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Abstract: In a previous survey paper the detailed PID controller design to stabilize
the inclination angle as well as the horizontal movement of an inverted
pendulum system has been presented. In this paper the linear controller
design based on the state space representation is shown step by step.
Pendulum model is based on Euler-Lagrange modeling, and the non-
linear state space model is linearized in the unstable upward position,
finally pole placement by Ackermann formula and Bass–Gura equation,
moreover linear quadratic optimal control are presented. The pendulum
has been inserted into a virtual reality laboratory, which is suitable to
use in model based control teaching.
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1. Introduction

This paper presents a comprehensive study of controller design for an inverted pen-
dulum mounted on a cart which can only move horizontally. Design is based on the
state space representation of the plant. PID controller design with some drawbacks
has been shown in the latter paper [1].

The inverted pendulum is an unstable system that must be stabilized by the pushing-
pulling force F = F (t) acting on the cart by an electric motor (Fig. 1), i.e. to reach
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Figure 1. The inverted pendulum model.

the inclination angle ϕ being zero. The pendulum simply falls over if the cart is not
moved to balance it. By the presented methods, the horizontal movement can also be
easily stabilized.

The studied plant is a popular example commonly found in control system textbooks
and research literature [1–8]. The dynamics of the system are nonlinear as presented
in the paper based on the above mentioned literature, but controller design is based
on the linearized system.

The aim of this survey paper is to show the Euler-Lagrange modeling of the inverted
pendulum system, then the linear state feedback controller design step by step. Pole
placement technique and linear quadratic regulator are presented. The mentioned
formulations are deeply studied, and the current paper can be used in teaching of
model based control.

The latter paper [1] concluded that, two controllers are necessary to design for
stabilizing the inverted pendulum. The design of two dependent controllers is tedious
in some cases, however the state feedback controllers can solve this problem in an
easy way. This is shown in this paper.

The real operating device has not built in this research, however the virtual reality
based implementation has been performed which is applicable to understand the steps
of control design.
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2. Dynamic model of the pendulum

To set up the dynamic model of pendulum, the Euler-Lagrange equation is applied,

d

dt

∂K

∂q̇i
− ∂K

∂qi
+
∂P

∂q̇i
= τi, (1)

where K is the kinetic energy, P is the potential energy, qi and τi are the generalized
coordinates and the generalized torque (force), respectively. In the case of pendulum
i = 1,2, i.e. q1 = x and q2 = ϕ, moreover τ1 = F and τ2 = 0.

The kinetic energy of the system is as follows:

K =
1

2
mẋ2 +

1

2
Mv2

M +
1

2
Θϕ̇2 +

1

2
msv

2
s , (2)

with the mass of cart, m, the mass of rod, M , and the mass of the sphere ms. The
inertial moment of the rod belonging to the center of mass is Θ = 1

3ML2 (the length
of the rod is 2L). The sphere can be moved along the rod, the distance from the shaft
is l. The velocity of the center of mass of the rod as well as the sphere are vM and vs,
respectively [1],

v2
M = ẋ2 + 2LCϕẋϕ̇+ L2ϕ̇2, v2

s = ẋ2 + 2lCϕẋϕ̇+ l2ϕ̇2. (3)

The potential energy of the system is

P = MgLCϕ +msglCϕ, (4)

where g is the gravitational acceleration. For simplicity, Sϕ = sinϕ and Cϕ = cosϕ
notations are used in the paper.

After obtaining the terms in (1), and doing some manipulations, the following
differential equations can be got (see [1] for a similar pendulum):

(m+M +ms)ẍ+ (ML+msl)Cϕϕ̈− (ML+msl)Sϕϕ̇
2 = F,

(ML+msl)Cϕẍ+ (ML2 + Θ +msl
2)ϕ̈− (ML+msl)gSϕ = 0.

(5)
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From these equations, the following second order derivatives can be yielded:

ϕ̈ =
−θ2

RSϕCϕϕ̇
2 +MΣθRgSϕ − FθRCϕ
MΣΘR − θ2

RC
2
ϕ

, (6)

and

ẍ =
θRΘRSϕϕ̇

2 − θ2
RgSϕCϕ + FΘR

MΣΘR − θ2
RC

2
ϕ

. (7)

Here the following notations have been introduced: MΣ = m + M + ms, θR =
ML+msl, ΘR = 4

3ML2 +msl
2.

The two second order differential equations can be rewritten as four first order
differential equations by introducing state variables: x1 = x, x2 = ẋ, x3 = ϕ,
x4 = ϕ̇, i.e. x2 = ẋ1 and x4 = ẋ3. Finally, the state space representation of the
dynamic modell is the following:

ẋ1 = x2,

ẋ2 =
θRΘRSx3

x2
4 − θ2

RgSx3
Cx3

+ FΘR

MΣΘR − θ2
RC

2
x3

,

ẋ3 = x4,

ẋ4 =
−θ2

RSx3
Cx3

x2
4 +MΣθRgSx3

− FθRCx3

MΣΘR − θ2
RC

2
x3

.

(8)

This nonlinear system can be linearized in the unstable upright position, when
ϕ = 0 and ϕ̇ = 0, i.e. the approximations Sϕ ∼= ϕ and Cϕ ∼= 1 can be applied.

At the end, the linearized system can be modeled by the state space equations

ẋ = Ax + bu, (9)

where

A =


0 1 0 0

0 0
−θ2

Rg

MΣΘR−θ2
R

0

0 0 0 1

0 0 MΣΘRg
MΣΘR−θ2

R
0

 , b =


0

ΘR

MΣΘR−θ2
R

0

− θR
MΣΘR−θ2

R

 , (10)
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and x = [x1 x2 x3 x4]
T is the vector of the state variables.

For simplicity, the following notations are used:

A =


0 1 0 0
0 0 q 0
0 0 0 1
0 0 p2 0

 , b =


0
β
0
α

 . (11)

The following data are used in the paper to represent the results: m = 5, M = 10,
ms = 50, 2L = 20, l = 20, in a coherent unit system, i.e. α = −0.0062, p = 1.9925,
β = 0.1208, q = −67.1893.

3. Pole placement control

The typical closed loop block diagrams of the very basic state feedback controller
system is shown in Fig. 2. The block diagrams are equivalent, however both will be
supplemented. Scalar-valued signals are represented by dashed line, the others are
vector-valued.

Figure 2. Block diagrams of the state feedback system.

The pendulum can be represented by the nonlinear ordinary differential equations
(8), called the nonlinear model, while the linearized model is given by (9) and (10). It
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is highlighted that the controller design is based on the linearized model, however the
real life pendulum is nonlinear in nature. Linear and nonlinear models are compared
in the paper.

The control signal is defined as the weighted sum of the state variables, i.e.

u = −kTx = −k1x1 − k2x2 − · · · − kNxN . (12)

In this application N = 4, and kT = [k1 k2 k3 k4] contains the unknown parameters
of the controller that must be designed.

The eigenvalues λ of the system matrix A can be computed by the characteristic
equation

ϕ(λ) = |λI− A| = λN + a1λ
N−1 + a2λ

N−2 + · · ·+ aN−1λ+ aN , (13)

where I is the identity matrix, and the coefficients a1, a2, · · · , aN are known building
up the vector aT = [a1 a2 · · · aN ]. The transient behavior of the plant is depending
on the eigenvalues, which can be modified by the negative feedback.

The state space representation of the closed loop system is as follows:

ẋ = Ax + bu = (A− bkT)x, (14)

i.e. the system matrix A of the open loop system is modified by the term −bkT.

The eigenvalues of the closed loop system are determined by

ϕcl = |λI− (A− bkT)| = λN + p1λ
N−1 + p2λ

N−2 + · · ·+ pN−1λ+ pN . (15)

It is important to recognize, that the coefficients p1, p2, · · · , pN are not known,
because kT is unknown yet. The coefficients can be written as a vector pT =
[p1 p2 · · · pN ].

The first step of the design is to determine the desired value of the coefficients
in pT (i.e. the eigenvalues of the closed loop system), then to find the appropriate
feedback gains.
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The Bass–Gura equation and the Ackermann formula are well known in the litera-
ture to design the gain vector kT [2–6].

Next, the controllability of the plant must be checked by analyzing the controllabil-
ity matrix

Mc = [b Ab A2b · · · AN−1b]. (16)

Here Mc can be computed by using the notations of (11),

Mc =


0 β 0 qα
β 0 qα 0
0 α 0 p2α
α 0 p2α 0

 . (17)

It is easy to see, that the matrix has four independent columns, i.e. the rank of Mc is
maximum. It means that, the system is controllable and state feedback methods can
be applied. The inverse of Mc appears in the design process.

The Bass–Gura equation looks like

kT =
(
pT − aT

)
τ(a)−1M−1

c , (18)

where τ(a) is the following Toeplitz matrix

τ(a) =


1 a1 a2 a3 · · · aN−1

0 1 a1 a2 · · · aN−2

...
. . . . . . · · ·

...
...

. . .
0 0 0 0 · · · 1

 . (19)

The Ackermann formula has the form

kT = [0 0 0 · · · 0 1]M−1
c ϕcl(A). (20)

Of course the row vector is [0 0 0 1] in this situation, moreover

ϕcl(A) = AN + p1AN−1 + p2AN−2 + · · ·+ pN−1A + pN I. (21)
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Figure 3. Stabilization of the horizontal movement (top) and the inclination angle
(middle) by the control signal (bottom).
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Stabilization of the horizontal movement as well as the inclination angle can be
performed easily by the pole placement methods as it is shown in Fig. 3, where the
control force is also plotted. A significant difference between the linear and nonlinear
model behavior can be seen, because of the large initial values. If the initial values
are much smaller, then the models output are very close to each other.

In this illustration pT = [8 18 16 5] has been applied, i.e. the desired eigenvalues
of the closed loop system are λ1 = −5, λ2,3,4 = −1. The plant itself is unstable with
the following eigenvalues: λ1,2 = 0, λ3,4 = ±1.9925, i.e. aT = [0 − 3.97 0 0]. The
resulting feedback vector is kT = [−81.86 − 261.95 − 5116.12 − 6365.03].

Reference tracking can be realized by simple feedforward branches as shown in
Fig. 4. It is noted that, there is no feedback from the output of the plant resulting in
sensitive and not robust controller, however the pendulum is stabilized.

Figure 4. The state feedback system with reference trancking.

The control signal is as follows

u = kT (Nxr − x) +Nur, (22)

or
u = −kTx + krr, (23)

138



M. Kuczmann – Acta Technica Jaurinensis, Vol.12., No.2., pp. 130–147, 2019

in the first and second setup, respectively.

The gains in the first realization can be calculated as[
Nx

Nu

]
=

[
A b
cT 0

]−1 [ 0
1

]
, (24)

and the gain

kr =
−1

cT
(
A− bkT

)−1
b

(25)

is applied in the second block diagram.

Fig. 5 shows a simple reference tracking problem by the pendulum. The cart is
at x = −10 at the initial state, where ϕ = 30◦. The reference signal is jumping
from −10 to +10, then, after 10 s it is jumping back to the original state. The cart is
following the reference signal, moreover the pendulum is stabilized. Controller gains
are the same as above, feedforward gains are set as mentioned in (24) and (25).

Figure 5. Reference signal tracking.

Reference tracking properties can be improved by a feedback including an integrator
as shown in Fig. 6. The variable z = z(t) is a new state variable, and the augmented
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system representation is as follows:[
ẋ
ż

]
=

[
A 0
cT 0

] [
x
z

]
+

[
b
0

]
u, (26)

where the control signal is

u = −
[

kT kI

] [ x
z

]
. (27)

Here kI = Nu and kI = kr, respectively (see notations in Fig. 6). The augmented
vector

[
kT kI

]
can be calculated by the Bass–Gura or the Ackermann formula.

Figure 6. The state feedback system with integrator and reference trancking.

The mentioned pole placement techniques require to measure all the states. The
horizontal movement and speed, moreover the inclination angle and angular speed
must be measured in this case. It is easy to realize, however, in many cases it is
not possible to pick up all the states, that is why state observers are designed. State
observers estimate the states from measurements of the input and output of the real
system as it is shown in Fig. 7.
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Figure 7. Block diagram of the state feedback system with observer.

The pole placement and observer design are dual to each other. The eigenvalues of
the system augmented by the observer are defined by

ϕo = |λI− (A−GcT)| = λN + f1λ
N−1 + f2λ

N−2 + · · ·+ fN−1λ+ pN . (28)

The coefficients f1, f2, · · · , fN can be written as a vector fT = [f1 f2 · · · fN ].

The first step of the observer design is to determine the desired value of these
coefficients (i.e. the eigenvalues), then to find the appropriate observer gain G. The
Bass–Gura equation and the Ackermann formula can also be applied.
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Next, the observability of the plant must be checked, i.e. the observability matrix

Mo =


cT

cTA
cTA2

...
cTAN−1

 (29)

must have full rank. It can only be reached if the horizontal movement of the cart is
measured, i.e.

cT =
[

1 0 0 0
]
, D = 0, (30)

otherwise the rank of the observability matrix is less then four. The full rank observ-
ability matrix is according to the notations of (11) is

Mo =


1 0 0 0
0 1 0 0
0 0 q 0
0 0 0 q

 . (31)

Duality means a simple change of the matrices: A → AT, b → bT, Mc → MT
o ,

k→ G, with which the Bass–Gura equation has the form

GT =
(

fT − aT
)
τ(a)−1M−T

o , (32)

while the Ackermann equation is given as

GT = [0 0 0 · · · 0 1]M−T
o ϕo(AT), (33)

then the other terms of the observer are determined by

F = A−GcT, H = b. (34)

Fig. 8 and Fig. 9 show comparisons between observer estimated and the measured
signals in the case of small initial value and a larger one, respectively. The first
one is very close to the linearized model, resulting very good observer performance.
The linear observer is not advantageous when the real life problem is far from the
stationary point. Observer eigenvalues have been set to λ1,2,3,4 = −2 in this example.
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Figure 8. Comparison of observed and measured state variables x and ϕ, ϕ(0) =
−5◦.

Figure 9. Comparison of observed and measured state variables x and ϕ, ϕ(0) =
−20◦.
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4. Linear quadratic optimal control

Linear quadratic regulator (LQR) minimizes the following functional:

J(x,u) =
1

2

∫ ∞
0

[
xTQx + ru2

]
dt. (35)

The first term in the integral ensures stability (x → 0), while the second term
minimizes the supply effort for the control. Matrix Q is symmetric and positive semi-
definite, moreover r > 0. These design parameters determine the relative importance
of error in x and the supplied energy.

The system is defined by (9), with the initial condition x(t0).

The optimal control law minimizing the functional (35) is a state feedback control,
given by

u = −1

r
bTPx = −kTx, (36)

where the symmetric positive definite matrix P is the solution of the control algebraic
Riccati equation

PA + ATP− 1

r
PbbTP + Q = 0. (37)

Riccati equation can be solved by numerical techniques. The following gains have
been obtained when Q = 5I and r = 1: kT = [−2.24 −19.96 −1500.66 −1072.67].
The value of Q11, Q22, Q33 and Q44 has effect on the state variable x, ẋ, ϕ, ϕ̇,
respectively. Control time can be decreased by increasing these values, however
control signal is increased. Fig. 10 illustrates the effect of Q11.

All the other supplementary blocks are designed in the same way presented is
Section 3.

5. Implementation

Controller design and analysis have been realized firstly in Scilab [9]. Then the
virtual reality based implementation has been performed in the frame of MaxWhere
as a freely available virtual laboratory [10, 11]. A separate future paper is planned
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Figure 10. Effect of Q11 on the behavior of horizontal movement.

to show the virtual lab. A snapshot about the lab can be seen in Fig. 11, where
the controller settings and oscilloscopes showing some signals (e.g. the angle of
pendulum, the horizontal position, the acting force versus the time) can be seen
among other information like the theoretical background.

6. Conclusion and future work

State feedback controller design for the problem of inverted pendulum has been shown
in detail in this paper. Next, nonlinear techniques [12–14] and model predictive control
[15] are planned to study.
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Figure 11. The inverted pendulum model in the virtual laboratory of MaxWhere.
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[14] K. György, L. Dávid, A. Kelemen, Theoretical study of the nonlinear control
algorithms with continuous and discrete-time state dependent riccati equation,
Procedia Technology 22 (2016) pp. 582–591.
doi:10.1016/j.protcy.2016.01.123.

[15] W. Liuping, Model predictive control system design and implementation using
Matlab, Springer, 2009.

147

https://pp.bme.hu/tr/article/view/6592
http://ctms.engin.umich.edu/CTMS/
http://ctms.engin.umich.edu/CTMS/
https://www.scilab.org/
https://www.scilab.org/
https://www.maxwhere.com/
https://www.maxwhere.com/
http://dx.doi.org/10.1556/606.2018.13.3.9
http://dx.doi.org/10.1016/j.protcy.2016.01.123

	Introduction
	Dynamic model of the pendulum
	Pole placement control
	Linear quadratic optimal control
	Implementation
	Conclusion and future work

