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Abstract: The industrial companies often use Key Performance Indicators (KPI) 

to follow up and evaluate their process and success. One of the KPIs is 

the Overall Equipment Effectiveness (OEE) which represents the 

efficiency of the manufacturing area. The high OEE value means good 

performance of the machines or lines. This paper presents a method in 

order to increase OEE at the manual assembly lines by data mining. 

Firstly, a literature review demonstrates scientific relevance. Secondly, 

a method is introduced for improving the efficiency with the help of the 

recognised patterns. Using Manufacturing Execution System (MES) 

data the OEE percentage was increased by 8% in 3 months without any 

financial investment.  
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1. Introduction 

For the elaboration of Balanced Scorecard (BSC) in business life the Financial 

Perspective, the Customer Perspective, the Internal Business Perspective and the 

Innovation and Learning Perspective are emphasised [1]. The fulfilment of the 

strategic objectives are defined by the Key Performance Indicators (KPI). Within the 

frames of the concept of Total Productive Maintenance (TPM) at manufacturers 

Overall Equipment Effectiveness (OEE) is applied as the most widespread indicator 

[2]. The efficiency of the machinery and the production lines can be indicated with 
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the aid of this indicator. In order to define this indicator loads of data are required, 

as besides the individual values it is also important to keep up to date with the trends.  

Due to a wide range of applications of data collecting there are more and more 

data at the corporations. In most cases only the fraction of the data mining 

opportunity is utilized [3]. It is particularly true in case of specific manufacturing 

data, where hidden patterns are not revealed, thus the potential of continuous 

improvement cannot be realized [4]. It is a current issue nowadays: ‘How are 

organizations using analytics to gain insight and guide actions?’ [5]. 

2. Literature review 

2.1. Data mining in manufacturing 

Monitoring of production patterns started in the second half of 1980s [6]. Due to 

the high amount of the data, manual analysis was not effective and efficient [7]. Data 

mining appeared in the 1990s, as such a data processing that could reveal valid, novel 

and potentially useful information form the data sets, and that could identify patterns 

[8]. Data mining process is a part of Knowledge Discovery in Database (KDD). The 

widely used KDD process is indicated by the Fig. 1. [9]. 

 

Figure 1. KDD process [9] 

One of the most widespread data mining processes (Fig. 2.) is the Cross Industry 

Standard Process for Data Mining (CRISP-DM) which is independent of both the 

industrial sector and the technology [10].  
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Figure 2. CRISP-DM process model for data mining [10] 

SEMMA, SolEuNet, Kensington Enterprise Data Mining and the DMG among 

others, established methodologies, developed languages and software tools for data 

mining standardization [11].  

Huber et al. extended the CRISP-DM model with 3 new elements: technical 

understanding, technical realization and technical implementation. Data Mining 

Methodology for Engineering (DMME) is displayed with Fig. 3. [12]. 

 

Figure 3. The DMME process [12] 

Gröger et al. presented indication-based and pattern-based manufacturing process 

optimization as novel data mining approaches provided by the Advanced 

Manufacturing Analytics Platform (AdMA). AdMa is an integrated Business 

Intelligence (BI) platform for holistic data-driven manufacturing process 

optimization [4]. 
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According to Buer et al. the ground of data-driven models is that due to increased 

computing power the analysis of big data. It facilitated revealing such patterns that 

human beings not necessarily would have found [13]. Fig. 4. shows the data driven 

process improvement cycle. 

 

Figure 4. The data-driven process improvement cycle [13] 

Agard et al. presented a model and an algorithm for selection of subassemblies 

based on the analysis of prior orders received from the customers. The parameters 

of this concept are generated using association rules extracted by a data mining 

algorithm [14]. 

In the area of manufacturing, description and prediction are the two high level 

goals of data mining. Descriptive data mining focuses on discovering patterns to 

describe data. Predictive data mining focuses on predicting the behaviour of a model 

and determining future value based on existing information [15]. 

Clustering is an essential data mining function performed on specified 

manufacturing data. Clustering techniques are in the following categories as: 

partitioning methods, hierarchical methods, density based methods, grid based 

methods and model based methods [15]. In the field of manufacturing Backus 

compared the Clustering, K-Nearest Neighbours and Regression Trees methods in 

order to predict cycle time [16]. Öztürk used regression tree approach in make-to-

order manufacturing lead time estimation [17]. Meidan used machine learning and 

data mining methods to identify the cycle time key factors in manufacturing [18]. 

Denkena et al. used the Pearson-Correlation to identify potential dependencies [7].  

2.2. OEE as a KPI 

OEE as a KPI is a valuable tool to reveal the hidden capacity. This indicator was 

first introduced by Nakajima in 1988. There are six major losses to be addressed in 

the production system in order to improve OEE value: 
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 equipment failure, 

 setup and adjustment, 

 idling and minor stoppage, 

 reduced speed, 

 reduced yield, 

 defect in the process. 

OEE is an excellent tool to calculate the utilisation of a production line for a given 

manufacturing process [19].  

The basic formula for calculating OEE is written as: 

 𝑂𝐸𝐸 = 𝑎 𝑝 𝑞  [%] (1) 

where a - availability [%]; p - performance [%]; q - quality [%]. 

Availability indicates the performance of the maintenance and its value is given: 

 𝑎 =
𝑎𝑟𝑡

𝑝𝑟𝑡
  100  [%]  (1) 

where art - actual run time; prt - planned run time. 

 𝑎𝑟𝑡 = 𝑝𝑟𝑡 − 𝑖𝑡 (3) 

where it - idle time. 

Performance indicates the operators’ performances and its value is given: 

 𝑝 = 𝑠𝑜𝑟  𝑛𝑜𝑟100  [%] (4) 

where sor - speed operator rate; nor - net operator rate. 

 𝑠𝑜𝑟 =
𝑐𝑠

𝑐𝑟
  100  [%]  (5) 

where cs - standard cycle time; cr - real cycle time. 

 𝑛𝑜𝑟 =
𝑛 𝑐𝑠

𝑎𝑟𝑡
  100  [%]  (6) 

where n - number of products. 

 

Quality indicates the process capability and its value is given: 

 𝑞 =
𝑞𝑝𝑟

𝑞𝑝
  100  [%]  (7) 
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where qpr - quantity produced right; qpr - quantity produced [20]. 

Nowadays, manufacturers monitor their performance via Manufacturing 

Execution System (MES). According to the research of Subramaniyan in 2015, 

based on the performance of 884 machines of 23 corporations at the mechanical 

workshops, the average value of OEE was 65% [19]. The OEE values of manual 

assembly lines are usually higher than this.  

3. Method, patterns and case study 

3.1. Manufacturing circumstances 

The manual assembly line displayed at Fig. 5. directly transports medium sized 

products in an automotive factory. The line consists five work stations (W1, W2, … 

W5), green colour indicates the manual work stations, grey represents the quality 

check work station. The blue arrow shows the direction of material and flow. 

 

Figure 5. Manual assembly line 

The assembly line has been operating for more than 12 years, in 2-3 shifts upon 

request to produce generally 220 products per shift. Since the beginning of the 

production the assembly line produces the same main product, there is no significant 

difference between the product variations. The work stations have different cycle 

time, but the bottleneck is at the end, at W5 work station. Table 1. shows the main 

features of the assembly line. 
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Table 1. Data of assembly line 

Workstation MES Process Operator Cycle time (s) 

W1 - Manual assembly 
A 74 

W2 - Manual assembly 

W3 - Manual assembly 
B 102 

W4 - Manual assembly 

W5 yes Quality check C 105 

3.2. Patterns in MES  

MES collects, records and stores all the features and measuring data of each 

product (e.g.: power, amperage, noise, time, serial number, etc.), however, the fault 

registration of downtime is not elaborated at this production line. The data can be 

collected from MES with the aid of SQL (Structured Query Language) and can be 

processed with the data processing module of Microsoft Excel. 

The basis of searching the pattern is to collect an exact timestamp to the recorded 

parameter (e.g.: 09:32:15, 14th January 2020.). According to this method the focus 

is on the particular piece time of the 2 manufactured products. There is an estimated 

value of 105 s ± 10%, exceeding values and corresponding time-date stamps are 

investigated. The ±10% limit is the deviation of expected speed of the operator. 

If, P1 = the manufacturing time of the first product  

 P2 = the manufacturing time of the second product  

T = the expected piece time of manufacturing of the product (in this 

particular case: 105 s) 

So the possible cases are the following ones: 

a, T – 10% ≤  P2 – P1  ≤ T +10%  

b, P2 – P1 < T – 10% 

c, P2 – P1 > T + 10% 

In the case of ‘a’, production is going well, the accomplished piece time may 

change within the previously defined limits, but the targeted OEE value could be 

fulfilled. In the case of ‘b’, the product gets done within a shorter piece time than 

expected that refers to the differences regarding the process, namely some prescribed 

step may be missing, or mixed up or united. The OEE value will rise, but it may raise 

quality risks. In the case of ‘c’ the manufacturing time of particular products 

increases and exceeds given limits, which refers to malfunction or downtime. This 



P. Dobra and J. Jósvai – Acta Technica Jaurinensis, Vol. 13, No. 2, pp. 98-111, 2020 

106 

incident will decrease OEE value. The planned breaks and shift changes have the 

same effect. These effects are exception, they occur in similar time windows and are 

neglected. 

3.3. Results of the method 

The following OEE influencing patterns are revealed after local analysis of the 

production and the available data sets: 

 Quality 

 effective fulfilment of poka-yoke checks in each shift,  

 rework activity has just a little volume, but due to technology 

rework can only be accomplished at the line, that reduces the OEE 

value (a product is ready-made within two time cycles). 

 Availability 

 rarely, simple malfunctions appear at the line, but they are repaired 

within a short period of time,  

 there is a little disruption with the raw material supply of the line 

at the start of the shift, that generally lasts for 10 minutes, 

 the planned preventive maintenance work is not systematic, it 

usually differs from the planned time period (usually shorter), 

 distribution of breaks during work (shorter breaks) does not 

facilitate the continuous manufacturing process. 

 Performance 

 piece time has a high deviation, but its mean value is lower than 

expected, which is favourable (Fig. 6.), 

 there is a more optimal production procedure than the prescribed 

steps of assembly that can result in the reduction of the cycle time, 

 around the time of shift changes lower performance can be 

observed, 

 the production of 225 pieces is characteristic to the most shifts 

(Fig. 7.). 
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Figure 6. Density function of piece time – 2019 

 

 

Figure 7. Density function – Oct 2019 

Measures have been proposed to the revealed patterns, then after the 

accomplishment of the actions the following results can be observed. 

 The previously experienced tendency of 225 produced pieces declined, 

instead of that a higher, but variable number was achieved (Fig. 8.). 

 The OEE value altered from 81.5 % to 90.1% from the start of the 3-

month-long data mining (Fig. 9.). 
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Figure 8. Density function – Jan 2020 

 

Figure 9. OEE improvement 

No financial resources were used in order to increase the OEE value. 

Organizational and optimisation procedures were accomplished based on the 

patterns revealed during data mining. 
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4. Conclusion 

Based on the data deriving from MES the OEE indicator of the manual lines could 

be altered within a short period due to the patterns revealed during data mining. 

Based on the exact production time of the particular products with the altering piece 

time we can conclude to the changes of the OEE factors. In the following step, 

defined actions and countermeasures can be taken. The OEE value was increased 

from 81.5% up to 90.1% within 3 months and with no financial resources. The 

average output of assembly line was increased by only organizational and 

optimisation changes. The method can be applied in case of specific machines, semi-

automatic and automatic assembly lines. It could be a topic of further research to 

analyse the time of planned and realistic maintenance work, its duration and to reveal 

the patterns related to them.  
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