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Abstract: This paper deals with an assembly process of batteries with cell holder. 

The operation involves snap-fitting phenomenon, which is a 

mechanical stability problem. The structure of the cell holder is 

modelled with 2D flexible beam elements assuming large 

displacements. The stability of the equilibrium is investigated taking 

into consideration non-frictional and Coulomb frictional contacts. The 

goal of the analysis to determine the boundary point of the feed-motion 

from which the battery snaps-in to the final assembled position 

autonomously. The effect of the velocity of the battery feed-motion is 

also considered with energy approach. 
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1. Introduction 

Snap-fit elements [1] [2] [3] [4] are frequently applied in toy industry and also in 

daily used equipment. These products are assembled using human force with the 

help of human touch [5]. A man can sense the occurrence of the snap-fit if the 

process is carried out. Industrial robots are usually equipped with position control 

only, but it can be enhanced with machine haptic feedback [6]. Robotic assembling 

tasks, which involve snap-fit elements require their stability analysis in order to 

protect from overloading the workpiece and the robot. Another requirement is to 

minimize the execution time of assembling. 

The stability of mechanical equilibrium containing only conservative forces can 

be discussed with the Lagrange-Dirichlet theorems [7] [8]. When dissipative forces 

are also present the Salvadori’s theorem is applicable [8]. Considering friction 

adhesion also may take place. 

https://dx.doi.org/10.14513/actatechjaur.v13.n1.531
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Finite Element Method (FEM) can be applied to analyse elastic structures for static 

and dynamic problems [9] [10] [11]. Nonlinear structures including frictions can be 

modelled also with FEM. The snap-fit elements are flexible structures, which can be 

represented with slender beam elements assuming large displacements and small 

deformations. A nonlinear analysis of the snap-fit can be performed by the help of 

Updated Lagrangian description [12] or corotational approach [13]. In ideal 

circumstances normal contact takes place between the contacting bodies but in real 

life problems the friction cannot be neglected. In this paper a quasi-static and 

dynamic insertion of a battery into a plastic cell holder is investigated without 

friction and with Coulomb friction. Snap-fit phenomenon takes place at instable 

equilibrium position. A numerical method is proposed in this paper to determine a 

so-called pre-instability position in case of dynamic assembly. 

The rest of the paper is organized as follows: Section 2 describes the stability 

analysis of the non-friction and friction contact models. Concluding remarks are 

summarized in Section 3. 

2. Stability analysis of the assembling process 

Assembling operation of a battery into a cell holder by an industrial robot is shown 

in Fig. 1. The battery is modelled as a rigid body and the cell holder is a flexible 

beam structure. The diameter of the battery is 18 mm and its mass is m=0.0458 kg. 

 

Figure 1. Assembling of a battery into a cell holder 

The symmetric geometry of the curved beam structures is shown in Fig. 2. The 

curved beams of the cell holder consist of two arches with equal radius R=9 mm and 

the angles are 1 rad and 0.63 rad. The cross section of the beam area is A=18.25 mm2 

and the moment of inertia of cross section is I=1.52 mm4. The material of the cell 

holder is Acrylonitrile Butadiene Styrene (ABS) and the Young’s modulus is 2.415 

GPa. One branch of the cell holder subdivided into 20 uniform beam elements. 
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Figure 2. 2D geometry of the battery and cell holder 

A special purpose nonlinear finite element program has been developed under 

Scilab system in order to analyse the feed-motion of the battery [6]. 
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Figure 3. Free body diagram of the contact forces 

The equilibrium iteration 𝑠 = 1, 2, 3, …, is performed by Newton-Raphson method 

�̂�𝑡+∆𝑡
𝐭
(𝑠)

∆𝐪(𝑠) = 𝐟𝑡+∆𝑡
𝐮
(𝑠)

− 𝐟𝑡+∆𝑡
𝐜
(𝑠−1)

− 𝐟𝑡+∆𝑡
𝐢
(𝑠−1)

, (1) 

where �̂�𝑡+∆𝑡
𝐭
(𝑠)

 is the tangential stiffness matrix, 𝐟𝑡+∆𝑡
𝐮
(𝑠)

 is the kinematical load 

vector, 𝐟𝑡+∆𝑡
𝐜
(𝑠−1)

 is the force vector due to contact, 𝐟𝑡+∆𝑡
𝐢
(𝑠−1)

 is the internal load 

vector, and ∆𝐪(𝑠) is the vector of the displacement increments. The associated 

vectors and matrices of the finite elements are published in [6]. It is noted that the 

beam elements suffer large displacements and small deformations. 
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The program determines the contact forces (see Fig. 3) in the course of feed-

motion. The assembly force is the sum of the vertical projections of the normal and 

tangential contact forces 𝐹𝑛, 𝐹𝑡. It is noted that in non-friction case 𝐹𝑡 = 0. 

2.1. Modelling with non-friction contact 

The computed assembly force assuming frictionless operation is shown in Fig. 4. 

The feed-motion denotes the vertical displacement of the battery. The maximum 

displacement is 10.05 mm and it was performed by 30 uniform increments. The 

weight of the battery 0.449298 N is represented by horizontal thin solid line. The 

robotic assembly is performed very slowly, which can be regarded as a quasi-static 

motion. The goal is to find equilibrium position having instability, where only the 

gravity is exerted on the battery and for any arbitrary small disturbance it moves 

autonomously to the assembled position. The intersection of the curve of the load 

versus feed-motion and the weight of the battery provide two equilibrium points. 
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Figure 4. Insertion load versus feed-motion of the battery 

The first equilibrium point is at 𝑦1 = 0.1178 𝑚𝑚, the second one is at 𝑦2 =
4.52552 𝑚𝑚. In accordance with Lagrange-Dirichlet method the criteria of the 

stability is 𝛿П = 0 and 𝛿2П > 0, where П is the potential energy of the system. 

The potential energy is written as 

П = 𝑈 − 𝑚𝑔𝑦, (2) 

where 𝑈 is the strain energy of the flexible cell holder. 

The first variation of the potential energy as follows 
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𝛿П = 0 =
𝜕𝑈

𝜕𝑦
𝛿𝑦 − 𝑚𝑔𝛿𝑦 = (

𝜕𝑈

𝜕𝑦
− 𝑚𝑔) 𝛿𝑦, 

(3) 

where 
𝜕𝑈

𝜕𝑦
= 𝐹𝑛𝑦 represents the vertical projection of the internal force, which is 

equal to 𝑚𝑔 at the equilibrium positions. 

Taking of the second variation of the potential energy 

𝛿2П =
𝜕2𝑈

𝜕𝑦2
(𝛿𝑦)2 =

𝜕𝐹𝑛𝑦

𝜕𝑦
(𝛿𝑦)2, 

(4) 

where 
𝜕𝐹𝑛𝑦

𝜕𝑦
> 0 at 𝑦1 = 0.1178 𝑚𝑚 and 

𝜕𝐹𝑛𝑦

𝜕𝑦
< 0 at 𝑦2 = 4.52552 𝑚𝑚 

according to Fig. 4. Therefore, the first equilibrium point is stable and the second 

one is unstable. It means that if the end-effector of the robot is opened a bit over the 

second point, the battery would snap-in. 

Usually the assembling operation is performed dynamically, which means that 

when the gripper is opened the battery has an initial velocity, e.g., in teach mode of 

the robot its magnitude 𝑣0 = 0.25 𝑚/𝑠. Therefore, the gripper can be opened earlier 

at 𝑦2𝑑 called as pre-instable position, and its kinetic energy can cover the strain 

energy increment, which is equal to the area of the triangle shown in Fig. 4: 

1

2
𝑚𝑣0

2 = ∫ 𝐹𝑛𝑦

𝑦2

𝑦2𝑑

𝑑𝑦 − 𝑚𝑔(𝑦2 − 𝑦2𝑑), 
(5) 

where 

∫ 𝐹𝑛𝑦

𝑦2

𝑦2𝑑

𝑑𝑦 = ∫ 𝐹𝑛𝑦

𝑦2

0

𝑑𝑦 − ∫ 𝐹𝑛𝑦

𝑦2𝑑

0

𝑑𝑦 ≅ 𝐼𝐹(𝑦2) − 𝐼𝐹(𝑦2𝑑), 
(6) 

𝐼𝐹(𝑦) is the integral of the internal force computed numerically shown in Fig. 5. 
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Figure 5. Numerically integrated internal force 

Substituting (6) into (5) 𝐼𝐹(𝑦2𝑑) can be expressed as: 

𝐼𝐹(𝑦2𝑑) ≅ 𝐼𝐹(𝑦2) −
1

2
𝑚𝑣0

2 − 𝑚𝑔(𝑦2 − 𝑦2𝑑), 
(7) 

the position 𝑦2𝑑 can be obtained by the inverse function of 𝐼𝐹(𝑦): 

𝑦2𝑑 ≅ 𝐼𝐹
−1(𝐼𝐹(𝑦2𝑑)). (8) 

Solving numerically the implicit equation (7) 𝑦2𝑑 ≅ 3.07 𝑚𝑚. The opening 

command of the end-effector can be initiated by the robot when the battery is arrived 

at the 𝑦2𝑑 position then it will snap-in to its assembled position. It means that the 

dynamical feed-motion of the battery shorten the feed-motion and the assembling 

time at the same time. 

2.2. Modelling with friction 

Friction is always present in practical contact problems. Therefore, to take it into 

consideration in the assembling operation of the battery is obvious. Assuming 

Coulomb dry sliding friction the coefficient is taken to 𝜇 = 0.15 between the cell 

holder and the plastic-coated battery during feed-motion. It means that according to 

Fig. 3 

𝐹𝑡 = 𝜇𝐹𝑛. (9) 

When the feed-motion is stopped in an equilibrium position adhesion may takes 

place in state of stability or sliding (9) in case of instability. 
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Figure 6. Load versus feed-motion curve considering friction 

The vertical components of the tangential 𝐹𝑡𝑦 and normal 𝐹𝑛𝑦
𝜇  contact forces have 

been computed by the nonlinear FEM program considering Coulomb friction (9). 

The results are shown in Fig. 6. It is noted that the curve of the normal contact force 

𝐹𝑛𝑦
𝜇

 though it is like the curve 𝐹𝑛𝑦 in Fig. 4 but not equal because the principle of the 

superposition is not applicable for nonlinear problems. The assembly force can be 

obtained by the projection of the normal and tangential contact forces: 

𝐹𝑦 = 𝐹𝑡𝑦 + 𝐹𝑛𝑦
𝜇

. (10) 

There are also two equilibrium positions obtained by the weight of the battery. In 

the first equilibrium position at 𝑦1 stick takes place and the system can be regarded 

to be conservative and can be treated as in Section 1.1. The second one at 𝑦2 =
5.95 𝑚𝑚 is a candidate point for the snap-fit. However, the investigated system is 

non-conservative due to friction. The stability of a non-conservative mechanical 

systems can be analysed by Salavadori’s theorem. 

Theorem 1 (L. Salvadori [1966] ref. [8]): 

Hypothesis (i) If the potential energy П has a minimum at 𝑞 =  0; 

Hypothesis (ii) the equilibrium at 𝑞 =  0 is isolated; 

Hypothesis (iii) the dissipation is complete, i.e., for some function 

𝑎 ∈ 𝒦: (𝑄|�̇�) ≤ −𝑎(‖�̇�‖). 

Then the equilibrium 𝑞 =  �̇�  =  0 is asymptotically stable. 
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If the first Hypothesis (i) is replaced by the condition (i-a) П has no minimum at 

𝑞 = 0 then the equilibrium 𝑞 = �̇� = 0 is unstable. 

As it was noted previously, the equilibrium position at 𝑦2 is a candidate for 

instability. Therefore, the (i-a) condition will be investigated. The notations of the 

theorem are given as follows 𝑞 = 𝑦 − 𝑦2, �̇� = �̇� and 𝑄 = 𝐹𝑡, noting that �̇� and 𝐹𝑡 

have opposite signs. 

The potential energy of the conservative gravity and internal forces: 

П = 𝑈 − 𝑚𝑔𝑞. (11) 

The first derivative of the potential energy is written 

𝜕П

𝜕𝑞
|

𝑞=0

=
𝜕𝑈

𝜕𝑞
− 𝑚𝑔, 

(12) 

where 
𝜕𝑈

𝜕𝑞
=

𝜕𝑈

𝜕𝑦
= 𝐹𝑛𝑦

𝜇
 denoted by dashed line in Fig. 6 and its value is equal to -

1.625 N, i.e., 

𝜕П

𝜕𝑦
|

𝑦=𝑦2

= 𝐹𝑛𝑦
𝜇

− 𝑚𝑔 = −1.625 − 0.4493 ≠ 0. 
(13) 

The instability of the candidate position 𝑦2 is proved mathematically according to 

Hypothesis (i-a). 

Due to dynamic feed-motion 𝑣0 = 0.25 𝑚/𝑠 the gripper can be opened before the 

battery arrives at position 𝑦2 also in case of friction. The determination of the pre-

instable position 𝑦2𝑑
𝜇

 is performed by a similar method, which was detailed in non-

friction contact model. 

1

2
𝑚𝑣0

2 = ∫ 𝐹𝑦

𝑦2

𝑦2𝑑
𝜇

𝑑𝑦 − 𝑚𝑔(𝑦2 − 𝑦2𝑑
𝜇

), 
(14) 

where 

∫ 𝐹𝑦

𝑦2

𝑦
2𝑑
𝜇

𝑑𝑦 = ∫ 𝐹𝑦

𝑦2

0

𝑑𝑦 − ∫ 𝐹𝑦

𝑦2𝑑
𝜇

0

𝑑𝑦 ≅ 𝐼𝐹
𝜇

(𝑦2) − 𝐼𝐹
𝜇

(𝑦2𝑑
𝜇

), 
(15) 

𝐼𝐹
𝜇

(𝑦) is the numerically computed integral of the internal force shown in Fig. 7. 
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Figure 7. Numerically integrated internal force considering friction 

Substituting (15) into (14) the integral of the internal force at position 𝑦2𝑑
𝜇

 is given 

as 

𝐼𝐹
𝜇

(𝑦2𝑑
𝜇

) ≅ 𝐼𝐹
𝜇(𝑦2) −

1

2
𝑚𝑣0

2 − 𝑚𝑔(𝑦2 − 𝑦2𝑑
𝜇

), 
(16) 

𝑦2𝑑
𝜇

 can be determined from (8) by iteration. The gripper can be opened at position 

𝑦2𝑑
𝜇

= 4.522 𝑚𝑚 earlier than 𝑦2. 

3. Conclusions 

Stability analysis of a nonlinear system containing battery and cell holder has been 

described in this paper. Two equilibrium positions were investigated with non-

friction and friction contact models. The flexible elastic nonlinear structure was 

modelled with slender beam FEM elements. 

Stable and unstable equilibrium positions have been determined assuming quasi 

static feed-motion. The latter one produces snap-fit phenomenon, where a robot 

gripper can be opened, then the assembly is performed autonomously. 

An approximate method is proposed in this paper to determine a pre-instable 

position before the equilibrium is reached. It is shown that the distance of the feed-

motion can be decreased when the kinetic energy of the battery is not neglected, i.e., 

dynamical assembly is performed with a given velocity. 
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