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Abstract: The survey shows the detailed PID controller design how to stabilize
the inclination angle as well as the horizontal movement of an inverted
pendulum on a cart system step by step. Pendulum model is based on
Euler-Lagrange modeling, and the nonlinear state space model is lin-
earized in the unstable upward position. Controller design is performed
by applying the transfer function description. The pendulum has been
inserted into a virtual reality laboratory, which is suitable to use in model
based control teaching.
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1. Introduction

The paper presents a comprehensive study of PID controller design for an inverted
pendulum mounted on a cart.

The inverted pendulum is an unstable system that must be stabilized by the pushing-
pulling force F = F (t) acting on the cart (Fig. 1), i.e. to reach ϕ(t) → 0 in the
stationary state, where ϕ = ϕ(t) is the inclination angle. The pendulum simply falls
over if the cart is not moved to balance it. The actuator is typically an electric motor.
The cart can move only along the x-axis.
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Figure 1. The inverted pendulum model.

The system input is the force, u(t) = F (t). First, the output is only the inclination
angle ϕ resulting a single input single output system (y(t) = ϕ(t)). Second, the
horizontal movement x = x(t) is also stabilized, i.e. the plant is a single input and
multiple output system (y1(t) = x(t), y2(t) = ϕ(t)).

The studied plant is a popular example commonly found in control system textbooks
and research literature [1–7]. The dynamics of the system are nonlinear as presented
in the paper based on the above mentioned literature, but PID controller design is
based on the linearized system. All the PID type controllers are presented in detail.

The aim of this survey paper is to show the Euler-Lagrange modeling of the inverted
pendulum system, than the linear PID controller design step by step. The mentioned
formulations are deeply presented in detail, that it why it can be used in teaching of
model based control.

The really operating device has not built in this research, however the virtual reality
based implementation has been performed which is applicable to understand the steps
of control design.

A real-world example that relates directly to this inverted pendulum system is the
attitude control of a booster rocket at takeoff or the well-known personal transporter
Segway.
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2. Dynamic model of the pendulum

To set up the dynamic model of pendulum, the Euler-Lagrange equation is applied,

d

dt

∂K

∂q̇i
− ∂K

∂qi
+
∂P

∂q̇i
= τi, (1)

where K is the kinetic energy, P is the potential energy, qi and τi are the generalized
coordinate and the generalized torque (force), respectively. In the case of pendulum
i = 1,2, i.e. q1 = x and q2 = ϕ, moreover τ1 = F and τ2 = 0. Here F is the force
pulling or pushing the cart. This is an underactuated system because there are two
output signals (x and ϕ) and only one input signal (F ).

The kinetic energy of the system is as follows:

K =
1

2
mẋ2 +

1

2
Mv2

M +
1

2
Θϕ̇2, (2)

with the mass of cart, m, the mass of rod, M , and the inertial moment of the rod
belonging to the center of mass, Θ. The value of the last term is Θ = 1

3ML2 (the
length of the rod is 2L). The coordinates and the velocity of the center of mass of the
rod are xM , yM and vM .

The potential energy of the system is

P = MgLCϕ, (3)

where g is the gravitational acceleration. For simplicity, Sϕ = sinϕ and Cϕ = cosϕ
notations are used in the paper.

The velocity of the rod center of mass can be obtained by the coordinates as follows:

v2
M = ẋ2

M + ẏ2
M = (ẋ+ (LSϕ)′)

2
+ ((LCϕ)′)

2

= ẋ2 + 2LCϕẋϕ̇+ L2ϕ̇2,
(4)

since xM = x+ LSϕ and yM = LCϕ.
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The terms in (1) can be obtained easily:

∂K

∂ẋ
= mẋ+Mẋ+MLCϕϕ̇,

∂K

∂x
= 0,

∂P

∂x
= 0,

∂K

∂ϕ̇
= MLCϕẋ+ML2ϕ̇+ Θϕ̇,

∂K

∂ϕ
= −MLSϕẋϕ̇,

∂P

∂ϕ
= −MgLSϕ,

(5)
and

d

dt

∂K

∂ẋ
= mẍ+Mẍ+MLCϕϕ̈−MLSϕϕ̇

2,

d

dt

∂K

∂ϕ̇
= MLCϕẍ−MLSϕẋϕ̇+ML2ϕ̈+ Θϕ̈.

(6)

Putting everything together gives the following differential equations:

(m+M)ẍ+MLCϕϕ̈−MLSϕϕ̇
2 = F,

MLCϕẍ+ (ML2 + Θ)ϕ̈−MgLSϕ = 0.
(7)

From these equations, after some algebraic manipulations, the second order deriva-
tives can be yielded as

ϕ̈ =
MLSϕCϕϕ̇

2 − (m+M)gSϕ + FCϕ

MLC2
ϕ − 4

3 (m+M)L
, (8)

and

ẍ =
4
3MLSϕϕ̇

2 −MgSϕCϕ + 4
3F

4
3 (m+M)−MC2

ϕ

. (9)

The two second order differential equations can be rewritten as four first order
differential equations by introducing state variables: x1 = x, x2 = ẋ, x3 = ϕ,
x4 = ϕ̇, i.e. x2 = ẋ1 and x4 = ẋ3. Finally, the state space representation of the
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dynamic modell is the following:

ẋ1 = x2,

ẋ2 =
4
3MLSx3

ẋ2
4 −MgSx3

Cx3
+ 4

3F
4
3 (m+M)−MC2

x3

,

ẋ3 = x4,

ẋ4 =
MLSx3

Cx3
ẋ2

4 − (m+M)gSx3
+ FCx3

MLC2
x3
− 4

3 (m+M)L
.

(10)

This nonlinear system can be linearized in the unstable upright position, when
ϕ = 0 and ϕ̇ = 0, i.e. the approximations Sϕ ∼= ϕ and Cϕ ∼= 1 can be applied.

At the end, the linearized system can be modelled by the following state space
equations:

ẋ1 = x2,

ẋ2 =
−3Mg

4m+M
x3 +

4

4m+M
F,

ẋ3 = x4,

ẋ4 =
3(m+M)g

4mL+ML
x3 −

3

4mL+ML
F.

(11)

It can be written in the usual matrix form of SISO (single input single output)
systems as

ẋ = Ax + bu,

y = cTx +Du,
(12)

where

A =


0 1 0 0

0 0 −3Mg
4m+M 0

0 0 0 1

0 0 3(m+M)g
4mL+ML 0

 , b =


0
4

4m+M

0
− 3

4mL+ML

 . (13)
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Let the output y of the system be the variable ϕ, in this case

cT =
[

0 0 1 0
]
, D = 0. (14)

Here x = [x1 x2 x3 x4]
T is the vector of the state variables.

In the case of the two output system y = Cx + Du, where

C =

[
1 0 0 0
0 0 1 0

]
, D =

[
0
0

]
, (15)

and y = [xϕ]
T is the output vector.

For simplicity, the following notations are used to obtain the transfer function of
the model:

A =


0 1 0 0
0 0 q 0
0 0 0 1
0 0 p2 0

 , b =


0
β
0
α

 . (16)

The transfer function of the system (13)-(14) with the notations defined by (16) is the
following:

WP(s) =
Φ(s)

U(s)
=
L{ϕ(t)}
L{u(t)}

=
α

s2 − p2
. (17)

Here, the subscript P is for the plant, and the operator L{} represents the Laplace
transform.

The transfer function

WP(s) =
−0.01

s2 − 1.47
=

−0.01

(s+ 1.21)(s− 1.21)
(18)

is applied in the paper to represent the results (m = 5, M = 10, 2L = 20 in a
coherent unit system, furthermore α = −0.01, p = 1.21, β = 0.13, q = −9.81).

It is easy to see that the system is unstable, because one of the poles is surely
positive: p1,2 = ±p. It is noted that the four eigenvalues of the system matrix A are
λ1,2 = 0, λ3,4 = ±p.
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3. Stabilizing the SISO plant by PID controllers

The typical closed loop block diagram of the controller system is shown in Fig. 2,
where the Laplace transform of the signals are highlighted: the input and output of
the plant are U = U(s) and Φ = Φ(s), the reference signal is zero, and E = E(s) =
0− Φ is the error.

Figure 2. Block diagram of the controller system.

The transfer function of the open loop is WO = WCWP, where WC and WP are
the transfer function of the controller and the plant, respectively. The notation (s)
will be cancelled in the following part of the paper.

In the followings, all the four controllers are studied.

3.1. Applying P controller

In the case of P controller,WC is a constant, denoted byKP (WC = KP), furthermore

WO = KP
α

s2 − p2
. (19)

First, the Nyquist criterion and Nyquist plot are used to check whether the plant
stabilization can be performed or not. It is well known that the Nyquist contour of
this open loop system (with one unstable pole) should encircle counter clock-wise the
point −1 + j0 once. It can not be satisfied as it is demonstrated in Fig. 3 when the
gain is negative (e.g. KP = −200). The Nyquist contour encircles the point −1 + j0
once, but its direction is clock-wise. When KP is positive, the Nyquist plot is on the
right hand side plane resulting non stable system.
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The result can be verified by the root locus of the open loop transfer function
(Fig. 3). One of the poles stands on the right hand side of the complex plane while
KP ≥ 1 is changing. It is not shown here, but the poles become unstable conjugate
complex pairs when KP is negative and large enough.

Figure 3. Nyquist plot and root locus of open loop system with P controller.

Now, let us prove this by analytically checking the poles of the closed loop system,
too. The transfer function of the closed loop system is

WCL =
WO

1 +WO
=

B

A+B
, (20)

if WO = B
A , moreover B = B(s) and A = A(s) are the numerator and the denomi-

nator of the open loop transfer function, respectively. The roots of the polynomial
A+B (the poles of WCL) are responsible for the stability of the closed loop system.

In the case of P controller A + B = s2 − p2 + KPα, from which the poles are
p1,2 = ±

√
p2 −KPα. If KP is positive, one of the poles is usually unstable (α < 0).

If KP is negative, the poles become complex numbers with zero real part.

At the end, it is concluded that stabilization can not be performed by simple P
controller.
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3.2. Applying PD controller

In the case of PD controller,

WC = KPD
1 + sTD

1 + sT ′D
, (21)

where TD and T ′D are time constants, and KPD is the gain of the controller.

First of all, WP is rewritten in the form

WP =
α

s2 − p2
=

− α
p2(

1 + s
p

)(
1− s

p

) . (22)

Next, the stable pole of the plant is cancelled by TD, i.e. TD = 1
p . The open loop

transfer function becomes

WO = −KPDα

p2

1

(1 + sT ′D)
(

1− s
p

) . (23)

The following inequality must be satisfied when selecting the value of T ′D:

1

T ′D
>

1

TD
. (24)

The root locus of the open loop is shown first in Fig. 4 with positive and negative
gain (here T ′D = TD/10 is used). It is easy to see that the system can not be stabilized
by any positive gain, but appropriate negative gain can stabilize the pendulum.

It can be checked by the Nyquist diagram of the open loop transfer function as well.
See Fig. 5 for KPD = −200. The Nyquist contour encircles the point −1 + j0 once
counter clock-wise if the value of KPD is large enough with negative sign.

Fig. 6 shows the impulse response of the closed loop system. The transient can
oscillate when the gain is too high, anyway the stabilization time is shorter.
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Figure 4. Open loop root locus of PD controller with positive and negative gain.

Figure 5. Nyquist plot of open loop system with PD controller.
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Figure 6. Impulse response of the closed loop system.

Figure 7. Bode plot of open loop system to determine gain.
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The open loop Bode plot is shown in Fig. 7, from which the maximum phase
margin can be read easily, PMmax

∼= 55◦ at ωc
∼= 3.8, i.e. KPD = −456. In this

case, there is no oscillation.

It can be computed analytically, too. The phase of the open loop system is the
following:

Φ(ω) = −180◦ − atanωT ′D + atan
ω

p
(25)

having the maximum value of phase margin at ω =
√

p
T ′
D

, i.e. the maximum phase

margin is

PMmax = −180◦ − atan
√
pT ′D + atan

1√
pT ′D

. (26)

By these nonlinear expressions, the phase margin and the cut-off frequency, i.e. the
transient behavior, can be designed semi-analytically.

For example, the PD controller

WC = −456
1 + s0.82

1 + s0.082
(27)

is a good choice to stabilize this system with maximum phase margin without oscilla-
tion.

Finally, the Routh-Hurwitz criterion is applied. In the case of PD controller
A + B = s2T ′Dp + s(p − p2T ′D) + (KPDα − p2) which has the same roots as the
monic polynomial s2 + s

(1−pT ′
D)

T ′
D

+ (KPDα−p2)
T ′
Dp

. According to the Routh-Hurwitz
criterion, the coefficients of the above polynomials, after inserting the designed
controller parameters must be positive.

PD controller can be designed by the Routh-Hurwitz criterion as well by prescribing
the coefficients of the characteristic polynomial, i.e. by setting the value of p1 and p0,

s2 + s
(1− pT ′D)

T ′D︸ ︷︷ ︸
p1

+
(KPDα− p2)

T ′Dp︸ ︷︷ ︸
p0

= 0, (28)
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i.e.

TD =
1

p
, T ′D =

1

p+ p1
, KPD =

p2 + p0pT
′
D

α
. (29)

An example is presented here to show how to use these expressions. Let us,
say, determine the overshoot of any transient to be less then ∆vmax = 5% and the
settling time to be Ts = 2 with the tolerance fraction ∆ = 2%. These criteria
can be represented by supposing the dominant pole pair of the closed loop system,
p1,2 = −ξΩ ± jΩ

√
1− ξ2, where ξ and Ω are the damping ratio and the natural

frequency of the complex pole pair. The damping ratio and the real part should be
higher than (σ = ξΩ)

ξmin =
1√

1 + π2

ln2∆vmax

∼= 0.7, and σmin = − ln∆

Ts

∼= 2. (30)

The following dominant pole pair, for example, can satisfy these criteria (ξ = 0.9,
σ = ξΩ = 5): p1,2 = −5± j2.4, i.e. p1 = 10 and p0 = 30.8, and

WC = −480
1 + s0.82

1 + s0.089
. (31)

It can be concluded that the pendulum can be stabilized by a PD controller.

3.3. Applying PI controller

The transfer function of the PI controller is the following:

WC = KPI
1 + sTI

sTI
, (32)

where TI and KPI are the time constant and the gain of the controller, respectively.

The stable pole of the plant is cancelled by TI, i.e. TI = 1
p . The open loop transfer

function can be written as

WO = −KPIα

p2

1

sTI

(
1− s

p

) . (33)
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It is easy to check that A + B = s2 − sp + KPIα. The sign of the second term
−sp is usually negative, because p > 0. It means that the Routh-Hurwitz criterion
can not be satisfied, and the plant can not be stabilized by PI controller.

3.4. Applying PID controller

The following transfer function of PID controller has been used in this paper:

WC = KPID
1 + sTI

sTI

1 + sTD

1 + sT ′D
. (34)

The stable pole of the plant is cancelled by TD, i.e. TD = 1
p . The time constant

of the integrator can also be set to the value TI = 1
p . The inequality (24) must be

satisfied again when selecting the value of T ′D. Finally, the open loop transfer function
can be written as

WO = −KPIDα

p2

1 + s
p

s
p

1

(1 + sT ′D)
(

1− s
p

) . (35)

Fig. 8 shows the root locus of the open loop system with negative gain when

Figure 8. Root locus of open loop system with PID controller with negative gain.
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T ′D = TD/10. It can be seen that the pendulum can be stabilized by a high enough
negative gain. With positive gain it is not possible.

The maximum phase margin has been determined by the Bode plot resulting the
gain KPID = −871 and the cut-off frequency ωc

∼= 5.8.

The open loop Nyquist diagram can be seen in Fig. 9. This is a magnified plot to
check the counter clock-wise direction of the contour around the point −1 + j0.

Figure 9. The open loop Nyquist diagram with PID controller, KPID = −871.

The PID controller

WC = −871
1 + s0.82

s0.82

1 + s0.82

1 + s0.082
(36)

is a good candidate to stabilize the system resulting the closed loop impulse response
shown in Fig. 10.

Finally, the Routh-Hurwitz criterion is applied to check the stability. The following
polynomial is obtained:

A+B = s3 T ′Dp︸︷︷︸
a3

+s2 (p− p2T ′D)︸ ︷︷ ︸
a2

+s (KPIDα− p2)︸ ︷︷ ︸
a1

+KPIDαp︸ ︷︷ ︸
a0

(37)

Not only the coefficients a0, a1, a2 and a3 must be positive but there is one more
criterion according to the Routh-Hurwitz rule: a1a2 − a0a3 must be positive.
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Figure 10. Impulse response of the closed loop system.

The controller can be designed by prescribing the coefficients of the characteristic
polynomial, i.e. by setting the value of p2, p1 and p0, moreover TI is free,

s3 + s2 1− pT ′D
T ′D︸ ︷︷ ︸
p2

+s
KPIDα− p2

pT ′D︸ ︷︷ ︸
p1

+
KPIDα

pTIT ′D︸ ︷︷ ︸
p0

= 0, (38)

from which the controller parameters can be obtained as

TD =
1

p
, T ′D =

1

p+ p2
, KPID =

p2 + p1T
′
D

α
, TI =

αKPID

pp0T ′D
. (39)

It can be concluded that PID controller is able to stabilize the pendulum.

4. Stabilizing the horizontal movement

Unfortunately, there is a problem with the above mentioned controllers: the cart moves
along the x-axis, although the PD and the PID controllers are able to stabilize the
angle of the pendulum. This design would not be feasible to implement on an actual
physical system. In this Section not only the angle, but the horizontal movement is
stabilized by PID controllers according to Fig. 11.
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The controll signal u(t) is the sum of two controller signals [5], i.e.

U = −WC1
(Xr −X) +WC2

(0− Φ) . (40)

Figure 11. Block diagram of the two loop controller system.

The following transfer function with two integrators must be appended:

WP1
=
X

U
=

βs2 + γ

s2(s2 − p2)
, (41)

where γ = αq − βp2. The horizontal movement is according to the integrators in this
transfer function.

In this section the following notation will be used for (17):

WP2
(s) =

Φ

U
=

α

s2 − p2
. (42)

The horizontal movement and the inclination angle can be expressed by the closed
loop transfer functions,

X =
−WP1

WC1

1−WP1
WC1

+WP2
WC2

Xr, (43)

and
Φ =

−WP2
WC1

1−WP1
WC1

+WP2
WC2

Xr. (44)

71



M. Kuczmann – Acta Technica Jaurinensis, Vol.12, No.1, pp. 55–81, 2019

The closed loop system stability is depending on the denominator term 1 −
WP1

WC1
+ WP2

WC2
. This means that the two controllers WC1

and WC2
can

not be designed independently.

There are 16 possible combinations of the two controllers: P-P, P-PI, P-PD, P-PID,
PI-P, PI-PI, PI-PD, PI-PID, PD-P, PD-PI, PD-PD, PD-PID, PID-P, PID-PI, PID-PD,
PID-PID. Unfortunately, not all of these setups are feasible. Next, only the controller
transfer functions mentioned in Section 3 are studied without analyzing the possible
Diophantine equations [1, 2] (this is planned in a separate paper). It is noted that
the time constants have no got physical meaning, they are just parameters of the
controller.

4.1. P controller for horizontal movement

In the case of P-P configuration WC1
= K1

P, WC2
= K2

P, i.e.

1−WP1WC1 +WP2WC2 = 1− βs2 + γ

s2(s2 − p2)
K1

P +
α

s2 − p2
K2

P = 0. (45)

After a short algebra, the following polynomial can be obtained:

s4 + 0s3 +
(
αK2

P − βK1
P − p2

)
s2 + 0s+

(
−K1

Pγ
)
, (46)

resulting a non stable closed loops system, because the coefficients of the terms s3

and s are zero.

It is easy to check the statement that, the P-PI system is similarly unstable. In this
case WC1

= K1
P, WC2

= K2
PI

1+sT 2
I

sT 2
I

, and the coefficient of the term s3 is zero.

In the case of P-PD configuration WC1
= K1

P, WC2
= K2

PD
1+sT 2

D

1+sT ′2
D

, i.e.

1−WP1WC1 +WP2WC2 = 1− βs2 + γ

s2(s2 − p2)
K1

P +
α

s2 − p2
K2

PD

1 + sT 2
D

1 + sT ′2D

= 0,

(47)
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from which, after a short algebra, the following polynomial can be given:

s5+
1

T ′2D

s4 +

(
−p2 − βK1

P + αK2
PD

T 2
D

T ′2D

)
s3 +

−p2 − βK1
P + αK2

PD

T ′2D

s2

+
(
−γK1

P

)
s+

(
−γK

1
P

T ′2D

)
.

(48)

The P-PD configuration is redundant, because there are four parameters to be deter-
mined (K1

P, K2
PD, T 2

D, T ′2D ), but there are five equations according to the fifth order
polynomial. In the followings, redundant systems will be skipped.

The P-PID system is finally feasible. From the characteristic equation

1− βs2 + γ

s2(s2 − p2)
K1

P +
α

s2 − p2
K2

PID

1 + sT 2
I

sT 2
I

1 + sT 2
D

1 + sT ′2D

= 0 (49)

the following polynomial can be got:

s5+
1

T ′2D︸︷︷︸
p4

s4 +
(
−p2 − βK1

P

)︸ ︷︷ ︸
p3

s3 +
−p2 − βK1

P + αK2
PIDT

2
D

T ′2D︸ ︷︷ ︸
p2

s2

+

(
−γK1

P + αK2
PID

T 2
D

T 2
I T
′2
D

+ αK2
PID

1

T ′2D

)
︸ ︷︷ ︸

p1

s+
αK2

PID − γK1
PT

2
I

T 2
I T
′2
D︸ ︷︷ ︸

p0

.

(50)

From the resulting five equations the following controller parameters can be obtained
analytically:

T ′2D =
1

p4
, K1

P = −p0T
′2
D

γ
, (51)

and T 2
D is the solution of the second order equation(

p1 + γK1
P

)
T ′2D

(
T 2

D

)2
+
(
−p2 − βK1

P − p2T
′2
D

)
T 2

D +
(
p3 + p2 + βK1

P

)
T ′2D = 0,

(52)
finally

T 2
I =

p3 + p2 + βK1
P

(p1 + γK1
P)T 2

D

, K2
PID =

p1 + γK1
P

α
T 2

I T
′2
D . (53)
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The impulse response of this system can be seen in Fig. 12 when all the desired
poles of the closed loop system are equal to −1, i.e. the characteristic polynomial is
prescribed by s5 + 5s4 + 10s3 + 10s2 + 5s + 1. It can be seen that all the system
outputs have been stabilized. The behavior of the closed loop system can be set by
the desired poles.

Figure 12. Impulse response of the closed loop P-PID and PI-PID systems.

4.2. PI controller for horizontal movement

Only PI-PID can be used as stabilizing controller from the second group. It is easy to
check that, configurations PI-P, PI-PI and PI-PD result in redundant systems, moreover
some of the polynomial coefficients are equal to zero.

The design of a feasible PI-PID system can be performed by the characteristic
equation

1− βs2 + γ

s2(s2 − p2)
K1

PI

1 + sT 1
I

sT 1
I

+
α

s2 − p2
K2

PID

1 + sT 2
I

sT 2
I

1 + sT 2
D

1 + sT ′2D

= 0. (54)
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The following polynomial can be obtained after some manipulations:

s6+
1

T ′2D︸︷︷︸
p5

s5 +

(
−p2 − βK1

PI + αK2
PID

T 2
D

T ′2D

)
︸ ︷︷ ︸

p4

s4

+

(
− p2

T ′2D

− βK1
PI

T 1
I + T ′2D

T 1
I T
′2
D

+ αK2
PID

T 2
I + T 2

D

T 2
I T
′2
D

)
︸ ︷︷ ︸

p3

s3

+

(
−γK1

PI − βK1
PI

1

T 1
I T
′2
D

+ αK2
PID

1

T 2
I T
′2
D

)
︸ ︷︷ ︸

p2

s2

+

(
−γK1

PI

T 1
I + T ′2D

T 1
I T
′2
D

)
︸ ︷︷ ︸

p1

s+
−γK1

PI

T 1
I T
′2
D︸ ︷︷ ︸

p0

.

(55)

From the resulting six equations the following controller parameters can be obtained
analytically:

T ′2D =
1

p5
, T 1

I =
p1

p0
− T ′2D , K1

PI = −p0T
1
I T
′2
D

γ
, (56)

the parameter T 2
D is the solution of the second order equation(

p2 + γK1
PI +

βK1
PI

T 1
I T
′2
D

)(
T 2

D

)2
+

(
−p3 −

p2

T ′2D

− βK1
PI

T 1
I + T ′2D

T 1
I T
′2
D

)
T 2

D

+
(
p4 + p2 + βK1

PI

)
= 0,

(57)

and finally

T 2
I =

p4 + p2 + βK1
PI

T 2
D

(
p2 + γK1

PI +
βK1

PI

T 1
I T

′2
D

) , K2
PID =

p4 + p2 + βK1
PI

αT 2
D

T ′2D . (58)

The impulse response of the stabilized system can also be seen in Fig. 12. All the
closed loop system poles have been set to −1, i.e. the characteristic polynomial is
prescribed by s6 + 6s5 + 15s4 + 20s3 + 15s2 + 6s+ 1.
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4.3. PD controller for horizontal movement

When WC1 = K1
PD

1+sT 1
D

1+sT ′1
D

, PD-PI and PD-PD controllers result in feasible solution.
PD-P controller is redundant and, at the same time, PD-PID is under determined,
because there are seven parameters to be determined, but the characteristic polynomial
degree is only six.

The PD-PI controller is based on the equation:

1− βs2 + γ

s2(s2 − p2)
K1

PD

1 + sT 1
D

1 + sT ′1D

+
α

s2 − p2
K2

PI

1 + sT 2
I

sT 2
I

= 0, (59)

from which the following polynomial can be written:

s5+
1

T ′1D︸︷︷︸
p4

s4 +

(
−p2 − βK1

PD

T 1
D

T ′1D

+ αK2
PI

)
︸ ︷︷ ︸

p3

s3

+

(
− p2

T ′1D

− βK1
PD

T ′1D

+ αK2
PI

T ′1D + T 2
I

T ′1D T
2
I

)
︸ ︷︷ ︸

p2

s2

+

(
αK2

PI

T ′1D T
2
I

− γK1
PDT

1
D

T ′1D

)
︸ ︷︷ ︸

p1

s+

(
−γK

1
PD

T ′1D

)
︸ ︷︷ ︸

p0

.

(60)

The analytical solution of the five equations is quite simple:

T ′1D =
1

p4
, K1

PD = −p0T
′1
D

γ
, T 1

D =
p2T

′1
D − p1

(
T ′1D

)2 − p3 + βK1
PD

βK1
PD

T ′1
D

+ γK1
PDT

′1
D

,

T 2
I =

p2T
′1
D − p1

(
T ′1D

)2 − γK1
PDT

1
DT
′1
D + p2 + βK1

PD

γK1
PDT

1
D + p1T ′1D

,

K2
PI =

p1T
′1
D + γK1

PDT
1
D

α
T 2

I .

(61)

76



M. Kuczmann – Acta Technica Jaurinensis, Vol.12, No.1, pp. 55–81, 2019

The PD-PD controller is based on the equation:

1− βs2 + γ

s2(s2 − p2)
K1

PD

1 + sT 1
D

1 + sT ′1D

+
α

s2 − p2
K2

PD

1 + sT 2
D

1 + sT ′2D

= 0. (62)

The following characteristic polynomial is coming out after some mathematical
manipulations:

s6+s5 T
′1
D + T ′2D

T ′1D T
′2
D︸ ︷︷ ︸

p5

+s4

(
1

T ′1D T
′2
D

− βK1
PD

T 1
D

T ′1D

+ αK2
PD

T 2
D

T ′2D

− p2

)
︸ ︷︷ ︸

p4

+s3

(
−p2T

′1
D + T ′2D

T ′1D T
′2
D

− βK1
PD

T 1
D + T ′2D

T ′1D T
′2
D

+ αK2
PD

T ′1D + T 2
D

T ′1D T
′2
D

)
︸ ︷︷ ︸

p3

+s2

(
− p2

T ′1D T
′2
D

− βK1
PD

1

T ′1D T
′2
D

− γK1
PD

T 1
D

T ′1D

+ αK2
PD

1

T ′1D T
′2
D

)
︸ ︷︷ ︸

p2

+s

(
−γK1

PD

T 1
D + T ′2D

T ′1D T
′2
D

)
︸ ︷︷ ︸

p1

+

(
− γK

1
PD

T ′1D T
′2
D

)
︸ ︷︷ ︸

p0

.

(63)

The analytical solution of the equations according to this polynomial is tedious. Now,
the system of six nonlinear equations has been solved numerically. In this case it is
very difficult to find an initial set of the unknown parameters. The experience of this
study is that, it is much convenient to use analytically solvable controllers.

4.4. PID controller for horizontal movement

The PID-P controller is redundant, but the other three versions can stabilize the
pendulum. The PID-PI controller setup easily can be obtained analytically. The
design of a feasible system is based on the characteristic equation

1− βs2 + γ

s2(s2 − p2)
K1

PID

1 + sT 1
I

sT 1
I

1 + sT 1
D

1 + sT ′1D

+
α

s2 − p2
K2

PI

1 + sT 2
I

sT 2
I

= 0, (64)

77



M. Kuczmann – Acta Technica Jaurinensis, Vol.12, No.1, pp. 55–81, 2019

from which

s6+
1

T ′1D︸︷︷︸
p5

s5 +

(
−p2 − βK1

PID

T 1
D

T ′1D

+ αK2
PI

)
︸ ︷︷ ︸

p4

s4

+

(
− p2

T ′1D

− βK1
PID

T 1
I + T 1

D

T 1
I T
′1
D

+ αK2
PI

T 2
I + T ′1D

T 2
I T
′1
D

)
︸ ︷︷ ︸

p3

s3

+

(
−γK1

PID

T 1
D

T ′1D

− βK1
PID

1

T 1
I T
′1
D

+ αK2
PI

1

T 2
I T
′1
D

)
︸ ︷︷ ︸

p2

s2

+

(
−γK1

PID

T 1
I + T 1

D

T 1
I T
′1
D

)
︸ ︷︷ ︸

p1

s+
−γK1

PID

T 1
I T
′1
D︸ ︷︷ ︸

p0

(65)

is the characteristic polynomial, where from the controller parameters can be obtained
analytically, T ′1D = 1

p5
, furthermore the parameter T 1

D is the solution of the second
order equation(

βp0

γT ′1D

+ p0T
′1
D

)(
T 1

D

)2
+

(
− βp1

γT ′1D

− p1T
′1
D

)
T 1

D

+

(
βp1

γ
− βp0

γ
T ′1D +

p4

T ′1D

+ p2T
′1
D − p3

)
= 0,

(66)

and finally

T 1
I =

p1

p0
− T 1

D, K1
PID = −p0T

1
I T
′1
D

γ
, K2

PI =
p4 + p2 + βK1

PID
T 1
D

T ′1
D

α
,

T 2
I =

p4 + p2 + βp0
γ

(
T 1

D

)2 − βp1
γ T 1

D

p2T ′1D − p1T 1
DT
′1
D + p0T ′1D (T 1

D)
2 − βp0

γ T ′1D

.

(67)

The other two controllers, PID-PD and PID-PID, contain seven and eight param-
eters, respectively, and the characteristic polynomial order is seven. The detailed
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presentation of these equations are not shown here. The analytical solution of the
equations according to these controllers is lengthy and tedious, the system of nonlinear
equations can be solved numerically in both cases. It must be highlighted again that,
it is very difficult to find a good initial set of the unknown parameters. Anyway it
is not a drawback, because there are many other possibilities that can stabilize the
pendulum as it is previously shown.

Figure 13. The inverted pendulum model in the virtual laboratory of MaxWhere.

5. Implementation

Controller design and analysis have been realized firstly in Scilab [8]. Then the
virtual reality based implementation has been performed in the frame of MaxWhere
as a freely available virtual laboratory [9, 10]. A separate future paper is planned
to show the virtual lab. A snapshot about the lab can be seen in Fig. 13, where
the controller settings and oscilloscopes showing some signals (e.g. the angle of
pendulum, the horizontal position, the acting force versus the time) can be seen
among other information like the theoretical background.
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6. Conclusion and future work

Classical PID controller design for the problem of inverted pendulum has been shown
in detail in this paper. Two controllers are necessary to design for stabilizing the
system. It is clear that, the design of two dependent controllers is tedious in some
cases, however the state feedback controllers can solve this problem in an easy way.
Next, the state space representation based controllers will be presented [1–4,6,7], like
the Ackermann formula and the Bass–Gura pole placement techniques, furthermore
the linear quadratic optimal controller design. The Diophantine equation based
controller design, the Youla-parametrization [1] are also planned to realize as well as
nonlinear techniques [11, 12] and model predictive control [13].
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