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Abstract: This paper demonstrates the results in the research topic of the railway 

ballast particles’ breakage test with unique laboratory test. The most 

railway lines in the world have so called traditional superstructure 

(ballasted tracks). In the past few years there were a lot of railway 

rehabilitation projects in Hungary, as well as abroad. Nowadays cannot 

be expected that there is enough quantity of railway ballast in adequate 

quality, because of the modifications and restrictions in the related 

regulations in Hungary since 2010. In Hungary there are only a few 

quarries which are able to ensure adequate railway ballast material for 

construction and maintenance projects for speed values between 120 

and 160 km/h. This may cause supply and quality risk in production of 

railway ballast. The authors’ research’s main goal is to be able to 

simulate the stress-strain effect of ballast particles in real and objective 

way in laboratory conditions as well as in discrete element modelling.  
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1. Introduction 

An article was published [1] in 2015 with results of an R&D on individual 

breakage test method in laboratory related to railway ballast. Since that several other 

publication was published in this topic [2-6]. The authors would like to supplement 

that documents with actual, up-to date outcomes. 

The rock physical suitability of railway ballast materials is determined by 

laboratory tests in in the EU, formulated in the same product standard. 
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There are two types of standardized tests in the aspect of rock physic 

characteristics of railway ballast: 

- Micro-Deval abrasion test according to MSZ EN 1097-1:2012 [7], 

- Los Angeles abrasion test in accordance with MSZ EN 1097-2:2010 [8]. 

These are determined in the MSZ EN 13450:2003 product standard [9]. 

These two test types are absolutely suitable for satisfy defining the abrasion 

characteristics of a given aggregate sample and for ensuring the production stability 

in the quarries and these are indispensable to guarantee the required quality and to 

ensure the checking of the quality level in case of ready constructed railway tracks. 

However, it’s not suitable for modelling the railway loads (i.e. loads from vehicles 

and other effects) in a real way. 

The authors worked out an individual laboratory test method [1, 3], because other 

test methods can’t consider the abrasion and breakage (real particle degradation) due 

to dynamic force and vibration. 

The results of the unique laboratory tests with the required limits in standards are 

compared with the related regulation of MÁV (Hungarian Railways) [10]. Required 

time intervals of ballast screening are able to be calculated according to laboratory 

test results. 

It is known that No. MÁV 102345/1995. PHMSZ in accordance with the decree 

[10], the “Constructions for superstructure facilities and quality standards for 

bedding instruction” has been tightened on the basis of the 4th amendement [10], 

which came into force in January 2010. According to the 3rd amendement of 2008, 

there was a (positive) tolerance range for the Los Angeles breakdown and the Micro-

Deval wear, which was deleted in 4th amendement. The values for the speed 

categories are also partially have changed, usually tightened (see Table 1. and Table 

2.). 
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Table 1. Requirements to LARB values [10] 

strength 

requirement 

LARB 

2008 - 2009 from 2010 

allowed speed 

(km/h) 
requirement 

allowed 

difference 
requirement 

allowed 

difference 

V > 160 16 
+2 

(negative is 

not limited) 
16 - 

160 ≥ V > 120 16 
+4 

(negative is 
not limited) 

16 - 

120 ≥ V ≥ 80 16 
+4 

(negative is 

not limited) 
16 - 

80 > V ≥ 40 24 
+4 

(negative is 

not limited) 
20 - 

V < 40 24 
+4 

(negative is 
not limited) 

24 - 

Table 2. Requirements to MDERB values [10] 

strength 

requirement 

MDERB 

2008 - 2009 from 2010 

allowed speed 

(km/h) 
requirement 

allowed 

difference 
requirement 

allowed 

difference 

V > 160 11 
+2 

(negative is 
not limited) 

11 - 

160 ≥ V > 120 11 
+4 

(negative is 

not limited) 
11 - 

120 ≥ V ≥ 80 11 
+4 

(negative is 

not limited) 
15 - 

80 > V ≥ 40 15 
+4 

(negative is 
not limited) 

15 - 

V < 40 15 
+4 

(negative is 

not limited) 
15 - 
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2. History of the research 

The research topic has prestigious international literature and sources. Foreign 

researchers dealt with different areas and they worked out different methods as 

follows: 

 laboratory tests [11, 12, 13, 14, 15, 16, 17, 18, 19] 

 finite element modelling (FEM) [13], 

 discrete element modelling (DEM) and/or 3D particle generation [19, 20], 

 in-situ tests in railway tracks [21]. 

The researchers worked out several special parameters, constants and indexes that 

helped the progression of the research (e.g. Marshal, Hardin, Lee and Farhoomand 

breakages, BBI index, BR index, etc.). 

An international literature review was carried out by the authors and from the 

results the following main themes and methods were taken into consideration: 

  searching of relationship between cohesion as well as inner friction anger, 

railway ballast aggregate abrasion, water permeability of material and its 

layer [16]; 

  definition of relationship between Particle Size Distribution (PSD) and 

particle degradation phenomenon of ballast aggregate, as well as 

definition of better PSD for real loadings [15, 16]; 

 research of ‘angularity breakage’ phenomena [18]; 

 DEM models were validated and DEM generations method of much more 

realistic particle shapes was investigated [22]; 

 measurement of railway ballast’s breakage, implementation of laboratory 

and field tests with and without geosynthetic inclusions [13, 14, 15, 21]; 

 research of ballast particle breakage due to tie tamping [11, 12]; 

 investigation of ballast with glued technique [17]. 

 

The authors collected several significant results at the international literature 

review which can be read in the previous publication [4]. 
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3. The laboratory test’s procedure and parameters 

The base of the procedure is a special laboratory dynamic actuator The laboratory 

test method was developed as a part of an R&D financed by Colas Északkő Ltd. and 

a report more publications – that were written in this topic [1, 2, 3, 4, 5, 6]. 

In 2017 and 2018 the testing and evaluating method was accomplished by specify 

more precise deterioration process, considering only determined particle fraction, 

etc. The authors used the following parameters during measurements and evaluation: 

 two different types of railway ballast samples from andesite material and 

from different quarries 

 the specimens are in accordance with MSZ EN 13450:2003 [9], A type, 

31,5/50 mm, the authors received from Colas Északkő Ltd. 

 the specimens have the following stone physic parameters (laboratory 

test were done by accredited laboratory of Colas Északkő Ltd.): 

o sample No. 1: LARB = 19%, MDERB = 17%; 

o sample No. 2: LARB = 16%, MDERB = 4%; 

 dynamic tests with pulsator in different cycles (i.e. until 0.1, 0.2, 0.5, 1.0, 

1.5, 3.0 and 5.0 million cycles), in every test with only fresh ballast 

material with particle fraction d≥22.4 mm (before pulsating d<22.4 mm 

particles were screened out and they were not put back), where d is the 

size of the particle; in the 2014 series of measurements, the particle sizes 

below 22.4 mm were left in the tests, this was the reason why it is not 

possible to compare the current measurement results with the old ones; 

 determination of PSD curves with screening related to sub-samples 

Before Pulsating (BP) test; 

 determination of PSD curves with screening related to sub-samples After 

Pulsating (AP) test. 

3.1. Presentation of the individual fatigue laboratory test 

The individual laboratory testing method is a dynamic pulsating test for that the 

six lower frames of a 10-level steel shear box were used [1]. Frames were fixes 

together with steel metric screws. They prevent the horizontal relative 

displacements. The shear box including some steel rolls which were not fixed to the 

down side of the bottom frame. 

The built-up layer structure is the following (see Table 3). 
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Table 3. The built-up layer structure 

 
steel loading plate 

D=300 mm steel plate with circular 

shape (D=diameter) 

0.46 x 0.42 m 

 

30-cm-thick-

layer 

wooden 

sleepers 
around the 

crushed stone 

samples 

si
m

p
le

 l
a

ye
r 

V
ia

co
n

 

P
P

 T
C

 1
2

0
0

 g
e
o
te

x
. 

30-cm-thick-layer 

crushed stone 
cross section 0.46 x 0.46 m 

si
m

p
le

 l
a

ye
r 

V
ia

co
n

 

P
P

 T
C

 1
2

0
0

 g
e
o
te

x
. 30-cm-thick-

layer 

wooden 

sleepers 
around the 

crushed stone 

samples 

simple layer 

heat treated, non-woven, high strength geotextile with 1200 g/m2 mass 
type: Viacon GEO PP TC 1200 

on the whole 1.0 x 1.0 m area 

10-cm-thick-layer 

sand 
type: E2, 20.42 MPa according to MSZ 2509-3:1989 [23] 

on the whole 1.0 x 1.0 m area 

simple layer 

150 g/m2 mass geotextilie 
type: Naue Secutex 151 GRK 
on the whole 1.0 x 1.0 m area 

20-cm-thick layer 

eXtruded Polystirol (XPS) 
type: Austrotherm Thermoplan 

sheets on the whole 1.0 x 1.0 m area 

The samples (railway ballast) were put in the middle of the shear box into the 

0.46×0.46 m area and 0.30 m high space where wooden sleepers are around. The 

structure can be seen in Table 1. Reducing and excluding wall effect the inner sides 

of wooden sleepers were covered with 1200 g/m2 mass geotextile layers (where 

stone and wooden sleepers would interact). A loading plate from steel (size: 

46×42 cm and D=300 mm circular steel plate) were put onto ballast samples to be 

able to achieve uniform load distribution. 

The assembly without loading plates can be seen in Figures 1-5. 
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Figure 1. The 10-cm-thick-layer sand on the XPS layer 

 

Figure 2. The high strength geotextilie on the sand layer 

 

Figure 3. The wooden sleepers in the shear box 
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Figure 4. The geotextilie among the wooden sleepers 

  

Figure 5. The sample of ballast material in place 

Laboratory measurements were executed with dynamic actuator in previously 

defined loading cycles. Laboratory test parameters (frequency, load values, etc.) 

were published in [1, 3] papers in detailed formats, they are not written here due to 

limited space. After pulsating tests PSD (particle size distribution) data sets were 

determined (measured) beside them several parameters (see below) were calculated 

[1, 2, 3]: 

 FV (%) (see eqs. (1-5)); 

 BBI (see eq. (6)); 

 BR, (BR is a parameter is similar to BBI, but it considers different areas in 

PSD [24]); 

 d<22.4 mm in mass percentage; 



E. Juhász and Sz. Fischer. – Acta Technica Jaurinensis, Vol. 12, No. 1, pp. 26-54, 2019 

34 

 d<0.5 mm in mass percentage; 

 d<0.063 mm in mass percentage; 

 d60/d10 ratio (where d60 is the particle size related to 60% in PSD curve, d10 

is the particle size related to 10% in PSD curve, and d60/d10 ratio means the 

ratio of (d60/d10)AP/(d60/d10)BP; 

 CC ratio (where CC=d30
2/(d60×d10), d30 is the particle size related to 30% in 

PSD curve, and CC ratio means the ratio of (CC)AP/(CC)BP;  

 M ratio (where M is a special shape factor of PSD curve of railway ballast 

[25], and M ratio means the ratio of MAP/MBP; 

  ratio (where  is a special shape factor of PSD curve of railway ballast that 

considers standard ballast PSD, as well [25], and  ratio means the ratio of 

AP/BP). 

Calculations of FV and BBI parameters have to be explained, eqs. (1-6) give the 

meaning of these parameters [1, 2, 3, 14, 15, 26]. 

 𝐹𝑉 = 0.4 ∙ 𝐹19 + 0.3 ∙ 𝐹6.7 + 0.2 ∙ 𝐹1.18 + 0.4 ∙ 𝐹0.15, (1) 

 𝐹19 =
𝐷19

100
∙ 27, (2) 

 𝐹6.7 =
𝐷6.7

100
∙ 18, (3) 

 𝐹1.18 =
𝐷1.18

100
∙ 11.5, (4) 

 𝐹0.15 =
𝐷0.15

100
∙ 5.5, (5) 

where “D” is the fallen mass percentage through the given diameter sieve. 

 BBI =
𝐴

𝐴+𝐵
, (6) 

where A is the area between the initial and final PSD curves [14, 15], B is the area 

between the arbitrary boundary of maximum breakage line and final PSD curve [14, 

15]. 

 

The authors computed the required time intervals of ballast screening with the help 

of deterioration process obtained from parameters above. The prescribed values from 

standards were also computed. 
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4. Recent results 

The two ballast samples tested until 5-5 million cycles with dynamic pulsating 

laboratory test in more phases. The authors calculated the necessary parameters from 

PSD data sets are plotted in diagrams as a function of pulsating cycles in Figure 6-

25. 

Following diagrams show the parameters in the consideration of the maximum 

5-5 million loading cycles, as well as the results in Figure 6-25. 

 

Figure 6. Results of the individual laboratory test – FV (%) as a function of 

number of loading cycles; with power regression functions 
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Figure 7. Results of the individual laboratory test – FV (%) as a function of number 

of loading cycles; with linear regression functions 

 

Figure 8. Results of the individual laboratory test – BBI as a function of number of 

loading cycles; with power regression functions 
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Figure 9. Results of the individual laboratory test – BBI as a function of number of 

loading cycles; with linear regression functions 

 

Figure 10. Results of the individual laboratory test – BR as a function of number of 

loading cycles; with power regression functions 
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Figure 11. Results of the individual laboratory test – BR as a function of number of 

loading cycles; with linear regression functions 

 

Figure 12. Results of the individual laboratory test – d<22.4 mm (%) as a function 

of number of loading cycles; with power regression functions 
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Figure 13. Results of the individual laboratory test – d<22.4 mm (%) as a function 

of number of loading cycles; with linear regression functions 

 

Figure 14. Results of the individual laboratory test – d<0.5 mm (%) as a function 

of number of loading cycles; with power regression functions 
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Figure 15. Results of the individual laboratory test – d<0.5 mm (%) as a function 

of number of loading cycles; with linear regression functions 

 

Figure 16. Results of the individual laboratory test – d<0.063 mm (%) as a 

function of number of loading cycles; with power and linear regression functions 
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Figure 17. Results of the individual laboratory test – d<0.063 mm (%) as a 

function of number of loading cycles; with linear regression functions 

 

Figure 18. Results of the individual laboratory test – d60/d10 ratio as a function of 

number of loading cycles; with power regression functions 
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Figure 19. Results of the individual laboratory test – d60/d10 ratio as a function of 

number of loading cycles; with linear regression functions 

 

Figure 20. Results of the individual laboratory test – CC ratio as a function of 

number of loading cycles; with power regression functions 
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Figure 21. Results of the individual laboratory test – CC ratio as a function of 

number of loading cycles; with linear regression functions 

 

Figure 22. Results of the individual laboratory test – M ratio as a function of 

number of loading cycles; with power regression functions 
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Figure 23. Results of the individual laboratory test – M ratio as a function of 

number of loading cycles; with linear regression functions 

 

Figure 24. Results of the individual laboratory test –  ratio as a function of 

number of loading cycles; with power regression functions 
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Figure 25. Results of the individual laboratory test –  ratio as a function of 

number of loading cycles; with linear regression functions 
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years) [26]. In this aspect, results obtained from analysis of FV parameter 

and its extrapolation cannot be used dependably. 

- BBI: the parameter introduced by Indaratna and Lackenby [14, 15] to be 

able to calculate and assess the changing of PSD of tested samples and 

their quality. For calculation the BBI index, the authors have to determine 

the BP and AP values and with these the PSD curves. There is linear 

regression correlation between BBI and number of loading cycles (see 

Figure 9), but it has to be mentioned that in case of sample #1 the R2 

coefficient is negative. The negative value mathematical means that the 

given correlation is worse than the y has constant function. It has to be 

mentioned that BBI(0)=0 was a border condition. If measured data before 

1.0 million loading cycle are analysed they are outliers from the defined 

linear trend. The measurements are needed to repeat, because of the 

ability to evaluate fair. BBI values are approximately 0.15% and 0.20% 

at 5 million loading cycles related to tested ballast material samples. It is 

interesting too that sample #2 has higher tangent (steeper slope) than 

sample #1 (see FV, too). The authors neglect the negative R2 value, 

because after 1.5 million loading cycles the given linear trend can be 

assumed). According to the literature [14, 15], if the BBI=1.0, ballast 

screening is needed. In case number of loading cycles related to both 

samples are computed in the accordance BBI=1.0, the results are 31.45 

and 25.84 million cycles (for sample #1 and #2, respectively). That means 

approximately 47-year and 39-year time intervals. 

- BR: this is a similar parameter with the BBI parameter, because reference 

area is calculated like in case of BBI [24]. In this way the linear regression 

functions and correlation are very close to BBI’s results. There is no 

technical recommendation for ballast screening related to BR (see Figures 

10-11). 

- d<22,4 mm is mass percentage: between the d parameter and the number 

of loading cycles there are power regression relationships (see Figures 

12-13). This parameter’s values are approximately 3.0% and 4.25%, if 

the number of loading cycles is 5×106 related to investigate andesite 

materials. This is mentioned above, but it is a surprising fact again that 

the sample #2 with better properties has quicker deterioration than sample 

#1. According to literature [26] ballast screening has to be done if d<22.4 

mm is equal or higher than 30%. In case numbers of loading cycles has 

to be determined they are the following: 2.17×1012 and 3.27×1010 cycles 

(for sample #1 and #2, respectively) that are unrealistic values. 

- d<0,5 mm is mass percentage: between the d parameter and the number 

of loading cycles there is no power and linear regression relationship (see 

Figures 14-15). 
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- d<0.063 mm is mass percentage: between the d parameter and the 

number of loading cycles there is no power and linear regression 

relationship (see Figures 16-17). 

- d60/d10 ratio parameter: between the d60/d10 ratio parameter and the 

number of loading cycles there is no power and linear regression 

relationship (see Figures 18-19). 

- CC ratio parameter: between the CC ratio parameter and the number of 

loading cycles there is no power and linear regression relationship (see 

Figures 20-21). 

- M and  ratio parameters: these parameters can be specified by linear 

regression function (see Figures 22-25). The tangent of regression 

function is higher in case of sample #2 than sample #1 (the sign is positive 

for sample #2 and negative for sample #1). The authors analysed the data 

more detailed and determined that there is an outlier point in case of 

sample #2 (at 5 million cycles, both M and  ratio parameters), the reason 

of it has to be searched by additional tests. 

5. Summary, outlook, future scope 

There are significant correlations in case of just four from the nine calculates 

parameters if the independent variable is the number of loading cycles (linear or 

power). With the other five parameters we did not achieve any results. 

The authors considered the following derelictions related to calculation of time 

intervals between ballast screenings: 

 in the whole ballast cross section comparable amount of breakage is not 

formulated as the one that was measured in referred laboratory tests (e.g. 

there is hardly no breakage in the ballast shoulder, etc.); 

 machine-made and/or manual tamping occurred breakage;  

 only 225 kN axle load was taken into consideration (it is true for freight 

trains, for passenger trains about 180 kN value would be more realistic); 

 other ballast polluting effects (e.g. dust, concrete sleeper abrasion, breakage, 

in case of water pockets the increase of fine particle content in the ballast 

bed because of evolving pumping effect due to repeated dynamic load, etc.); 

 deterioration effect accelerated by substructure or superstructure defect; 

 effects of other dynamic loadings (e.g. welts, rail joints, turnout frogs [27, 

28, 29, 30, 31, 32]); 

 effects of track geometry and its degradation [33]. 

This paper introduced the research problem related to railway ballast particle 

degradation. The publication sentenced that  the individual laboratory testing method 

can be suitable for measure and evaluate ballast materials’ breakage using dynamic 
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pulsator. This procedure can give opportunity that ballast samples are tested in more 

realistic circumstances than during standardized abrasion tests. 

The authors summarized the up-to-date results of exhausting international 

literature in this research topic; they made a remarkable successes related to ballast 

particle breakage. 

It can be stated that better ballast material (in the aspect of stone physics) does not 

deteriorate slower than the worse one. Parameters that are used internationally were 

calculated, as well as the deterioration process was approximated linear or power 

regression functions related to all parameters.  

The authors defined the time interval values of ballast screening based on technical 

prescriptions, standards and handbooks. This calculation could be done for FV, BBI 

and d<22.4 parameters. Only BBI gave nearly acceptable results, in case of the other 

parameters the results are not realistic, they can’t be accepted. 

In some cases, additional control measurements have to be accomplished in the 

laboratory to be able to assess the measured data. 

The authors would like to search the correlation (relationship) – as future scope – 

between standardized parameters (Los Angeles and Micro-Deval abrasions), the 

prognosticated time interval between ballast screening, as well as the results from 

their laboratory tests. In the beginning of 2019 a modified layer structure will be 

considered because the extruded polystyrol sheets were significantly deformed 

during the dynamic tests. A stiffer and harder layer (e.g. granular protection layer or 

steel/concrete plate, maybe) can be modified laboratory tests’ results in better way, 

as well as difference between substructure circumstances with XPS sheets and stiffer 

layer is able to be published. 

The time requirement of newly developed testing method is significantly high, in 

this way the authors would like to execute laboratory tests with lower time demand 

(e.g. particle splitting tests), so relevant statements can be sentenced sooner. The 

authors would like to combine this splitting test with a full-field 3D shape 

measurement (ATOS fringe projection system) and/or X-ray measurement 

technique. The measurement method need to be work out [18, 34, 35, 36, 37, 38, 39, 

40, 41, 42]. 

Beside them field tests are planned in the Hungarian railway lines. The authors 

would like to collect samples from old railway lines where ballast aggregates have 

known PSD at time of construction. The actual PSD can be definable and the 

changing can be determined, too. In case a lot of these kinds of measurements are 

able to be performed the comparison (not only field samples but the others from 

laboratory dynamic pulsating tests) can supply valuable results. 

In the laboratory measured particle breakage values are much higher than the 

values in real circumstances in tracks, either in tracks with maintenance (ballast 

screening) demand. The reason is the only one type of loading form used in 

laboratory. The authors would like to develop their methodology to be able to assess 
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the particle degradation more realistic. Tamping machines also break ballast 

particles, so this kind of effect is needed to be considered in the future research. 

Other additional dynamic loading effect can’t be neglected in sophisticated methods, 

e.g. surroundings of rail welts, rail joints, as well as switch frogs where higher ballast 

breakage should be expected [27, 28, 29, 30, 31, 32]. Rubber coated and bitumen 

stabilised ballast particles hinder the geometric deterioration of railway track and 

ballast breakage [43, 44, 45], in detailed analysis it can be considered. 

DEM simulations with particle flow code software (e.g. Itasca PFC3D) can be 

useful in the future researches to be able to evaluate particle degradation. With this 

DEM method the expensive laboratory tests can be saved (if the model is validated 

with laboratory measurements), influence effect of lots of parameters can be 

considered, e.g. particle shape, PSD, stone physics, abraded particles, geosynthetic 

reinforcements, depth of ballast, etc. This method unfortunately very lengthy, and 

there is just a little chance for good results. 

The authors’ future aim is to utilize of the results and maybe to adopt these results 

of the research into national regulations, standards. 

This article is the direct continuation of papers [46, 47] that are accepted 

manuscripts without publishing yet. 
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