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Abstract: Logistical processes play crucial role in many systems where the resources
as well as tasks related to them are to be organized or scheduled in order to
increase the throughput of the system, thus the rate of servicing demands. In
this paper let us focus on loading systems and supply chains which represent
a specific type of logistical processes. In order to increase the throughput of a
loading system, delays caused by its certain subsystems are to be minimized.
In our previous studies we have already shown how loading systems can
be identified on subspace basis and how the relation between its certain
parameters can be characterized. In contrast this paper is aimed to show
through examples how system delays affect the efficiency of subspace based
identification applied on loading systems.
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1. Introduction

Supply chains as a specific category in logistics might be represented as a network of nodes
representing facilities that perform some actions related first of all to manufacturing, trans-
portation and distribution of products. Depending on the participant of the supply chain
such a network may consist of many interconnected nodes, with specific characteristics [1].
Thus, the behavior of a complex supply chain may depend on many factors. The topology
of the network may change as well especially when a facility becomes unable to fulfill its
function due to some reasons. The authors in [2] for example deal with so called integrated
supply chain optimization problems where the locations of facilities, customer allocations,
etc. are considered as well when facilities are subject to disruption risks.

In order to identify these factors as well as their impact on the whole chain, modeling
and identification of the system has to be performed. As in many fields also in logistics
modeling and identification approaches play significant role especially when accurate
models of complex logistical processes (LP) have to be designed. Authors in [3] consider
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queuing models to compute the response time for the delivery of items. Proper supply chain
models may be helpful to predict various features related to the modeled system, such as
the response time or in case of supply chains the delivery cycle time, customer order path
(related to time spent in different channels), etc. In addition a good model may be helpful
also to identify critical nodes in the chain and help to improve its reliability by changing
the topology of the supply chain network. In case when the inner structure of the system is
unknown (for instance the concrete service strategy and other internal mechanisms) the
modeling and identification can be performed only based on the available measurement
input-output data, which means only black box like modeling and identification methods
are utilized. In the literature many models (as for instance scheduling, transportation
planning, flow-shop sequencing problem) related to logistic systems are based on the fuzzy
set and fuzzy control theory, statistics or their combination [4][5][6][7][8][9].

During our previous studies we have investigated state space models together with
subspace based identification to model and identify supply chains or loading systems and
characterize the dependency between its certain factors [10]. A framework to promote
the better understanding of supply chain performance measurement and metrics can be
followed for example in [11]. In this paper let us focus on the impact of delays on
the accuracy of the identified model by considering state space models and subspace
identification techniques.

Many times it is difficult to find a proper mathematical model which would suitable
approximate the behavior of the observed logistical process even if the identification of
the system is considered locally. However subspace identification techniques combined
with tensor product transformation seem to be promising to model complex logistical
processes based on input-output data. In this case there is no need for an explicit model
parametrization, which is a rather complicated matter for multi-output linear systems [12].
Based on given input-output pairs (which provide useful information about the unknown
system) the discrete time, linear, time-invariant state space model of a logistical system
(see later in section 3) will be identified by using subspace techniques.

Depending on the knowledge about the modeled system a broad range of solutions
can be utilized. Since complex logistical systems are non-linear MIMO systems and are
influenced by many parameters their modeling is not a trivial task. Many methods have
been proposed to deal with multi-input, multi-output systems in the literature. Perhaps
the most popular tool in this topic is the linear parameter varying (LPV) structure by
which non-linear systems can be modeled and controlled on the basis of linear control
theories. Furthermore, the most recent results of the numerical algebra, such as the higher
order singular value decomposition and the related tensor product transformation (making
connection between LPV models and higher order tensors) offer promising tools to bridge
heuristic and analytic approaches. In such a joint framework besides analytic description
of the system the expert knowledge can be considered, as well. This may further improve
the effectiveness and extend the applicability of the related methods [13]-[16].
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The paper is organized as follows: Section 2 gives a brief overview of subspace iden-
tification for deterministic case. In Section 3.1 and 3.2 examples are reported showing
the effect of delays in supply chains on the accuracy of the identified model. Finally
conclusions are reported.

2. Overview on Subspace Identification of LTI Systems

Before turning the focus onto modeling loading systems and related delays, let us give a
brief description on how subspace identification techniques may be used to identify linear
time invariant (LTI) vertex models in the parameter space. Let us assume that the local
behavior of the logistical system is deterministic, thus it can be described in the well known
state space form as follows:

xk+1 = Axk + Buk (1)

yk = Cxk + Duk, (2)

where xk ∈ Rn stands for the state vector, uk and yk represent the input and output
vector respectively at time kT , where T stands for the sampling time. The goal is to find
the model matrices A, B, C and D based on input-output pairs. As described in [17] let us
first arrange the input-output pairs into so called Hankel matrices (reflecting the history of
our input-output data):

U1|i =


u1 u2 . . . uj

u2 u3 . . . uj−1
...

... . . .
...

ui ui+1 . . . uj+i−1

 , (3)

Y1|i =


y1 y2 . . . yj

y2 y3 . . . yj−1
...

... . . .
...

yi yi+1 . . . yj+i−1

 , (4)

where, i stands for the number of block rows (should be selected to be larger than the
maximum order n of the system) and j denotes the number of columns, which in case of
using all data samples is equal to N − i, where N represents the number of all input-output
samples. Furthermore, let the history of states (unknown) to be estimated encode as
follows:

Xi =
[
xi xi+1 . . . xi+j−1

]
. (5)
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It can be recognized from (2) that all row vectors in Y1|i are in the vector space
determined by the union of row space of Xi and U1|i. Let us assume that the intersection
of row space of Xi and U1|i is empty. The most simple alternative for estimating Xi (up to
a constant multiple C) is to project the row space of Yi onto orthogonal complement of
the row space of U1|i. The elements of Yi can be expressed with the help of the extended
observability matrix Γi and lower block triangular Toeplitz matrix Hi form as follows [17]:

Y1|i = ΓiX1 + HiU1|i, (6)

where
Γi =

[
C CA . . . CAi−1]> (7)

and

Hi =


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0

CAi−2B CAi−3B . . . CB D

 . (8)

By substituting recursively into (1) we can express the state sequence Xi+1 as follows:

Xi+1 = AiX1 + ∆iU1|i, (9)

where
∆i =

[
Ai−1B Ai−2B . . . AB B

]
(10)

stands for the reversed extended controllability matrix [17]. From (6) the state sequence
X1 can be expressed as:

X1 = Γ∗iY1|i − Γ∗iHiU1|i, (11)

where ∗ denotes conjugate transpose of the matrix. By substituting (11) into (9) we obtain:

Xi+1 = AiΓ∗iY1|i − AiΓ∗iHiU1|i + ∆iU1|i. (12)

Let us express Xi+1 as the sum of two matrices, where one of the matrices contains only
the input-output values, i.e.

Xi+1 = LiW1|i, (13)

where
Li =

[
∆i − AiΓ∗iHi AiΓ∗i

]
(14)

and
W1|i =

[
U1|i Y1|i

]>
. (15)

Since based on (6)

Yi+1|2i = ΓiXi+1 + HiUi+1|2i = ΓiLiW1|i + HiUi+1|2i. (16)

Let us now project Yi+1|2i onto orthogonal complement of Ui+1|2i. Since the projection
of HiUi+1|2i onto its orthogonal complement is empty subspace we obtain [17]:
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Yi+1,2i/U⊥i+1,2i = ΓiLiW1|i/U⊥i+1,2i (17)

(Yi+1,2i/U⊥i+1,2i)(W1|i/U⊥i+1,2i)
−1 = ΓiLi, (18)

(Yi+1,2i/U⊥i+1,2i)(W1|i/U⊥i+1,2i)
−1W1|i︸ ︷︷ ︸

Oi+1

= Γi LiW1|i︸ ︷︷ ︸
Xi+1

, (19)

Oi+1 = ΓiXi+1 (20)

where U⊥ denotes the orthogonal complement of the row space of U. Let us investigate
the structure of Oi+1. Based on (7) and (5) it can be expressed as:

Oi+1 =
[
C CA . . . CAi−1]> [xi+1 xi+2 . . . xi+j

]
. (21)

Based on (21) the rank of Oi+1 equals to the rank of the state sequence matrix Xi+1.
Equivalently, the dimensionality of the state vector x equals to the dimensionality of
Oi+1. The rank of Oi+1 can be determined by singular value decomposition (SVD) as
follows[17]:

Oi+1 = U1S1V1 (22)

ΓiXi+1 = U1S1/2
1 TT−1S1/2

1 V1, (23)

where T is an arbitrary invertible square matrix representing a similarity transformation.

Xi+1 = T−1S1/2
1 V1 (24)

X̃i+1 = S1/2
1 V1 (25)

The system matrix can be estimated in the least squares sense from the following set of
equations: [

X̃i+2

Yi+1

]
=

[
Ã B̃
C̃ D̃

] [
X̃i+1

Ui+1

]
, (26)

where Ui+1 and Yi+1 are input and output block Hankel matrices, respectively having one
block row.

3. Modeling Supply Chains on Subspace Basis

In this section let us show through examples how supply chains can be modeled and
identified on subspace bases. Furthermore let us also show through examples how the
response times in the supply chain influence the identified model. The simulations have
been performed by sampling interval T = 1[sec].
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3.1. Example 1

In this example transporting vehicles are loaded according to incoming demands in order
to transport goods from warehouse located at A to a given destination B. To service a
demand a free vehicle is needed to transport goods, loading machines are required to load
the vehicle at A and unload it after its arrival at B. If the unloading process is completed
the vehicle may return to the warehouse and wait for new incoming demands. The block
diagram of the system used to generate simulation data can be seen in Fig. 1 while the
parameters together with their actual values can be followed in Table 1.

Figure 1. The architecture of the system designed to generate simulation data

Let us consider input-output pairs represented by the average waiting time of demands in
the queue of demands as input u1 and the average service time of demands as output y1. Let
us identify the deterministic state space model describing the relationship between these
two mentioned system parameters by using the above described subspace identification
technique (see 2 for more details about subspace identification).

The input u1 can be followed in Fig. 2 while the corresponding simulated output
(representing the measured data) together with the output of the estimated model are
depicted in Fig. 3. The model estimation was performed based on 800 input-output data
pairs. During the verification 1600 data pairs have been considered. The matrices of the
identified state space model are as follows: The estimated system matrix:
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Table 1. Setup of system parameters to generate simulation data

Parameter Value
Number of loading machines 10
Number of vehicles 10
Number of unloading machines 3
Queue length of loading machines 40
Queue length of unloading machines 40
Queue length of vehicles waiting for loading 40
Queue length of incoming demands 50
Queue length of arrived vehicles 40
Loading time Exponential distribution with mean 10
Unloading time Exponential distribution with mean 10
Transport time Exponential distribution with mean 10
Return time of vehicles Exponential distribution with mean 10
Incoming rate of demands Exponential distribution with mean 1

A =



0.65029 −0.1937 0.28359 0.17257 −0.17277 −0.0097291 0.078612
−0.3566 0.68973 0.29488 0.36481 −0.2482 −0.064809 0.098057

−0.36349 −0.39037 −0.27047 0.34423 0.22771 −0.17696 0.055399
0.038496 −0.11669 −0.57838 −0.13653 −0.8574 −0.42366 −0.21459
0.15813 0.31372 −0.25643 0.21981 0.28052 −0.52284 −0.11093

0.094546 −0.23733 0.00031895 0.43292 0.068304 −0.35473 −0.5905
−0.082549 −0.0076265 0.29503 −0.21588 0.042108 −0.28678 −0.61157



The estimated input matrix:

B =
[
−0.17348 −0.33904 −1.1252 2.1473 0.78504 2.2637 4.2016

]T
The estimated output matrix:

C =
[
39.62 −9.8396 2.9335 1.5995 −3.1529 3.2417 −0.16641

]
The initial state of the estimated system:

X(0) =
[
12.427 23.417 82.997 −155.83 −74.708 −170.02 −361.04

]T
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Figure 2. Input: average waiting time of demands in the queue of demands

Figure 3. Output of the estimated model. Among 1600 input-output pairs 800 were used
for model estimation.
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Figure 4. Validation of the estimated model. 1600 input-output pairs were used for
validation.

Figure 5. Bode plot of the identified model.

The response of the identified model clearly follows the required characteristics (see
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Fig. 3). The verification of the estimated model has been performed by using 1600 data
pairs among which the first 800 has been used for model estimation. The model clearly
follows the measured output (see Fig. 4). The frequency response of the system can
be followed in Fig. 5. As shown in the next example, the efficiency of identification of
queuing systems on subspace basis is strongly influenced by delays present in the system.

3.2. Example 2

This example is aimed to show the influence of response time on the accuracy of the
identified model. The architecture of the system used in this example is the same as in
Example 1. However in contrast to the previous example here the transport time of goods
have been doubled, while the number of transportation vehicles was significantly decreased
in order to cause longer response times in the system (see Table 2).

The input represented by the average waiting time of demands in the queue of incoming
demands can be followed in Fig. 6. The output represented by the average response time
together with the response of the estimated model can be followed in Fig. 7. Finally the
verification of the model is shown by Fig. 8. Compared to the previous example here the
identification yielded a less accurate model (the cause is related to longer waiting times
in the system). Although oscillations can be observed, the main characteristics of the
measurement is clearly followed by the response of the estimated model. The matrices of
the identified state space model are as follows: The estimated system matrix is:

A =



0.84984 0.10055 0.20797 −0.1294 0.17411 −0.0036611 0.022475 −0.21601
−0.38785 0.2428 −0.018592 −0.35352 0.63397 0.001635 −0.056575 −0.50946

0.1157 0.24374 0.21441 0.1744 0.66165 0.27477 −0.52125 0.2711
0.031104 1.0741 −0.085068 0.032735 −0.7941 0.14308 0.12814 0.18568
0.20192 0.079581 −0.67947 −0.1361 0.35766 −0.11025 0.18476 0.54493

−0.042457 −0.38714 0.10683 −0.092881 −0.14477 0.69397 −0.11695 0.16482
−0.013259 0.072086 0.11943 0.046148 0.1385 0.41882 0.77311 0.076762

0.13265 0.092821 −0.26987 −0.31781 −0.15004 0.095917 0.012899 −0.24774



The estimated input matrix is:

B =
[
−0.075538 −0.02332 0.3248 −0.49781 −0.023601 −0.1238 0.037839 0.12997

]T
The estimated output matrix:

C =
[
43.295 −11.965 21.147 −0.91197 5.812 36.454 19.316 7.3207

]
The initial state of the estimated system:

X(0) =
[
−2.2054 27.437 27.061 −70.7 −22.441 −17.067 1.1072 70.364

]T

93
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Table 2. Setup of system parameters to generate simulation data

Parameter Value
Number of loading machines 10
Number of vehicles 2
Number of unloading machines 3
Queue length of loading machines 40
Queue length of unloading machines 40
Queue length of vehicles waiting for loading 40
Queue length of incoming demands 50
Queue length of arrived vehicles 40
Loading time Exponential distribution with mean 10
Unloading time Exponential distribution with mean 10
Transport time Exponential distribution with mean 20
Return time of vehicles Exponential distribution with mean 10
Incoming rate of demands Exponential distribution with mean 1

Figure 6. Input: average waiting time of demands in the queue of demands
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Figure 7. Output of the estimated model. Among 1600 input-output pairs 800 were used
for model estimation.

Figure 8. Validation of the estimated model. 1600 input-output pairs were used for
validation.
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Figure 9. Bode plot of the identified model.

It can be recognized that the accuracy of the identified model is negatively affected by
longer response times (compared to the previous example) in the queuing system. This
inaccuracy appears in form of oscillations along the main characteristics of the system
response (see Fig. 7). However the main characteristic of the model response are kept close
to the measured one, thus crucial delays in the system may be detected even by evaluating
the response of the identified model. The verification of the estimated model has been
performed by using 1600 data pairs among which the first 800 has been used for model
estimation. The main characteristics of the model clearly follows the measured output (see
Fig. 8). The frequency response of the system can be followed in Fig. 9.

4. Conclusions

During our previous studies we have investigated state space models and subspace identifi-
cation to model and identify supply chains or loading systems as well as to characterize
the dependency between its certain factors. In this paper we have turned the focus on the
impact of delays on the accuracy of the identified model. Through simulations it was shown
that increasing the delays in the system causes oscillations along the main characteristics
of the estimated response. The loading systems have been modeled by discrete time, linear,
time-invariant state space models and identified on subspace basis. The input-output data
used for identification have been generated by a simulated loading system implemented in
Matlab Simulink framework.
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