

Acta

Technica
Jaurinensis

Vol. 11, No. 3, pp. 132-149, 2018

DOI: 10.14513/actatechjaur.v11.n3.457
Available online at acta.sze.hu

132

Parallel Numerical Creation of Phase-space

Diagrams of Nonlinear Systems Using Maple

F. Hajdu, Gy. Molnárka

Széchenyi István University, Faculty of Mechanical Engineering, Informatics

and Electrical Engineering, Department of Mechatronics and Machine Design

Egyetem tér 1., 9026 Győr, Hungary

e-mail: hajdfl@sze.hu

Abstract: In this paper the numerical creation of phase-plane diagrams in parallel

utilizing Maple is presented. One of the most effective method for

studying nonlinear systems is the creation of detailed enough phase-

plane diagrams. But in the case of large systems it requires huge amount

of numerical calculation, which can be accelerated using parallel

computers. Here we show some attempts for this using moderate size

known problems. We demonstrate that detailed diagrams can be created

fast and efficiently with a SIMD model based algorithm even using

simple PC-s. We exhibit that the parallel algorithm taken for one- and

two-dimensional problems can be expanded for 3D phase-space

diagram creation without any loss of efficiency. In this paper a

methodology is showed which can be followed in the study of large

dynamical systems as well.

Keywords: parallel computing, SIMD, Maple, numerical analysis, nonlinear

system modeling

1. Introduction

One effective way for the study of nonlinear differential system of equations is the

construction of the detailed enough phase space diagrams 145. For construction of

such diagrams we can construct numerical algorithms with many arithmetic

operations. However these algorithms are easily parallelizable, so the map of phase

space can be drawn with high resolution and very fast using many processors or

supercomputers. In our research work we begin with the program of Parallel Maple

because it provides algorithms for solving differential equations and two models for

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

133

parallelization. The paper first introduces the parallelization possibilities with

Maple. In the next part in our paper we briefly describe the sequential and parallel

algorithms to create the phase-plane diagram. In the next section the tests and results

with the parallel program are described in detail. The paper concludes with further

development tasks and the summary of the achieved results.

2. Parallelization with Maple

Maple provides two models for parallelization: the thread-based Task

programming model, which enables parallelization by executing multiple tasks

within a single process and the Grid programming model with starting multiple

processes [2]. The main difference between the two models is the memory access:

former uses a shared memory (SMP), latter a distributed memory (DMP) [3].

In [4] both of them was tested and compared. As the problem size increased the

Grid programming model operated increasingly better, with surprisingly good

results at the highest resolution. For solving larger problems the Task programming

model seemed less suitable. Not only memory sharing problems occurred, but the

speedup and the efficiency also decreased with increasing resolution. Grid

programming model was chosen for further research.

Parallelized Maple has already been used for solving arithmetic problems [5],

parallel symbolic computation [6], [7], [8], operations with polynomials[9], [10],

solving initial value problems for ordinary differential equations [11],[12] and

solving nonlinear algebraic problems [13], [14], .

The development of using Maple in parallel started in the 1990s, there were a lot

of approach. First there were interfaces between Maple and another programming

environment (C/Linda [5], Strand[6], C++[8], Eden[13]) capable of parallelization.

There are examples of extended Maple kernels [9] and grid enabling wrappers [16]

too. Distributed Maple was an approach of using Maple parallel without any external

interface [14]. Nowadays Maple’s Grid Computing Toolbox is used for example for

parallel operations with polynomials [17]. Parallelized Maple has been used on

massively parallel, distributed memory machine [9] and computer clusters too [16].

 The detailed description of parallelized Maple applications can be found in [4]. It

can be seen that Maple was used mostly on distributed systems, which also confirms

our results, that Maple Grid Programming model suits better for our task

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

134

3. Numerical creation of a state-space diagrams

3.1. Sequential algorithm

To construct the phase-plane diagrams the system of equation with many initial

states was solved numerically. The initial states were stored in a list. For construction

of a phase-plane diagram a sequential algorithm was used, which went through all

the elements of a list. For numerical solution Maple’s dsolve command was used

with rkf45 numerical solver [18].

In this study the sequential algorithm was expanded in a way to create 3D state-

space diagrams. The sequential algorithm to construct the 3D state-plane diagram in

case of h system variables and h differential equations can be seen in Figure 1.

The initial data for calculation should be specified. They are the initial states, the

system parameters, and the system of equations. For defining the initial states sets

were given for x1(0)-x2(0)-..-xh(0). Inside the sets x1(0)-x2(0)-..-xh(0) pairs are

created, which are stored in a list. With changing the resolution inside sets the

number of initial states could be varied.

The next step is solving the system of equations. Maple stores the solution in a

procedure (procrkf45) [18]. This procedure can calculate the result at a given time.

For constructing the phase-plane diagram a sequence is necessary for calculate the

results at a given time period (seq command). Maple can store the results in a plot.

All plots are collected in a list, which can be easily displayed after calculating the

results for all of the initial states.

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

135

Figure 1. The flow chart of the sequential algorithm

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

136

3.2. Parallel algorithm

Constructing phase-plane diagrams in a numerical way can be easily parallelized.

There are a lot of different input data (initial states), but the same calculations should

be carried out with them. The parallelization therefore can be done according to

SIMD model [19].

For parallelization using Maple’s Grid Programming model a master node must

be created to supervise slave nodes and arrange the data of the results. The slave

nodes calculate the results for different initial states and send them to the master

node. The flow chart for this model in Maple can be seen in Figure 2. The algorithm

was based on [20].

Figure 2. Flow chart of the parallel algorithm

4. Tests

The tests were carried out on a PC with an IntelCorei5-4460 @ 3200 Mhz CPU

processor and 16 GB RAM. The processor has 4 cores. The equations for calculating

the speedup (S) [21] and the relative speedup [22] (R) are:

𝑆 =

𝑇𝑠
𝑇𝑛

 (1)

𝑅 =

𝑆

𝑛
 (2)

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

137

where Ts is the sequential running time, Tn is the parallel running time and n is the

number of cores.

This parallel algorithm was previously tested with the numerical creation of phase-

plane diagrams of a Tunnel diode circuit [23]. The results were very promising, a 3

fold speedup could be achieved with a simple PC. In this study the phase-plane

diagram of other 2 simple nonlinear systems were created: the Van der Pol oscillator

and a biochemical reaction.

Van der Pol oscillator

The Van der Pol oscillator is a simple nonlinear oscillator [1]. From the phase-

plane diagram of nonlinear oscillators also a lot of information can be derived, one

of the most important one is the limit cycle (can be seen in Figure 1). The differential

equation of the system is:

 𝑑2

𝑑𝑡2
𝑥(𝑡) = 𝜇(1 − 𝑥(𝑡)2)

𝑑

𝑑𝑡
𝑥(𝑡) − 𝑥(𝑡)

(3)

For defining the initial states sets were given for x(0) and dx(0). The sets are [-3;

3] in both cases. This set was chosen in a way that the limit cycle is inside the set.

Figure 1. The phase-plane diagram of the Van der Pol oscillator (μ=1)

The results can be seen in Table 1 and in Figure 2.

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

138

Table 1. Average calculation times (T), speedup (S) and relative speedup (R) for

constructing the phase-plane diagram of the Van der Pol oscillator

Resolution

(number of

initial states)

 Sequential
Parallel (2

cores)
Parallel (4

cores)

0.5

(16)

T 3.439 2.869 1.255

S 1.199 2.742

R 0.599 0.685

1

(49)

T 10.686 7.737 3.479

S 1.381 3.072

R 0.691 0.768

2

(169)

T 37.19 26.768 11.451

S 1.389 3.248

R 0.695 0.812

4

(625)

T 146.422 98.358 42.541

S 1.489 3.442

R 0.744 0.860

8

(2401)

T 609.757 384.479 165.828

S 1.586 3.677

R 0.793 0.919

In Table 2 it can be seen that around a 3 fold speedup could be achieved with a 0.8

relative speedup in case of 4 cores. As the resolution increased the speedup and the

efficiency increased, at the highest resolution over 90% efficiency could be achieved

with almost a 4 fold speedup. In case of 2 cores a maximum 1.5 speedup could be

achieved with a 0.8 relative speedup. Except the lowest resolution the efficiency was

above 60% in all cases. The overhead is less using 4 cores in all cases. Better results

could be achieved using 4 cores, therefore the algorithm is scalable. At higher

resolution the increase in efficiency was better (>10%) using 4 cores, which means

that larger problems are better scalable.

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

139

 Further tests will be necessary in the future using supercomputers with more cores

to examine the scalability of the algorithm in more detail.

Figure 2. The average calculation time (up, grey: sequential, blue: 2 cores red: 4

cores), speedup (middle left), relative speedup (middle right), overhead (bottom

left) and change in efficiency comparing 2 and 4 cores (bottom right) versus the

resolution in case of creating the phase-plane diagram of the Van der Pol

oscillator

First the increase is faster using both 2 and 4 cores, but after resolution 1 the

increase slows down. Next task is to examine the changing in limit cycle as

parameter μ is varied in parallel.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8

A
ve

ra
ge

 c
al

cu
la

ti
o

n
 t

im
e

 [
s]

Resolution

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 2 4 6 8

Sp
e

e
d

u
p

Resolution

0,60

0,70

0,80

0,90

1,00

0 2 4 6 8

R
e

la
ti

ve
 s

p
e

e
d

u
p

Resolution

0

10

20

30

40

0 2 4 6 8

O
ve

rh
e

ad
 [

%
]

Resolution

7

9

11

13

0 2 4 6 8

C
h

an
ge

 in
 e

ff
ic

ie
n

cy
 [

%
]

Resolution

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

140

Creation of 3D state-space diagram: a biochemical reaction

The described algorithm was expanded for 3D tasks too, which means the creation

of the state-space diagram. It was tested with a simple example with 3 variables. It

is the model of a biochemical reaction [24]. The differential equation is:

𝑑𝑥(𝑡)

𝑑𝑡
=
1

𝛼
(𝑥(𝑡) + 𝑦(𝑡) − 𝑥(𝑡) ∙ 𝑦(𝑡) − 𝑞𝑥(𝑡)2)

(4)

𝑑𝑦(𝑡)

𝑑𝑡
= 2𝑚𝑧(𝑡) − 𝑦(𝑡) − 𝑥(𝑡) ∙ 𝑦(𝑡)

(5)

𝑑𝑧(𝑡)

𝑑𝑡
=
1

𝑟
(𝑥(𝑡) − 𝑧(𝑡)

(6)

where x(t), y(t) and z(t) are the species concentrations, α, q, m, r are constants. The

state-space diagram can be seen in Figure 3. From the state-space diagram it can be

seen that a limit cycle exists if α=0.1, q=0.01 , m=0.5 and r=1.

Figure 3. The phase-space diagram of a biochemical reaction

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

141

For defining the initial states sets were given for x(0), y(0) and z(0). The sets are

[0; 1] for all variables.

The results can be seen in Table 2 and in Figure 4.

Table 2. Average calculation times (T), speedup (S) and relative speedup (R) for

constructing the phase-space diagram of a biochemical reaction

Resolution

(number of

initial states)

 Sequential
Parallel (2

cores)
Parallel (4

cores)

0.25

(27)

T 1.353 1.295 0.537

S 1.045 2.521

R 0.523 0.630

0.5

(216)

T 10.952 7.347 3.853

S 1.491 2.842

R 0.745 0.711

1

(1331)

T 63.478 45.068 18.735

S 1.408 3.388

R 0.704 0.847

2

(9261)

T 482.317 - 131.361

S - 3.672

R - 0.918

It can be seen that around 3 fold speedup could be achieved with 75% efficiency

in case of 4 cores. For small resolutions the speedup was less than 3 and the

efficiency less than 70%. After resolution 1 an over 3 fold speedup could be achieved

with an above 80% efficiency. For the highest resolution a surprisingly good result

could be achieved: 3.6 fold speedup with 92% efficiency. In case of 2 cores a

maximum 1.5 fold speedup could be achieved with 75% efficiency at resolution 0.5.

When the resolution was further increased both of them decreased. At the highest

resolution the calculation failed because of lack of memory. The overhead was less

using 2 cores at resolution 0.5, which means the algorithm is better scalable at higher

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

142

resolution. At resolution 1 a 14% increase in efficiency could be achieved using 4

cores.

Figure 4. The average calculation time (up, grey: sequential, blue: 2 cores red: 4

cores), speedup (middle left), relative speedup (middle right), overhead (bottom

left) and change in efficiency comparing 2 and 4 cores (bottom right) versus the

resolution in case of creating the phase-space diagram of a biochemical reaction

The speedup and the efficiency up to resolution 1 is linear using 4 cores. After that

is still remains linear, but the slope is smaller. With this test it was verified that this

0

100

200

300

400

500

600

0 0,5 1 1,5 2A
ve

ra
ge

 c
al

cu
la

ti
o

n
 t

im
e

 [
s]

Resolution

1

2

2

3

3

4

4

0 0,5 1 1,5 2

Sp
e

e
d

u
p

Resolution

0,50

0,60

0,70

0,80

0,90

1,00

0 1 2

R
e

la
ti

ve
 s

p
e

e
d

u
p

Resolution

0

10

20

30

40

50

0 1 2

O
ve

rh
e

ad
 [

%
]

Resolution

-4

1

6

11

0,2 0,4 0,6 0,8 1

In
cr

e
as

e
 in

 e
ff

ic
ie

n
cy

 [
%

]

Resolution

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

143

algorithm is suitable also for creating 3D state-space diagrams in parallel very

efficiently. The scalability of the algorithm should be examined with more cores in

the future.

5. Further development

In this section the further development tasks are described. These are the

possibilities of using supercomputers in the future and examining other more

complex nonlinear systems with creation of phase-plane and other diagrams in

parallel.

Using supercomputers

Our forthcoming research is to measure the speedup effect and examine the

scalability of the algorithm on a supercomputer using a much more number of

processors [25]. Three possibilities were examined

 using Maple

 connecting Maple to another environment

 use a completely different programming language

As we have limited number of Maple licenses it was discarded to use it on

supercomputers.

Another possibility is to connect Maple to other parallel programming language.

In the literature there are several examples, like Sugarbrush (Maple+C/Linda)

[5],||MAPLE|| (Maple+Strand)[6], FoxBox (Maple + C++) [8], PVMaple (Maple +

PVM) [11], Maple+Eden [13], OpenMaple+MPI [17]. Most of these solutions did

not spread due their special kernel [14] or were not effective enough as format

conversion can be very time consuming [13],[17].

The third possibility was chosen, which is to develop a parallel target program in

C++. A demo program was already developed for creating the phase-plane diagram

of a Tunnel diode circuit in parallel using OpenMp directives. Compared to parallel

Maple another 6 fold speedup could be achieved on the same computer. More about

the development of the demo program can be read in [26].

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

144

Other tasks

Further development task is to speedup the examination of other nonlinear systems

as well and to create further high-performance computing workload diagrams like

bifurcation diagrams [27] (seen in Figure 5) in parallel. For simple bistable systems,

like the Tunnel diode circuit Maple command implicitplot is applicable. For fast

creation of bifurcation diagrams of oscillators and more complex systems an iterative

program based on [28] can be used. The parallelization of 3D bifurcation diagrams

using the simple iterative algorithm has already been achieved [29].

Other future task is to create Poincaré sections [28] and frequency spectrum maps

[30] also in parallel to facilitate the numerical examination of more complex

nonlinear systems as well.

Figure 5. The 2 parametric bifurcation diagram of the Tunnel diode circuit

(left)[23] and the bifurcation diagram of the Duffing-Holmes oscillator (right)

6. Conclusion

The numerical creation of the phase-plane diagrams of simple nonlinear systems

in parallel was achieved with a SIMD model based algorithm utilizing Maple’s Grid

programming model. On a 4 core desktop an average 3 fold speedup could be

achieved with an average 75-80% efficiency in all test cases. As the problem size

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

145

increased the parallel program operated increasingly better, with surprisingly good

results at the highest resolutions. For simple nonlinear systems a detailed phase-

plane and 3D phase space diagrams can be created fast and efficiently even on simple

PC-s with limited number of cores. The presented method can be used for numerical

examination of more complex dynamical systems in the future.

Acknowledgement

The publishing of this paper was supported by EFOP-3.6.1-16-2016-00017

project.

References

[1] H.K. Khalil, Nonlinear Systems, Prentice Hall, (1999)

[2] Maple help, 2016, [cited 01.10.2016]

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Programmin

gGuide/Chapter15

[3] S. Jin, S.E. Oh, J.W. Hong, Performance Evaluation of a Finite Element Code

Parallelized with OpenMP, in P. Iványi, B.H.V. Topping, G. Várady, (Eds),

Proceedings of the Fifth International Conference on Parallel, Distributed,

Grid and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire,

UK, Paper 36, (2017).

DOI:10.4203/ccp.111.36

[4] F. Hajdu, Gy. Molnárka, Parallelization of Numerical Examination of

Nonlinear Systems using Maple, in P. Iványi, B.H.V. Topping, G. Várady,

(Eds), Proceedings of the Fifth International Conference on Parallel,

Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press,

Stirlingshire, UK, Paper 30, (2017).

DOI:10.4203/ccp.111.30

[5] B. Char, J. Johnson, Some experiments with Parallel Bignum Aritmetic, in H.

Hong (Ed) PASCO'94 Proceedings of First International Symposiumon

Parallel Symbolic Computation, World Scientific Publishing Co., Inc. River

Edge, NJ, USA, (1994)

[6] K. Siegl, Parallelizing Algorithms for Symbolic Computation using ||MA

PLE||, in Proceedings of the fourth ACM SIGPLAN symposium on Principles

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

146

and practice of parallel programming, ACM New York, NY, USA, (1993),

pp. 179–186.

DOI: 10.1145/155332.155351

[7] K.C. Chan, A. Diaz, E. Kaltofeln, A Distributed Approach to Problem

Solving in Maple, in R.J. Lopez (Ed) Maple V: Mathematics and its

Applications, Birkhäuser, Boston, (1994), pp. 13-21.

[8] A. Diaz, E. Kaltofeln, FOXBOX: A System for Manipulating Symbolic

Objects in Black Box Representation, in "Proceedings of the 1998

international symposium on Symbolic and algebraic computation, ACM New

York, NY, USA,(1998), pp. 30-37.

[9] L. Bernardin, Maple on a massively parallel, distributed memory machine, in

M. Hitz (Ed) PASCO '97 Proceedings of the second international symposium

on Parallel symbolic computation, ACM New York, NY, USA, (1997), pp.

217-222.

DOI: 10.1145/266670.266732

[10] J. Liu, S. Wu, H. Li, X. Yao, F. Du, Parallelization of Characteristic Series, in

W. Wang (Ed) Mechatronics and Automatic Control Systems: Proceedings of

the 2013 International Conference on Mechatronics and Automatic Control

Systems (ICMS2013) , Springer International Publishing, (2013) pp. 363-372.

DOI: 10.1007/978-3-319-01273-5

[11] D. Petcu, PVMaple: A Distributed Approach to Cooperative Work of Maple

Processes, in J. Dongara et al (Eds) Recent Advances in Parallel Virtual

Machine and Message Passing Interface: Seventh European PVM/MPI Users’

Group Meeting, Balatonfüred, Hungary, September 10-13, 2000 Proceedings,

Springer-Verlag Berlin Heidelberg, (2000), pp. 216–224.

[12] D. Petcu, Numerical Solution of ODEs with Distributed Maple", in L.

Vulkov et al (Eds), Numerical Analysis and Its Applications: Second

International Conference, NAA 2000 Rousse, Bulgaria, June 11-15, Revised

Papers, (2000), pp. 666-674.

[13] R. Martinez, R. Pena: Building an Interface Between Eden and Maple: A way

of Parallelizing Computer Algebra Algorithms, in P. Trinder et al (Eds)

Implementation of Functional Languages 15th International Workshop IFL

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

147

2003 Edinburgh, UK, September 8-11, 2003. Revised Papers, Springer-

Verlag Berlin Heidelberg, (2005), pp. 135-151.

DOI: 10.1007/978-3-540-27861-0_9

[14] W. Schreiner, C. Mittermaier, K. Bosa, Distributed Maple: parallel computer

algebra in networked environments, in H Hong (editor) Journal of Symbolic

Computation, 35 (3) (2003), pp. 305–347.

DOI: 10.1016/S0747-7171(02)00137-2

[15] D. Petcu, Numerical Solution of ODEs with Distributed Maple", in L.

Vulkov et al (Eds), Numerical Analysis and Its Applications: Second

International Conference, NAA 2000 Rousse, Bulgaria, June 11-15, Revised

Papers, (2000), pp. 666-674.

[16] D. Petcu, M. Paprzycki, D. Dubu, Design and implementation of a grid

extension for Maple, Scientific Programming, 13 (2) IOS Press, (2005) pp.

137–149.

DOI: 10.1155/2005/653638

[17] G. M. Díaz-Toca, A. L. Murica, Berkowitz Algorithm in parallel with the

Maple Grid Computing Toolbox [cited 28.12.2017]

http://dis.um.es/~domingo/08/CD/27May/Posters/ALopez/poster.pdf

[accessed 28.12.2017]

[18] Gy. Molnárka, L. Gergó, F. Wettl, A. Horváth, G. Kallós, Maple V and its

applications, Springer Hungarica, Budapest, (1996) in Hungarian

[19] R. Cypher, J. L.C. Sanz, The SIMD Model of Parallel Computation, Springer-

Verlag New York, (1994), pp. 1-3.

DOI: 10.1007/978-1-4612-2612-3

[20] W.Auzinger, Demonstration of a parallel computation in Maple using the

Grid package, TU Wien:, lecture notes, 2016, [cited 25.10.2016]

http://www.asc.tuwien.ac.at/compmath/2016/Grid-Demo.pdf

[21] L. Környei, G. Kallós, D. Fülep: Parallel Computations on the Blade Server at

Széchenyi István University, Acta Technica Jaurinensis, 3 (1) (2010) pp. 111-

126.

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

148

[22] G. Lencse, I. Derka: Testing the Speed-up of Parallel Discrete Event

Simulation in Heterogeneous Execution Environments In: Veronique Limère ,

El-Houssaine Aghezzaf (Eds.) Proceedings of the ISC'2013, 11th Annual

Industrial Simulation Conference, (2013) pp. 101-107.

[23] Hajdu, Gy. Molnárka: Numerical examination of a system model with a

nonlinear component, in TEAM 2016: Proceedings of the 8th International

Scientific and Expert Conference, AlumniPress, (2016), pp. 12-16.

[24] E.Miletics, Gy. Molnárka: Taylor series method with numerical derivatives

for initial value problems, Journal of Computational Methods in Sciences and

Engineering, 4 (1-2) (2004) pp. 105-114.

[25] G.A. Gravvanis, B.E. Moutafis, C.K. Filelis-Papadopoulos, H.G. Theodosiou:

Parallel Semi-Aggregation Techniques for Solving Parabolic Partial

Differential Equations, in P. Iványi, B.H.V. Topping and G. Várady, (Eds),

Advances in Parallel, Distributed, Grid and Cloud Computing for

Engineering, Saxe-Coburg Publications, Stirlingshire, UK, Chapter 8, (2017)

pp 157-182.

DOI:10.4203/csets.40.8

[26] F.Hajdu, Cs. Hajdu: Parallelization of numerical creation of phase-plane

diagram of a simple nonlinear system, (in Hungarian), in G. Keresztes (Ed)

Proceeding of spring wind conference 2, Miskolc, (2017), pp.547-557.

[27] P. L. Simon, H. Farkas, M. Wittmann, Constructing global bifurcation

diagrams by the parametric representation method, Journal of Computational

and Applied Mathematics, 108 (1-2) (1999) pp.157-176.

DOI: 10.1016/S0377-0427(99)00108-9

[28] S. Lynch, Dynamical Systems with Applications using Maple, Birkhäuser

Boston, (2010), pp. 143-165.

DOI: 10.1007/978-1-4899-2849-8

[29] F. Hajdu, Parallel numerical creation of 2-parametric bifurcation diagram of

nonlinear oscillators, Acta Technica Jaurinensis, 11 (2) (2018) pp. 61-83.

DOI: 10.14513/actatechjaur.v11.n2.453

[30] S. A. Billings, O.M. Boaghe, The response spectrum map, a frequency

domain equivalent to the bifurcation diagram, International Journal of

F. Hajdu and Gy. Molnárka – Acta Technica Jaurinensis, Vol. 11, No. 3, pp. 132-149, 2018

149

Bifurcation and Chaos, 11 (7) (2001) pp. 1961-1975.

DOI: 10.1142/S0218127401003164

