rq×n, Di(t) ∈ Rq×m and r is the
vertex number. Equation (3) is the TP transformation. Weighting functions wi have
two important properties that satisfy convexity [13]:

wi(p(t)) ∈ [0,1], (5)

r∑
i=1

wi(p(t)) = 1. (6)

If parameter p(t) does not contain elements of x(t), it is an LPV system. If param-
eter p(t) contains elements of x(t), it is a qLPV model because of the nonlinearity.
The qLPV model representation of state-space configuration (1) is:

S(x(t)) =

[
A(x(t)) B(x(t))
C(x(t)) D(x(t))

]
, (7)
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i.e.

(
ẋ
y

)
= S(p)

(
x
u

)
. (8)

3. LMI based optimization

In control science, application of LMI, especially in the field of dynamic system is
related to Lyapunov [23]. This section presents the LMI based [2] control design
approach. Many problems arise in control system design that are reduced by re-
searchers to convex or quasi-convex optimization problem involving LMIs. LMIs
are applied to solve many automation problems, optimization problems and system
identification that are generally difficult to solve but it can be possible to solve by
convex optimizing.

LMIs can solve in polynomial time. Many variety of systems and control problems
can revise as LMI problems. These problems may be state-feedback synthesis,
robustness design, H2 and H∞ control [2]. It is reducible to convex problems. The
variables are often matrices, therefore application of Lyapunov-inequality is the basic
structure of the LMI method [31]:

ATPA−P ≺ 0, (9)

where P = PT is the variable. Finding K is the problem of control design. The
closed-loop system is quadratically stable:

[A−BK]TP[A−BK]−P ≺ 0, (10)

The above inequality is multiplied on the left and right via P−1, and X = P−1

M = KX:

P−1[A−BK]TP[A−BK]P−1 −P−1PP−1 ≺ 0, (11)
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i.e.

X[A−BK]TX−1[A−BK]X−X ≺ 0, (12)

finally

X− [AX−BM]TX−1[AX−BM] � 0. (13)

It can be transformed into the LMI form:

[
X (AX−BM)T

(AX−BM) X

]
� 0. (14)

This form is defined by Schur complements. Defining the Schur complements [2]
of a partitioned A matrix can be written as:

A =

[
A11 A12

A21 A22

]
, (15)

For example if A11 is nonsingular, A22 −A21A
−1
11 A12 is the Schur complement of

A11. It can be denoted by Sch(A11). Thus, matrix A can be written as:

A =

[
A11 0
0 Sch(A11)

]
. (16)

3.1. Presenting LMI based approach

PDC is a model based design procedure that was suggested by Tanaka and Wang [24].
They designed for Takagi-Sugeno (TS) fuzzy decision [31] models so their procedure
was to develop a fuzzy controller from a TS fuzzy model. Combination of LMI
optimization and PDC framework can be accomplished with convex optimization.
The PDC design structures are defined one LTI feedback gain k to all LTI vertex
systems.
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Therefore, the TP controller is:

u(t) = −
r∑

i=1

wi(p(t))kix(t) = −

(
r∑

i=1

wi(p(t))ki

)
x(t) = −kTx(t). (17)

Substituting (17) into (3) the following representation is obtained:

ẋ(t) =

r∑
i=1

wi[Aix(t) + Bi(−
r∑

j=1

wjkjx(t))], (18)

ẋ(t) =

r∑
i=1

r∑
j=1

wiwj [Ai −Bikj ]x(t), (19)

where i,j = 1...r, r is the total number of LTI systems. It can be rewritten into this
form:

ẋ(t) =

r∑
i=1

wiwi[Ai −Biki]x(t) + 2

r∑
i=1

r∑
i<j

wiwjGijx(t), (20)

where G is:

Gij =
[Ai −Bikj ] + [Aj −Bjki]

2
. (21)

3.2. The Lyapunov theory

The LMI based approach began with Lyapunov [23] based stability conditions. In
the case of nonlinear dynamic systems, stability analysis methods developed for
linear systems, are not applicable. The Lyapunov methods are used to get suifficent
conditions for stability of the equilibrium point of a linear system.

Consider a system ẋ = f(x,t), where f is continuos. To study the stability of
nonlinear dynamic systems, the Lyapunov theorem can be applied. If there exists a
function V (x,t) what can be derived around an equilibrium point x = 0 and satisfies
the following conditions:
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• V (0,t) = 0 and V (x,t) > 0 if V (x,t) is a positive defitine function,

• V̇ (x,t) ≤ 0, i.e. V̇ (x,t) is a negative semidefinite function,

• V̇ (x,t) < 0, i.e. V̇ (x,t) is a negative definite function.

If first and second conditions are existed, then the system is stable, and if the first
and third conditions are existed the system is asymptotically stable. The function V
in Lyapunov theorem is the energy function assigned to the system.

Consider a system ẋ = f(x,u) with control inputs u, where x(t) ∈ Rn, u(t) ∈ Rm.
Consider the candidate Lyapunov function V (x) for every fixed x 6= 0 there exists
and acceptable value u for the control in such a way as to:

∇V (x) · f(x,u) < 0. (22)

Regard the following candidate Lyapunov function [31] V (x(t)) = xT (t)Px(t)
where P � 0, thus:

V̇(x(t)) =

r∑
i=1

r∑
j=1

wiwjx
T (t)[(Ai −Bikj)

T
P + P (Ai −Bikj)]x(t)

=

r∑
i=1

w2
i x

T (t)[GT
iiP + PGii]x(t) +

r∑
i=1

∑
i<j

2wiwjx
T (t)

×

[(
Gij + Gji

2

)T

P + P

(
Gij + Gji

2

)]
x(t).

(23)

3.3. Stable controller design with LMI based stability conditions

Consider the stability of an open-loop system via Lyapunov stability concept, where
the equilibrium of TP system (19) via u(t) = 0 is globally asymptotically stable, then
there is a common positive definite matrix P for instance

AT
i P + PAi ≺ 0, (24)
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for ∀i = 1, · · · ,r. Examine stability of an closed-loop system, as:

ẋ(t) =

r∑
i=1

r∑
j=1

wiwj(Ai −BiKj)x(t), (25)

ẋ(t) =

r∑
i=1

wiwi[Ai −BiKi]x(t) + 2

r∑
i=1

r∑
i<j

wiwjGijx(t), (26)

Let us use the following notations:

Gij = Ai −BiKj , (27)

Gji = Aj −BjKi, (28)

where i = 1, · · · ,r. The equilibrium point of the TP system (9) is globally asymptoti-
cally stable if there is a common positive definite matrix P:

GT
iiP + PGii ≺ 0, (29)

and

(
Gij + Gji

2

)T

P + P

(
Gij + Gji

2

)
� 0. (30)

Multiplying inequelity (29) on the left and right by P−1 and denote X = P−1 and
Mi = KiX:

(
P−1AiP−P−1BiKiP

)T
+
(
P−1PAi −P−1PBiKi

)
≺ 0, (31)
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finally (
P−1AiPP−1 −P−1BiKiPP−1

)T
+
(
P−1PAiP

−1 −P−1PBiKiP
−1) ≺ 0,

(32)

Substituting X = P−1 and Mi = KiX, then:

−XAT
i −AiX + XKT

i B
T
i + BiKiX � 0, (33)

the following LMI stability condition is got:

−XAT
i −AiX + MT

i B
T
i + BiMi � 0. (34)

Equations (27) and (28) are applied, and denote X = P−1 and Mi = KiX:

(
Ai −BiKj + Aj −BjKi

2

)T

P + P

(
Ai −BiKj + Aj −BjKi

2

)
� 0,

(35)

then multiplying inequelity (30) on the left and right by P−1, then the following
equation is got: (

AiP−BiKjP + AjP−BjKiP

2

)T

+

(
PAi −PBiKj + PAj −PBjKi

2

)
� 0,

(36)
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(
P−1AiP−P−1BiKjP + P−1AjP−P−1BjKiP

2

)T

+

(
P−1PAi −P−1PBiKj + P−1PAj −P−1PBjKi

2

)
� 0,

(37)

(
P−1AiPP−1 −P−1BiKjPP−1 + P−1AjPP−1 −P−1BjKiPP−1

2

)T

+

(
P−1PAiP

−1 −P−1PBiKjP
−1 + P−1PAjP

−1 −P−1PBjKiP
−1

2

)
� 0,

(38)

Substituting X = P−1 and Mi = KiX:

(
XAi −XBiKj + XAj −XBjKi

2

)T

+

(
AiX−BiKjX + AjX−BjKiX

2

)
� 0,

(39)

−XAT
i −AiX−XAT

j −AjX+XKT
j B

T
i +BiKjX+XKT

i B
T
j +BjKiX � 0,

(40)

after this, another LMI stability condition is got:

−XAT
i −AiX−XAT

j −AjX+MT
j B

T
i +BiMj +MT

i B
T
j +BjMi � 0. (41)

Equations (34) and (41) are the LMI stability conditions and these are applied for
the inverted pendulum example by equations (66) and (67).
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4. TP transformation of the inverted pendulum

The center of mass of the inverted pendulum [25] is above its pivot point. Control de-
signing of this nonlinear system has been the subject of many studies and researchers
in the recent period [26] [27] [28].

Figure 1. Inverted Pendulum

4.1. Modeling of inverted pendulum

The illustration of the inverted pendulum installed on a cart is given in Fig 1. The
lenght of the rod on the car is 2L = 0.35, the mass of the rod is M = 1.2, the mass
of the cart m = 0.2 in a coherent unit system SI and the generalized coordinates are
x and ϕ. The system equations of the nonlinear system are written by Euler-Lagrange

12
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equation [29]:

d

dt

∂K

∂q̇i
− ∂K

∂qi
+
∂P

∂qi
= τi, (42)

where K is the kinetic energy, P is the potential energy, qi is the generalized coor-
dinate and τi is the generalized force. The moment of inertia of the rod belonging
to the center of mass is Θ = ML2

3 . The center of gravity of the rod mass is given
by the coordinates xM = x + LSϕ and yM = LCϕ and the velocity is vM . Let’s
denote Sϕ = sin(ϕ) and Cϕ = cos(ϕ) [29] [26] [32]. After derivating xM and yM ,
the following results can be got:

ẋM = ẋ+ ϕ̇LCϕ, (43)

ẏM = −ϕ̇LSϕ, (44)

v2M = ẋ2M + ẏ2M = ẋ2 + 2LCϕẋϕ̇+ L2ϕ̇2. (45)

Determining kinetic energy and potential energy as follows:

K =
1

2
mẋ2 +

1

2
Mv2M +

1

2
Θϕ̇2

=
1

2
mẋ2 +

1

2
M(ẋ2 + 2LCϕẋϕ̇+ L2ϕ̇2) +

1

2
Θϕ̇2,

(46)

P = MgLCϕ. (47)

After obtaining the partial derivatives of K and P , and applying mathematical
manipulations, the following equations are given:

d

dt

∂K

∂ẋ
= (m+M)ẍ+MLCϕϕ̈−MLSϕϕ̇

2, (48)
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d

dt

∂K

∂ϕ̇
= MLCϕẍ−MLSϕẋϕ̇+ (Θ +ML2)ϕ̈. (49)

Using Euler-Lagrange equation (42), the following equations are got:

d

dt

∂K

∂ẋ
− ∂K

∂x
+
∂P

∂x
= F, (50)

d

dt

∂K

∂ϕ̇
− ∂K

∂ϕ
+
∂P

∂ϕ
= 0, (51)

i.e.
(M +m)ẍ+MLCϕϕ̈−MLSϕϕ̇

2 = F, (52)

MLCϕẍ+ (Θ +ML2)ϕ̈−MgLSϕ = 0. (53)

After some mathematical manipulations the following equations are given:

ẍ =
F −MLCϕϕ̈+MLSϕϕ̇

2

m+M
, (54)

ϕ̈ =
gSϕ − Cϕ

m+M (F +MLSϕϕ̇
2)

L
(

4
3 −

MC2
ϕ

m+M

) . (55)

Then the following state-space representation is defined:

ẋ1 = x2, (56)

ẋ2 =
4
3MLsin(x3)x24 −Mgcos(x3)sin(x3) + 4

3F
4
3 (m+M)−Mcos2(x3)

, (57)

ẋ3 = x4, (58)

14
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ẋ4 =
MLsin(x3)cos(x3)x24 + cos(x3)F − (m+M)gsin(x3)

MLsin2(x3)− 4
3 (m+M)L

, (59)

where the state-space variables are x1 = x, x2 = ẋ, x3 = ϕ, x4 = ϕ̇.

4.2. TP transformation

It is an important purpose of transforming TP to convert the given state-space model
(1) into a convex TP model. In this model the LTI systems create a tight convex hull
[30]. Consider the following state-space structure:

ẋ(t) = A(x)x + B(x)u, (60)

Elements of matrix A(x) (61) and vector B(x) (62) depend on only the state vari-
ables x3 and x4, i.e. nonlinearity is caused by x3 and x4. For TP model transfromation
the transformation space Ω = [(−45/180)π,(45/180)π]× [(−45/180)π,(45/180)π]
is defined and discretized by M1 ×M2 = 136× 136 grid points. The components of
matrix A(x) and vector B(x) have been defined numerically and they are stored in a
four dimensional tensor S ∈ R136×136×4×5,

A(x) =


0 1 0 0

0 0 −Mgcos(x3)
4
3 (m+M)−Mcos2(x3)

sin(x3)
x3

4
3MLsin(x3)

4
3 (m+M)−Mcos2(x3)

x4

0 0 0 1

0 0 − (m+M)g

MLsin2(x3)− 4
3 (m+M)L

sin(x3)
x3

MLsin(x3)cos(x3)

MLsin2(x3)− 4
3 (m+M)L

x4

 ,
(61)

B(x) =


0
4
3

4
3 (m+M)−Mcos2(x3)

0
cos(x3)

MLsin2(x3)− 4
3 (m+M)L

 . (62)

Applying HOSVD, the singular values are σ1 = 1909, σ2 = 201, σ3 = 23, σ4 = 2
for the variable x3 and σ1 = 1920, σ2 = 23 for the variable x4. After using HOSVD
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on S(x(t)) and CNO type weighting function, the following TP model transformation
describes inverted pendulum system:

ẋ ∼=
r1∑

i1=1

r2∑
i2=1

wi1(x3)wi2(x4)(Ai1,i2x + Bi1,i2u), (63)

where wi1(x3) and wi2(x4) are the CNO type weighting functions, Ai1,i2 and Bi1,i2

are state independent system matrix and vector. This nonlinear system is possible
to be approximated by the combinations of r1r2 LTI systems. It can be written as
follows:

ẋ ∼=
5∑

i1=1

2∑
i2=1

wi1(x3)wi2(x4)(Ai1,i2x + Bi1,i2u), (64)

ẋ ∼=
r∑

i=1

wi(x3,x4)(Aix + Biu). (65)

where r = r1r2 is the number of LTI systems via 5 × 2 = 10 LTI vertex models.
Weighting functions wi1(x3) and wi2(x4) are shown in Fig. 2-3. Thus, the system is
decomposed in angular velocity ϕ̇ into 2 weighting functions, and in angular position
ϕ into 5 weighting functions.
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Figure 2. CNO type weighting functions for x3

Figure 3. CNO type weighting functions for x4
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A. Wéber and M. Kuczmann – Acta Technica Jaurinensis, Vol. 14, No. 1, pp. 1–23, 2021

The controller vector ki can be numerically defined by LMI. Using stability con-
ditions (31) and (41), determining asymptotic stability of the system. Thus, the
stabilization controller can be found:

−XAT
i −AiX + MT

i B
T
i + BiMi � 0, (66)

−XAT
i −AiX−XAT

j −AjX+MT
j B

T
i +BiMj +MT

i B
T
j +BjMi � 0, (67)

ki = MiX
−1, (68)

where i = 1, · · · ,r and j = i+ 1, · · · ,r, and r is the number of LTI vertex systems.

The control signal is shown in Fig. 6. and state variables x1 and x3 are shown in
Fig. 4-5. The initial condition is x(0) = [0.3,0,0,0].

Figure 4. State variable x1

It can be seen in Fig. 4-6. that functions x3 and u return to a steady state after a
few oscillations. The system get into the stable position around 10 seconds. This will
result that LMI approach should improve to stabilize better this nonlinear system.
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Figure 5. State variable x3

Figure 6. Control signal u
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5. Conclusion

This paper describes a study of the HOSVD based TP transformation with CNO type
weighting functions using LMI solver and a solution to a problem by applying these
methods through an inverted pendulum example. In this example there are 10 LTI
vertex systems of the qLPV model. This paper shows an example to analyse global
asymptotic stability. Therefore in the future the decay rate for the inverted pendulum
and H2, H∞ controllers will be analysed.
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