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Abstract: In this paper the numerical creation of phase-plane diagrams in parallel 

utilizing Maple is presented. One of the most effective method for 

studying nonlinear systems is the creation of detailed enough phase-

plane diagrams. But in the case of large systems it requires huge amount 

of numerical calculation, which can be accelerated using parallel 

computers. Here we show some attempts for this using moderate size 

known problems. We demonstrate that detailed diagrams can be created 

fast and efficiently with a SIMD model based algorithm even using 

simple PC-s. We exhibit that the parallel algorithm taken for one- and 

two-dimensional problems can be expanded for 3D phase-space 

diagram creation without any loss of efficiency. In this paper a 

methodology is showed which can be followed in the study of large 

dynamical systems as well. 

Keywords: parallel computing, SIMD, Maple, numerical analysis, nonlinear 

system modeling 

1. Introduction 

One effective way for the study of nonlinear differential system of equations is the 

construction of the detailed enough phase space diagrams 145. For construction of 

such diagrams we can construct numerical algorithms with many arithmetic 

operations. However these algorithms are easily parallelizable, so the map of phase 

space can be drawn with high resolution and very fast using many processors or 

supercomputers.  In our research work we begin with the program of Parallel Maple 

because it provides algorithms for solving differential equations and two models for 
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parallelization. The paper first introduces the parallelization possibilities with 

Maple. In the next part in our paper we briefly describe the sequential and parallel 

algorithms to create the phase-plane diagram. In the next section the tests and results 

with the parallel program are described in detail. The paper concludes with further 

development tasks and the summary of the achieved results. 

2. Parallelization with Maple  

Maple provides two models for parallelization: the thread-based Task 

programming model, which enables parallelization by executing multiple tasks 

within a single process and the Grid programming model with starting multiple 

processes [2]. The main difference between the two models is the memory access: 

former uses a shared memory (SMP), latter a distributed memory (DMP) [3]. 

In [4] both of them was tested and compared. As the problem size increased the 

Grid programming model operated increasingly better, with surprisingly good 

results at the highest resolution. For solving larger problems the Task programming 

model seemed less suitable. Not only memory sharing problems occurred, but the 

speedup and the efficiency also decreased with increasing resolution. Grid 

programming model was chosen for further research. 

Parallelized Maple has already been used for solving arithmetic problems [5], 

parallel symbolic computation [6], [7], [8], operations with polynomials[9], [10], 

solving initial value problems for ordinary differential equations [11],[12] and 

solving nonlinear algebraic problems [13], [14], .  

The development of using Maple in parallel started in the 1990s, there were a lot 

of approach. First there were interfaces between Maple and another programming 

environment (C/Linda [5], Strand[6], C++[8], Eden[13]) capable of parallelization. 

There are examples of extended Maple kernels [9] and grid enabling wrappers [16] 

too. Distributed Maple was an approach of using Maple parallel without any external 

interface [14]. Nowadays Maple’s Grid Computing Toolbox is used for example for 

parallel operations with polynomials [17]. Parallelized Maple has been used on 

massively parallel, distributed memory machine [9] and computer clusters too [16]. 

 The detailed description of parallelized Maple applications can be found in [4]. It 

can be seen that Maple was used mostly on distributed systems, which also confirms 

our results, that Maple Grid Programming model suits better for our task 
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3. Numerical creation of a state-space diagrams  

3.1. Sequential algorithm  

To construct the phase-plane diagrams the system of equation with many initial 

states was solved numerically. The initial states were stored in a list. For construction 

of a phase-plane diagram a sequential algorithm was used, which went through all 

the elements of a list. For numerical solution Maple’s dsolve command was used 

with  rkf45 numerical solver [18].  

In this study the sequential algorithm was expanded in a way to create 3D state-

space diagrams. The sequential algorithm to construct the 3D state-plane diagram in 

case of h system variables and h differential equations can be seen in Figure 1. 

The initial data for calculation should be specified. They are the initial states, the 

system parameters, and the system of equations. For defining the initial states sets 

were given for x1(0)-x2(0)-..-xh(0). Inside the sets x1(0)-x2(0)-..-xh(0) pairs are 

created, which are stored in a list. With changing the resolution inside sets the 

number of initial states could be varied.  

The next step is solving the system of equations. Maple stores the solution in a 

procedure (procrkf45) [18]. This procedure can calculate the result at a given time. 

For constructing the phase-plane diagram a sequence is necessary for calculate the 

results at a given time period (seq command). Maple can store the results in a plot. 

All plots are collected in a list, which can be easily displayed after calculating the 

results for all of the initial states. 
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Figure 1. The flow chart of the sequential algorithm 
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3.2. Parallel algorithm  

Constructing phase-plane diagrams in a numerical way can be easily parallelized. 

There are a lot of different input data (initial states), but the same calculations should 

be carried out with them. The parallelization therefore can be done according to 

SIMD model [19]. 

For parallelization using Maple’s Grid Programming model a master node must 

be created to supervise slave nodes and arrange the data of the results. The slave 

nodes calculate the results for different initial states and send them to the master 

node. The flow chart for this model in Maple can be seen in Figure 2. The algorithm 

was based on [20]. 

 

Figure 2. Flow chart of the parallel algorithm 

 

4. Tests 

The tests were carried out on a PC with an IntelCorei5-4460 @ 3200 Mhz CPU 

processor and 16 GB RAM. The processor has 4 cores. The equations for calculating 

the speedup (S) [21] and the relative speedup [22] (R) are: 

 

 
𝑆 =

𝑇𝑠
𝑇𝑛

 (1) 

 
𝑅 =

𝑆

𝑛
 (2) 
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where Ts is the sequential running time, Tn is the parallel running time and n is the 

number of cores.  

This parallel algorithm was previously tested with the numerical creation of phase-

plane diagrams of a Tunnel diode circuit [23]. The results were very promising, a 3 

fold speedup could be achieved with a simple PC. In this study the phase-plane 

diagram of other 2 simple nonlinear systems were created: the Van der Pol oscillator 

and a biochemical reaction. 

Van der Pol oscillator 

The Van der Pol oscillator is a simple nonlinear oscillator [1]. From the phase-

plane diagram of nonlinear oscillators also a lot of information can be derived, one 

of the most important one is the limit cycle (can be seen in Figure 1). The differential 

equation of the system is: 

 

 𝑑2

𝑑𝑡2
𝑥(𝑡) = 𝜇(1 − 𝑥(𝑡)2)

𝑑

𝑑𝑡
𝑥(𝑡) − 𝑥(𝑡) 

 

(3) 

For defining the initial states sets were given for x(0) and dx(0). The sets are [-3; 

3] in both cases. This set was chosen in a way that the limit cycle is inside the set.     

 

 

Figure 1. The phase-plane diagram of the Van der Pol oscillator (μ=1)  

The results can be seen in Table 1 and in Figure 2. 
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Table 1. Average calculation times (T), speedup (S) and relative speedup (R) for 

constructing the phase-plane diagram of the Van der Pol oscillator 

 

Resolution 

(number of 

initial states) 

 Sequential 
Parallel (2 

cores) 
Parallel (4 

cores) 

0.5 

(16) 

T 3.439 2.869 1.255 

S  1.199 2.742 

R  0.599 0.685 

1 

(49) 

T 10.686 7.737 3.479 

S  1.381 3.072 

R  0.691 0.768 

2 

(169) 

T 37.19 26.768 11.451 

S  1.389 3.248 

R  0.695 0.812 

4 

(625) 

T 146.422 98.358 42.541 

S  1.489 3.442 

R  0.744 0.860 

8 

(2401) 

T 609.757 384.479 165.828 

S  1.586 3.677 

R  0.793 0.919 

In Table 2 it can be seen that around a 3 fold speedup could be achieved with a 0.8 

relative speedup in case of 4 cores. As the resolution increased the speedup and the 

efficiency increased, at the highest resolution over 90% efficiency could be achieved 

with almost a 4 fold speedup. In case of 2 cores a maximum 1.5 speedup could be 

achieved with a 0.8 relative speedup. Except the lowest resolution the efficiency was 

above 60% in all cases. The overhead is less using 4 cores in all cases. Better results 

could be achieved using 4 cores, therefore the algorithm is scalable. At higher 

resolution the increase in efficiency was better (>10%) using 4 cores, which means 

that larger problems are better scalable. 
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 Further tests will be necessary in the future using supercomputers with more cores 

to examine the scalability of the algorithm in more detail. 

 

 

 

Figure 2. The average calculation time (up, grey: sequential, blue: 2 cores red: 4 

cores), speedup (middle left), relative speedup (middle right), overhead (bottom 

left) and change in efficiency comparing 2 and 4 cores (bottom right) versus the 

resolution in case of creating the phase-plane diagram of the Van der Pol 

oscillator  

First the increase is faster using both 2 and 4 cores, but after resolution 1 the 

increase slows down. Next task is to examine the changing in limit cycle as 

parameter μ is varied in parallel. 
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Creation of 3D state-space diagram: a biochemical reaction 

The described algorithm was expanded for 3D tasks too, which means the creation 

of the state-space diagram. It was tested with a simple example with 3 variables. It 

is the model of a biochemical reaction [24]. The differential equation is: 

 

 

𝑑𝑥(𝑡)

𝑑𝑡
=
1

𝛼
(𝑥(𝑡) + 𝑦(𝑡) − 𝑥(𝑡) ∙ 𝑦(𝑡) − 𝑞𝑥(𝑡)2) 

 

(4) 

 

𝑑𝑦(𝑡)

𝑑𝑡
= 2𝑚𝑧(𝑡) − 𝑦(𝑡) − 𝑥(𝑡) ∙ 𝑦(𝑡) 

 

(5) 

 

𝑑𝑧(𝑡)

𝑑𝑡
=
1

𝑟
(𝑥(𝑡) − 𝑧(𝑡) 

 

(6) 

where x(t), y(t) and z(t) are the species concentrations, α, q, m, r are constants. The 

state-space diagram can be seen in Figure 3. From the state-space diagram it can be 

seen that a limit cycle exists if α=0.1, q=0.01 , m=0.5 and r=1. 

 

Figure 3. The phase-space diagram of a biochemical reaction 
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For defining the initial states sets were given for x(0), y(0) and z(0). The sets are 

[0; 1]  for all variables. 

The results can be seen in Table 2 and in Figure 4. 

Table 2. Average calculation times (T), speedup (S) and relative speedup (R) for 

constructing the phase-space diagram of a biochemical reaction 

 

Resolution 

(number of 

initial states) 

 Sequential 
Parallel (2 

cores) 
Parallel (4 

cores) 

0.25 

(27) 

T 1.353 1.295 0.537 

S  1.045 2.521 

R  0.523 0.630 

0.5 

(216) 

T 10.952 7.347 3.853 

S  1.491 2.842 

R  0.745 0.711 

1 

(1331) 

T 63.478 45.068 18.735 

S  1.408 3.388 

R  0.704 0.847 

2 

(9261) 

T 482.317 - 131.361 

S  - 3.672 

R  - 0.918 

It can be seen that around 3 fold speedup could be achieved with 75% efficiency 

in case of 4 cores. For small resolutions the speedup was less than 3 and the 

efficiency less than 70%. After resolution 1 an over 3 fold speedup could be achieved 

with an above 80% efficiency. For the highest resolution a surprisingly good result 

could be achieved: 3.6 fold speedup with 92% efficiency. In case of 2 cores a 

maximum 1.5 fold speedup could be achieved with 75% efficiency at resolution 0.5. 

When the resolution was further increased both of them decreased. At the highest 

resolution the calculation failed because of lack of memory. The overhead was less 

using 2 cores at resolution 0.5, which means the algorithm is better scalable at higher 
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resolution. At resolution 1 a 14% increase in efficiency could be achieved using 4 

cores.  

 

 

 

Figure 4. The average calculation time (up, grey: sequential, blue: 2 cores red: 4 

cores), speedup (middle left), relative speedup (middle right), overhead (bottom 

left) and change in efficiency comparing 2 and 4 cores (bottom right) versus the 

resolution in case of creating the phase-space diagram of a biochemical reaction 

The speedup and the efficiency up to resolution 1 is linear using 4 cores. After that 

is still remains linear, but the slope is smaller. With this test it was verified that this 
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algorithm is suitable also for creating 3D state-space diagrams in parallel very 

efficiently. The scalability of the algorithm should be examined with more cores in 

the future.  

5. Further development 

In this section the further development tasks are described. These are the 

possibilities of using supercomputers in the future and examining other more 

complex nonlinear systems with creation of phase-plane and other diagrams in 

parallel. 

Using supercomputers 

Our forthcoming research is to measure the speedup effect and examine the 

scalability of the algorithm on a supercomputer using a much more number of 

processors [25]. Three possibilities were examined 

 

 using Maple 

 connecting Maple to another environment 

 use a completely different programming language  

 

As we have limited number of Maple licenses it was discarded to use it on 

supercomputers. 

Another possibility is to connect Maple to other parallel programming language. 

In the literature there are several examples, like Sugarbrush (Maple+C/Linda) 

[5],||MAPLE|| (Maple+Strand)[6], FoxBox (Maple + C++) [8], PVMaple (Maple + 

PVM) [11], Maple+Eden [13], OpenMaple+MPI [17]. Most of these solutions did 

not spread due their special kernel [14] or were not effective enough as format 

conversion can be very time consuming [13],[17].  

The third possibility was chosen, which is to develop a parallel target program in 

C++.  A demo program was already developed for creating the phase-plane diagram 

of a Tunnel diode circuit in parallel using OpenMp directives. Compared to parallel 

Maple another 6 fold speedup could be achieved on the same computer. More about 

the development of the demo program can be read in [26]. 
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Other tasks 

Further development task is to speedup the examination of other nonlinear systems 

as well and to create further high-performance computing workload diagrams like 

bifurcation diagrams [27] (seen in Figure 5) in parallel. For simple bistable systems, 

like the Tunnel diode circuit Maple command implicitplot is applicable. For fast 

creation of bifurcation diagrams of oscillators and more complex systems an iterative 

program based on [28] can be used. The parallelization of 3D bifurcation diagrams 

using the simple iterative algorithm has already been achieved [29].  

Other future task is to create Poincaré sections [28] and frequency spectrum maps 

[30] also in parallel to facilitate the numerical examination of more complex 

nonlinear systems as well. 

 

 

 

Figure 5. The 2 parametric bifurcation diagram of the Tunnel diode circuit 

(left)[23] and the bifurcation diagram of the Duffing-Holmes oscillator (right) 

6. Conclusion  

The numerical creation of the phase-plane diagrams of simple nonlinear systems 

in parallel was achieved with a SIMD model based algorithm utilizing Maple’s Grid 

programming model. On a 4 core desktop an average 3 fold speedup could be 

achieved with an average 75-80% efficiency in all test cases. As the problem size 
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increased the parallel program operated increasingly better, with surprisingly good 

results at the highest resolutions. For simple nonlinear systems a detailed phase-

plane and 3D phase space diagrams can be created fast and efficiently even on simple 

PC-s with limited number of cores. The presented method can be used for numerical 

examination of more complex dynamical systems in the future. 
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