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Abstract: This paper presents the electrical and mathematical models of the three
phase asynchronous motors along with the introduction of the field-
oriented control model as well as the vector transformations needed for
the introduction of the above mentioned terms. The objective of the
present paper is to introduce the space vectors and how to build the
field-oriented control for a given induction motor drive as well as the
transformations and the modell of field oriented control.
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1. Introduction

The asynchronous motor drives are one of the most popular drive types of the industrial
environment. Concerning its construction it is a simple drive without too many
components, and it is also robust. Beside its positive electrical and mechanical
parameters, it can also be operated easily and cost efficient way. The digital revolution
in the last 30 years opened several new possibilities in the electronics such as the
efficient speed control or the data collecting and analyzing systems. In the Fig. 1 the
position of the asynchronous motors can be seen in the world of the electrical motors
(the offset non related to the topic are not divided into further parts).
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Figure 1. Type of the electrical motors.

Fig. 2 shows the lineage of the field-oriented model from the tree of the variable
frequency drive [1].

2. Model of the Asynchronous Motor

In the following sections, one after the other, the models of the rotating asynchronous
motors are presented.
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Figure 2. Tree of the Variable Frequency Drive.

2.1. Ideal Transformer (ITF) voltage model

The simplest way is when a large air gap transformer is considered - per phase – i.e.
the asynchronous motors are ideal for a 1:1 reduced transfer. In this case during the
reduction – in contrast with the normal transformer model – the so called efficient
turn number of the transfer should be counted with (it is assumed in this case).

Rs jXs jX'r R'r / s

Rv jXm

Is I'r
Us U'r / sUm

Ig

Figure 3. ITF model of asynchronous motor (one phase) [2].
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The equations of the model are the following (the trivial correlations are concerned
known) [3, 8]:

s =
n1 − n

n
, (1)

Um = 4.44frNrεrΦ, (2)

Us = IsRs + IsjXs + Um, (3)

Umr = sUm = I ′rR
′
r + I ′r jsX ′r + U ′r , (4)

then (4) can be divided by the slip (as it is an ideal transformer), and the result is the
stator voltage equation coincides with the voltage equation from the rotating side with
the slip so the two substituting sides can be joined together, i.e.

Um = I ′r
R′r
s

+ I ′r jX ′r +
U ′r
s
. (5)

Here s is the slip, n1 is the speed of the stator field, n is the rotor speed of the rotating
machine, Us is the primer voltage, Um is the inside voltage of the stator side, fr is the
frequency of the rotor field, Nr is the turn number of the rotor coil, εr is the efficiency
factor of the rotor side, Φ is the flux, Ls is the leakage inductance of the stator, Lr
is the inductance of the rotor (reduced), Rs is the coil resistance of the stator, Rr is
the reduced coil resistance of the coil, Xs is the coil leakage reactance of the stator,
Xr is the reduced coil target reactance of the rotor and the Umr is the slip-fold inside
voltage of the stator side, respectively.
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2.2. Park-vector model

The model represented in the prior section can give answer for only a few basic
questions, so we need to generate the Park-vector form heading from the voltage
equation. Look at first the voltage equations of the stator – they can be used for the
rotor – with the condition that the coil resistance is concerned to be equal,

usa = Usa cos (ωt), (6)

usb = Usb cos (ωt− 120◦), (7)

usc = Usc cos (ωt− 240◦). (8)

Equations (6) – (8) are time functions and they do not describe the spatial arrange-
ment but they describe the phase difference between the sine signals. Here Usa =
Usb = Usc are the amplitude of the time functions, ω = 2πf describe the angular
frequency, and t is the time. These time functions describe all phase voltages in stator
winding and can be rewritten as the sum of the voltage drop in stator winding and the
induced voltage of the flux change which are described by equations (9) – (14) (later
the notation of the time t is left, consequently).

To show this expressively Fig. 4 can be used, which shows conceptual circuit
diagram of a squirrel cage induction motor. Of course, a similar schematic diagram
can be drawn in case of a slip-ring induction motor, in which phase-circuits are equal
on stator-side of the squirrel cage induction motor, but other equations would come
about because of elements used for different phases of the rotor.
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Figure 4. Simple scheme of the Squirrel Cage Induction Motor.

From the Fig. 4, it can be seen the how the stator voltage equations (9) – (11) along
with the rotor voltage equations (12) - (14) are generated [3, 6, 9], i.e.

usa = isaRs +
dΨsa

dt
, (9)

usb = isbRs +
dΨsb

dt
, (10)
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usc = iscRs +
dΨsc

dt
, (11)

ura = iraRr +
dΨra

dt
, (12)

urb = irbRr +
dΨrb

dt
, (13)

urc = ircRr +
dΨca

dt
, (14)

here Rs is the stator resistance of any phase coil (Rs = Rsa = Rsb = Rsc), Rr is the
rotor resistance of any phase coil (Rr = Rra = Rrb = Rrc), isa, isb and isc are the
currents of the stator coils, ira, irb and irc are the currents of the rotor coils, Ψsa, Ψsb
and Ψsc are the flux of the stator phases and Ψra, Ψrb and Ψrc are the flux of the rotor
phases.

Heading from the phase difference of the stator voltage equations (9) – (11) and
introducing the following, complex unit vectors in the phase axis directions:

ā0 = ej0◦ , (15)

ā1 = ej120◦ , (16)

ā2 = ej240◦ , (17)

equations (9) – (11) can be brought to a mutual, the so called Park-vector form
[9-11]:

ūs =
2

3
(ā0usa + ā1usb + ā2usc). (18)

171



L. Varga and M. Kuczmann – Acta Technica Jaurinensis, Vol. 11, No. 4, pp. 165–184, 2018

As far as (9) – (11) are substituted into (18), the voltage equation (19) of the stator
Park vector fixed to the coordinate system of the stator, can be written, i.e.

ūs = īsRs +
dΨ̄s

dt
, (19)

here ūs is the common voltage vector of stator, īs is the common current vector of
stator and Ψ̄s is the flux linkage of stator.

Using the analogy of (18) for the rotor, the Park vector form of the rotor fixed to
the coordinate system of the rotating part can be obtained as

ūr = īrRr +
dΨ̄r

dt
, (20)

here ūr is the common voltage vector of rotor, īr is the common current vector of
rotor and Ψ̄s is the flux linkage of rotor.

For the graphic representation of the Park vector can be applied the analogy of
equations (19) and (20) and generate a common formula [11]. This equation (21) can
be used for the stator and for the rotor too [11].

ū = īRr +
dΨ̄
dt
, (21)

The interpretation of the equation (21) is represented by the Fig. 5. In this
interpretation the ī current vector can be used better instead of ū voltage vector
because further calculations are simpler.

As an example in Fig. 5, three phase (a,b,c) with identical frequency and amplitude
are used, where the sine signals are shifted by 120◦ and at ωt = 110◦,
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Figure 5. Park-vector scheme.

ia = 0.94, ib = −0.17 and ic = −0.77 can be interpreted as the momentary result of
the adequated phase power (compared to 1, the whole, ia + ib + ic = 0) as well as
the ī which is the resultive Park-vector current.

The voltage equation (21) is valid for the stator as well as for the rotor, but in
both cases, it stands for a coordinate system which is fixed to itself. For the general
examination the so called mutual coordinate system is needed. By its help, the voltage
and flux equations of the asynchronous machine can be used for the rotor and also for
the stator, separately.
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Figure 6. Common coordinates system of the stator.
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Figure 7. Common coordinates system of the rotor.
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According to Fig. 6 [11] the current vector of the stator in the mutual coordinate
system is

ī∗s = īse−jxc , (22)

which is transformed by the additional substitution

īs = ī∗s e
jxc , (23)

where ∗ is the sign of the transformation to the common coordinate system.

With this analogy, according to Fig. 7 [11] the current vectors in the mutual
coordinate system of the rotor are the following:

ī∗r = īre−j(xc−x), (24)

īr = ī∗r e
j(xc−x). (25)

Being back replaced into the equation of (21), and after some mathematical conver-
sions, the asynchronous machine’s basic equations with Park-vector can be brought
to the following form in the mutual coordinate system (without an asterisk):

ūs = īsRs +
dΨ̄s

dt
+ jωcΨ̄s, (26)

ūr = īrRr +
dΨ̄r

dt
+ j(ωc − ω)Ψ̄r, (27)

where ω is the electric angular velocity of the rotor and ωc is the electrical angular
velocity of the mutual coordinate-system.
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2.3. Flux equivalent circuit

The next step of the system analysis is – looking ahead the future phases of the research
– the exploration of the flux relationships in the machine model. The transformed
power vectors into the mutual coordinate system, also foreshowed in section 2.2. are
being used in the flux equations which have their explanation in Fig. 8.

Ψs

Ls Lrs

Lm ΨrΨm

is ir

im

Figure 8. The flux equivalent circuit.

Here Ψ̄s,Ψ̄m,Ψ̄r are the flux vectors, and īs ,̄im ,̄ir are the current vectors. All of them
are transformed vectors to the mutual coordinate system of the stator, rotor and the
mutual magnetization flux and the current (without ∗).

By the help of Fig. 8 [3], it can be seen that the total (F index: “full”) inductivity of
the stator is

LsF = Ls + Lm, (28)

and the total inductivity of the rotor is

LrF = Lrs + Lm, (29)
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where Lrs is the leakage inductivity of the rotor, Lm is the inductivity of the mutual
magnetization, Ls is the leakage inductivity of the stator.

Using the equations (23), (25) and (28), (29), see in [3], the flux equations belonging
to the mutual coordinate system can be generated, which are needed for the extension
of the Park-vector model:

Ψ̄s = LsF̄is + Lm īr, (30)

Ψ̄r = Lm īs + LrF̄ir. (31)

The electrical and mathematical models – described until this section – can be used
after some condition for the rotating part of the squirrel cage motor. By its help and
using the mechanical models of the asynchronous machine – the detailed explanation
is not part of this paper, see in [6] - as well as the help of some further transformations,
modern and vector field-oriented regulations can be generated.

3. Vector control for Induction Motor

The basic idea of the vector control, or its other name, field-oriented control (FOC) is
that it the stator’s three-phase input is splitted up into 2 orthogonal components that 2
components can appoint one vector. These 2 vectors are the torque and the magnetic
flux.

This basic idea goes back to the conception of the former DC motors where the
machine’s construction lets control the torque (and/or the speed control) as well as
the magnetic field independently from each other. This induces the wide dynamic
range of the DC machine and also its stability.

On the other hand, the AC machine is non-linear and multi variable system in
which the variable parts depend strongly on the outer parameters and on each other
parameters as well (such as temperature, magnetic hysteresis, current frequency etc.).
Its mathematical model is complicated by retroaction and by cross-effects. It follows
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from these that the power components which generate the torques cannot be separated
with trivial methods.

The regulation of the induction machine with 2 independent components can be
attached into a simple loop circle, which can be seen in Fig. 9. From the connections
in Fig. 9 and the section 2 the basic scheme of the field-oriented regulations can be
composed.

Reference  Control  Transform 

Transform 

Drive 

Feedback 

Figure 9. Diagram of the Induction Motor control.

3.1. Transformation

The purpose is the application of such a transformation model which makes possible
the regulation of time variant parameters as time invariant variables which modifies
the Fig. 9 as follows [1, 7].
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Figure 10. Transformations in the FOC model.
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The reference parameters on Fig. 10 are the input Torque (qr) and Flux (dr)
through a control function the Torque (qf ) and Flux (df ) which are coming back
from the feedback line, from these are the input parameters of the transformation
model [4, 6, 9]. It can be seen from mathematical and electric point of view that the
well-manageable and in time non-changing values are the regulatory parameters in
the regulation move.

3.1.1. Clarke and inverse Clarke transformation

As it is experienced in the section 2 the sine signals can get onto the three phase asyn-
chronous motor coils. These sine signals are in frequency and amplitude consistent
but they are shifted in phase to each other with 120◦.

With the Clarke transformation it is possible to transform vectors āaa,b̄bb,c̄cc (three-phase)
vectors to orthogonal ᾱαα and β̄ββ (two-phase) vectors. These vectors appoint an īii vector
in the two dimensional space – this is the Park-vector, itself.

The transformation can be conducted with the following steps in form of a vector
from the Fig. 5 (furthermore the Park-vector) :

• the axis of phase α of Park-vector is being turned with the vectors āaa and īii into a
x axis of an orthogonal 2 dimensional coordinate system;

• the transformation vector āaa is itself the vector āaa of the turned phase axis α;

• the transformation vector β̄ββ is cut by the vectors āaa and īii from the y axis of the
coordinate system.

In practice the vector ᾱαα and the Park vector īii appoint the Clarke-transform β̄ββ vector,
which is presented in the Fig. 11.

The transformation in matrix form is as follow [5, 12]:

[̄
iααα
īβββ

]
=

2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]īa
īb
īc

 , (32)
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α = a

b

c

iα

i

β

iβ

Figure 11. The Clarke transformation.

which is in the feedback line of the Fig. 10 [12], so an inverse transformation is
needed in the control line that is the inverse Clarke transformation.

In case of a two phases system conversion to a three phase system, the following
matrix is needed [11,12]:

īa
īb
īc

 =

 1 0

− 1
2

√
3
2

− 1
2 −

√
3
2

 [̄iααα
īβββ

]
. (33)

3.1.2. Park and Park−1 transformation

After the Clarke transformation the two phase component can be still hardly regulated
and it is still alternating. Due to this, after the phase transformation the coordinate-
system’s transformation should also be performed which will rotate synchronous
with the stator’s three-phase rotating field. From these we can receive the needed q
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Torque and the d Flux in time variant components. These can be easily managed from
electrical point of view.

α = a

b

c

id

i

β

θ

q

d

iq

Figure 12. Park transformation [12].

After the presented Park transformation, a synchronous rotating coordinate system
will be generated where θ is the electrical angle [12]:

[̄
id
īq

]
=

2

3

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

] [̄
iααα
īβββ

]
. (34)

In the inverse form of the transformation to the stator coordinate system is returned
where again the two phase components appear that are time variant [12]:

[̄
iααα
īβββ

]
=

2

3

[
cos (θ) − sin (θ)
− sin (θ) cos (θ)

] [̄
id
īq

]
. (35)
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3.2. Field-Oriented Control

In Fig. 10 the basic model is presented. It can be brought to the following form by
the help of the Clarke and the Park transformations:

Control  Clark­1 Drive 
qr 
dr 

q 

Park­1

ClarkPark

d 

α 

β 

IM

qf 

df 

αf 

βf 

a 

af 

b 
c 

bf cf 

Figure 13. Simple FOC model [3, 5, 9-12].

Fig. 13 represents a simple field-oriented regulation model where the transforma-
tions are being built according to the section 3.1., and they can be brought to a mutual
matrix shape according to the equation (36) [12]

[̄
id
īq

]
=

2

3

[
cos (θ) cos (θ − λ) cos (θ + λ)
− sin (θ) − sin (θ − λ) − sin (θ + λ)

]īa
īb
īc

 , (36)

as well as the matrix shape of the inverse transformation is seen as [12]

īa
īb
īc

 =
2

3

 cos (θ) − sin (θ)
cos (θ − λ) − sin (θ − λ)
cos (θ + λ) − sin (θ + λ)

 [̄id
īq

]
, (37)

in which λ = 2π
3 .

182



L. Varga and M. Kuczmann – Acta Technica Jaurinensis, Vol. 11, No. 4, pp. 165–184, 2018

The presented basic model has several enlargement possibilities for the regulation
and also for the feedback line, but these refer to specific models.

4. Conclusion

The paper concludes that the vector control for induction motor can be introduced
using the scheme of the induction motor and can be prepared transformation matrices
for quick calculations of the current vectors. The modells and the calculations will be
explained and simulated in the following papers.
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