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A. Wéber, M. Kuczmann
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Abstract: The paper presents a method for designing a state feedback controller
of an active suspension system of a quarter car model. This is a survey
based on a specific example. The designed controller of the active
suspension system improves the driving control, safety and stability,
because during the ride, the periodic swinging motion generated by the
road irregularities on wheels can be decreased. This periodic motion
damages the driving comfort, and may cause traffic accidents. The state
feedback controller is designed to stand road induced displacements.
Computer simulations of the designed controller have been performed in
the frame of Scilab and XCos.
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1. Introduction

Many researches performed on active suspension system have been presented in
the recent years leading to more sophisticated regulatory approaches such as linear
(fuzzy [1] PID controller [2]) and nonlinear control systems (artifical neural network
controllers [3]). The active suspension system is a mechatronic suspension [4] and is
important for improving the ride comfort. Because of the adverse impacts caused by
road imbalances, the wheel can lose contact with the road, it can not deliver force,
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and therefore the driving of the vehicle becomes uncertain. The periodic swinging
motion can damage the driving comfort, the car parts, the cargo, and this motion can
generate health damage, too. The primary purpose of the active suspension system is
to minimize the vertical displacement of the vehicle and guarantee road maintenance.
For modeling and simulation, a quarter car model has been chosen (see Fig. 1).

Figure 1. Quarter car model

2. Mathematical modeling

2.1. The quarter car model

Dynamic systems are described by several scientific and engineering branches and are
modeled by state equations. Using differential equations, the operation of complicated
dynamic systems can be modeled with relatively high precision. For defining the state
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variables of a quarter car model the Euler-Lagrange equation is used [5]:

d

dt

∂K

∂ẋ
− ∂K

∂x
+
∂P

∂x
+
∂R

∂ẋ
= F. (1)

The equation is described by the kinetic energy K, the potential energy P and the
Rayleigh distribution R, as follows [6]:

K =
1

2
m1ẋ

2
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2
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2
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1

2
k2(x2 − w)2 +m2gx2, (3)
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2
b2(ẋ2 − ẇ)2, (4)

where
m1- sprung mass;
m2- un-srpung mass;
k1- suspension stiffness;
k2- tire stiffness;
b1,b2- damping coefficients;
F - action control force;
x1- car body displacement;
x2- wheel displacement;
w- road induced displacement.

2.2. State-space representation of a quarter car model

After obtaining the partial derivatives and substituting them into the Euler-Lagrange
equation, the following equations are obtained:

m1ẍ1 + k1(x1 − x2) +m1g + b1(ẋ1 − ẋ2) = F, (5)
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m2ẍ2−k1(x1−x2)+k2(x2−w)+m2g− b1(ẋ1− ẋ2)+ b2(ẋ2− ẇ) = −F. (6)

The mathematical state of a dynamic system is described by the state variables.
State variables often relate to a physical process in engineering systems, where the
correlation needed to store mass, pulse and current are to be calculated.

The state variables define a state-space. In this state-space, the state vector x(t) is
specified. The movement of the system is the displacement of its end point [7]. A
state-space representation is a mathematical model of a physical system in control
engineering. This is a set of input, output and state variables related by first-order
differential equations.

The states of the present system are defined as follows: ẋ1 = x3, ẍ1 = ẋ3. Four
state variables are defined for the system:

ẋ1 = x3, (7)
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ẋ3 =

(
b21

m1m2
− k1
m1

)
x1 −

(
b21

m1m2
+

b1b2
m1m2

− k1
m1

)
x2 −

b1
m1

x3

+
b1
m1

x4 +
b1b2
m1m2

w +
1

m1
f − g,

(9)

ẋ4 =
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x2 −
k2
m2
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w − 1

m2
f − g. (10)

In the case of a linear system, the general form [8] of the state variable equations
are:

ẋ = Ax+Bu, (11)
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y = Cx+Du. (12)

Here, x is the state vector, u and y are the column vector containing exitations and
responses. A is the system matrix, B, C and D matrices contain the appropriate
coefficient [9].

The state-space representation of a quarter car model is described as follow:
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(13)

The performance parameters of the vehicle are given in Table 1. [6]. After
substituting the values, the state-space representation as follow:

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0

12.5 −40.5 0 1
−59.482759 11.206897 −1.7241379 1.7241379

587.5 −5337.5 0 0



x1
x2
x3
x4



+


0 0 0
0 28 0

0.0034483 48.275862 −9.81
−0.025 4750 −9.81


Fw
1

 .
(14)

The output variable of the quarter car model is as follows:
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A. Wéber and M. Kuczmann – Acta Technica Jaurinensis, Vol. 12, No. 3, pp. 178–190, 2019

y =
[
1 0 0 0

] 
x1
x2
x3
x4

+
[
0 0 0

] Fw
1

 . (15)

Table 1. Parameters

Parameters Value Unit
m1 290 kg
m2 40 kg
k1 23500 N/m
k2 190000 N/m
b1 500 N/m/s
b2 1220 N/m/s
g 9.81 m/s2

3. Simulations of the quarter car model

3.1. Full state feedback

Controllability is an important property of a controlled plant. The system can be
controlled when the rank of controllability matrix Mc is maximal, i.e. the matrix is in-
vertible if the determinant of the matrix is not zero [10]. The Kalman’s controllability
matrix looks as follow (n = 4):

Mc =
[
b Ab A2b ... An−1b

]
, (16)

Mc =


0 0.0034483 −0.0490488 −0.4007186
0 −0.025 1.0556034 92.098313

0.0034483 −0.0490488 −0.4007186 248.99601
−0.025 0 135.46336 −5663.0995

 . (17)
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After determining the controllability matrix, Ackermann’s pole placement can be
used because the state transformation and the feedback matrix can be directly given
[6]. Because the system is controllable, Ackermann’s pole placement is used for the
state feedback. Ackermann’s formula is a control design method for solving the pole
allocation problem.

Figure 2. State feedback in continuous time

The task is to move the system’s egienvalues to new places in the closed loop
system. This is the pole placement, which is why the state feedback k is to be
determined, (see Fig. 2 [10]). The polynomial of a closed loop system in general case
is

λn + p1λ
n−1 + p2λ

n−2...+ pn = 0. (18)

When using the pole placement method, the eigenvalues are changed, as it can be
written as:

φcl(λ) = |λE − (A−BkT )| = 0. (19)

The eigenvalues of the original system as follows:

λ =


−20.40805 +70.147933i
−20.40805 −70.147933i
−0.7040194 +8.4630446i
−0.7040194 −8.4630446i

 . (20)
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The new poles are selected as:

p =
[
−200 −30 −30 −30

]
(21)

and the gain vector has been designed by Ackerman’s formula,

k =
[
237767.73 −221169.83 32173.44 −5473.3186

]
. (22)

Using the pole placement method, the new eigeinvalues of the system are as follows:

λ =


−200

−30.001573
−29.999214 +0.0013619i
−29.999214 −0.0013619i

 . (23)

3.2. Simulating the system

To realize simulations Scilab program with XCos interface has been used. In the
simulation two cases have been examined; the first when the displacement induced by
the road is zero, the second when this displacement is 50 mm. There simulations are
analysed with and without the designed control.

3.2.1. Modeling without controller

If w = 0, then the gravitational force is pressed for the car body (see Fig. 3) and
this showed that, the system left alone is set to a stationarity state after some swing.
In case of w = 50 mm jump, car body displacement is affected by road induced
displacement (see Fig. 4), the system initially leaving it goes out of the steady state
for 10 seconds when it reaches a pothole, causing mass m1 to swing movement, 10
seconds after the transient section becomes steady state. It can be seen that this value
is 50 mm higher.

3.2.2. Modeling with controller

In case when there is no road induced displacement, but there is a controller (see Fig.
5), it can be seen the swings are eliminated, the stationary state is smoother. By the
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Figure 3. w = 0 without controller

Figure 4. w = 0.05 without controller
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reason of the design of the controller, damping force is more effective for the transient
phase. Car drivers, travelers, cargoes are more favorable to this situation.

Figure 5. w = 0 with controller

Figure 6. w = 0.05 with controller

The effect of 50 mm road induced displacement is visible (see Fig. 6). Swinging
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motions disappear, 10 seconds after reaching the pothole, and after jumping the
stationary state is supervened without swinging. There is state-space equation (22)
without road induced displacement and state feedback (see Fig. 7).

ẋ = Ax+B1u+B2w +B31 (24)

Figure 7. State-space equation model in Xcos

Figure 8. State feedback model in Xcos
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The state feedback model is visible, where k is the gain factor (see Fig. 8) The
road induced displacement and gravitational acceleration react the system. There isn’t
reference signal.

4. Conclusion

Designing of the active suspension system of a quarter car model is produced different
results besides changing road induced displacement. By the simulation results, the
model has much better features with the designed controller. The simulation result
of the active suspension system showed that the swinging motion were gone, the
stationary state quickly entered, which favored the driver, the passengers, so avoiding
cargo damage.
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