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Abstract: Vehicle components made of rubber or rubber like polymers usually 

exhibit large deformations. Cyclic deformations may induce increasing 

in temperature in elastic materials. In this paper after the summary of 

the basic physical laws and the description of basement of 

continuummechanics, taking into account the Neo-Hooke material law, 

an example will be presented which allows to calculate strain- and 

temperature changes. 
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1. Introduction 

Generally, the most frequently used structural materials are metals which have 

high strength and stiffness. However, there are many cases, when other important 

properties come to the fore as well as high deformation by elastic behavior, high 

viscosity namely good damping effect. The metals do not have these above 

mentioned properties, but the rubber does. The rubber- thanks to its elastic behavior 

is able to establish an elastic connection between hard and brittle structural elements, 

however, has high load carrying capacity. 

Rubber can be classified as a so-called hyperelastic polymer which has a typical 

geometrical and material non-linear behavior. It means that the relationship between 



V. Szüle and B. Pere – Acta Technica Jaurinensis, Vol. 11, No. 1, pp. 1-16, 2018 

2 

displacements and internal forces can be described by functions whose order is 

higher than linear. The geometrical nonlinearity is easy to handle mathematically, 

however the material nonlinearity is only described approximately [1] [2]. 

Independent of the experimental investigations which deal with the material 

behavior of rubber, a number of theoretical works treated rubber as an ideally non-

linear elastic, in particular hyperelastic material. One of the properties of the 

constitutive equations of hyperelastic material is that stresses are derived from stored 

elastic energy function. Hyperelasticity is a particularly convenient constitutive 

equation given its simplicity and it constitutes the basis for more complex material 

models such as elastoplasticity, viscoplasticity, and viscoelasticity [1]. 

Ogden [3] [4] was able to obtain very good correlation with the experiments of 

Treloar. Above that, his strain energy function fulfills all necessary mathematical 

and physical requirements. Furthermore, a number of material laws for rubber can 

be found in literature [5] [6] for example the Neo-Hooke-, the Mooney-Rivlin, the 

Yeoh-, and the Arruda-Boyce material models. Their applicapability largely depends 

on the stress. 

Thus, description of the behaviour of rubber and rubberlike materials it is quite 

difficult from several aspects. The nonlinear behaviour and the fact that the strain 

can be comparable to the original measure of the parts shows that the models used 

for small strains cannot be applied even besides compromise. 

Furthermore, the task becomes more complicated because of some features of 

rubber parts. The temperature of rubber increases significantly. Therefore, the 

temperature- and displacement fields are coupled, and it means that special solving 

algorithms are required [7]. So the equations of mechanics and thermodynamics are 

coupled. 

As described above, the goals of this paper are the following: 

It is necessary to summarize the applied equations and the basic physical laws 

which are responsible for the theoretical background [8]. Clarification of these 

relationships is essential because the material laws of rubber cannot violate those 

basic physical laws. It is necessary to extend these relationships like equilibrium of 

linear momentum and equilibrium of angular momentum, the first and second law 

of thermodynamics to high deformation of rubber and rubberlike polymers. After it, 

it will follow the numerical solution and computer simulation of the 

thermomechanical problem by using of the Neo-Hooke material law. 
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2. Notation 

Table 1. Notation 

Mechanics: 

t   
Force per unit surface/traction, acting on the material body 

f
 
 Force per unit volume, acting on the material body 

   Cauchy-stress tensor 

v   Velocity of the material body 

 Mass density 

Continuum mechanics 

F   Deformation gradient tensor 

r   Position vector 

 Volume ratio 

Thermodynamics 

 Energy supply density 

q
 
 Heat flow vector 

 Heat source 

 Entropy density 

 Free energy  

 Free energy at the reference temperature 

 Specific heat 

Vector calculus 

a b  Scalar product (dot product) of two vectors 

a b  Vector product (cross product) of two vectors 

 Nabla, Hamiltonian differential operator 



J



h





0

ĉ


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3. Basics of continuum mechanics 

Consider a fixed reference configuration of a body corresponding to a fixed 

reference time 
0t . The position of a typical point may be identified by the position 

vector R . The reference configuration is assumed to be stress-free and possesses a 

homogeneous reference temperature value 
0 ( 0)T  .  

Furthermore the quantities of the 
0t  moment will indicated by capital letters and 

the quantities of an optional t  moment will indicated by small letters. Thus, the 

position vector of material particle is r  at time t . The position of the body is called 

current configuration at time t  where each quantity depends on time. During the 

reference configuration the quantities do not depend on time, because of the fixed 

time moment. A map of the reference configuration to a current configuration is 

characterized by the macroscopic motion    ,r t R t [8]. 

 

 

Figure 1. Connection between the reference and current configuration 

Fig. 1 shows the connection between the reference and current configuration, i.e. 

movement and deformation of the body is determined by the    ,r t R t maping, 

so the P point which was originally determined by the R  position vector moves to 

1G
2G

3G

1g

2g

3g

R

 tr

P P

P

 P  t P

  R

Reference

configuration
Current configuration

   ,t t r R
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the place determined by the r  position vector. As a measure of the thermoelastic 

deformation we use the deformation gradient 
 

  0

R
F grad R

R


 


   


, 

where the zero index of the differential operator 
0 means that the derivation has to 

be done in the reference configuration. Deformation gradient is the base variable of 

the continuum mechanical task and by using it the other quantities of the problem 

can be derived. 

4. Governing equations 

4.1. Equlibrium of linear momentum 

Let us consider a hyperelastic continuum body in the current configuration. Its 

volume is indicated by v , and its surface is indicated by a . The integral formulation 

of equlibrium of linear momentum in the current configuration is: 

 
    v a v

d
v dv t da f dv

dt
      (1) 

where v  is the velocity of one point of the continuum body,   is the mass density 

of the material of the body, t  force per unit surface/traction, f force per unit 

volume. 

During the solution of the problem we need to know the differential formulation of 

the equlibrium of linear momentum, which can be generated by the Gauss’s theorem: 

 v f    (2) 

where v  is the velocity of one point of the continuum body,   is the mass density 

of the material of the body, t  force per unit surface, f  force per unit volume,   

Cauchy-stress tensor, namely the t  traction can be expressed by the Cauchy-stress 

as follows: t n  . 
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4.2. Equilibrium of angular momentum 

Let us consider a hyperelastic continuum body in the current configuration, its 

volume is indicated by v , and its surface is indicated by a . The integral formulation 

of equilibrium of angular momentum in the current configuration is: 

 
    v a v

d
r v dv r t da r f dv

dt
        (3) 

Hereafter, we use the differential form of the equilibrium of angular momentum in 

the current configuration: 

  r v f r  


       (4) 

The differential form of the balance of moments can be expressed by the following 

equality 
T

  . The consequence of this formula is that the stress tensor is 

symmetric. 

4.3. The first law of thermodynamics 

Cyclic finite deformations cause exoterm process in hyperelastic materials. The 

classical thermodynamical characterization of the continuum body is presented by 

Holzapfel and Simo [8], where the laws of thermodynamics, the Helmholtz free 

energy and the heat conduction play a significant role.  

The form of the first law of thermodynamics in the current configuration is: 

 

         

Performance of forces on surface Performance of forces on volume

v a v a v

d
dv q n da hdv v t da v f dv

dt
            

 (5) 

where   is the energy density (energy per unit mass), q  is the heat flux, h  is the 

heat source.  

 

 

Using Gauss’s theorem the differential form of the Eq. (5) is:  
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  q h l v v            (6) 

where 
2

2

d v
v v

dt

 
   

 
,  

2

2

d v
q h l

dt
  
 

      
 

, l v   is the velocity 

gradient, 
1

l F F


  . Introducing the internal energy per unit mass 
2

2

v
e    the 

first law of thermodynamics in the current configuration has the following form: 

  e q h l       (7) 

4.4. The second law of thermodynamics 

The behaviour of viscoelastic materials is described by the second law of 

thermodynamics. If the material is viscous and does stress-relaxing which is caused 

by stress, it can happen only in one direction. The stress decreases or increases. The 

status of an isolated system is proceeding to the thermal equilibrium. 

The second law of thermodynamics can be expressed by the following inequality: 

 
    v a v

d q da h dv
dv

dt T T



      (8) 

where   is the entropy density, T  is the absolute temperature. 

Using Gauss’s theorem and the 
2

a a a b

b b b

  
   

 
 identity the differential form 

of Eq. (8) is: 

 
q T

T q h
T

 


      (9) 

It will be expedient to change the variable of the exercise from entropy to 

temperature by applying the Legendre-transformation and by using the Helmholtz 

free energy 

 e T    (10) 

Substituting Eq. (10) into Eq. (7) and subtract Eq. (7) from Eq. (10) the following 

expression is generated: 
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   0,
q T

T l
T

   


       (11) 

this is the Clausius-Duhem inequality [6]. 

5. Constitutive model 

5.1. Stress state of elastic element 

The property of an elastic element is that the total mechanical energy is 

reversible. The free energy of the body is the function of the strain and temperature. 

Dissipation comes only from heat conduction. 

5.2. Structure of free energy function 

In order to make the further calculations easier it is necessary to split the Eq. (10) 

to temperature-dependent and temperature-independent parts [12]. Based on known 

functions  0 C  and  0e C  for the free energy and the internal energy at a given 

reference temperature 
0T  and the given heat capacity at a reference temperature, 

one obtains the following general structure for the thermoelastic free energy from 

the Eq. (10): 

          
0

0 0

0 0

ˆ, , (1 ) , 1

T

T

T T T
C T C T C e J c C T dT

T T T
  

 
      

 
 , (12) 

where C  is the right Cauchy-Green strain tensor [12]. 

5.3. Neo-Hooke material law 

In the following section we are going to investigate the isotrop materials and we 

are going to apply the Neo-Hookean material law. It means that 
0

  which is used in 

free energy depends on the scalar invariant of the right Cauchy-Green strain tensor. 

The internal energy is zero applying the entropic theory and the c  heat capacity is 

constant with good approximation. In the case of Neo-Hooke material the free 

energy is: 

          
0

0 0

0 0

ˆ, , (1 ) , 1

T

T

T T T
C T C T C e J c C T dT

T T T
  

 
      

 
 , (13) 

where 

ĉ
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
 
is the shear modulus, 

IC  is the first scalar invariant of the right Cauchy-Green strain tensor, IC C I 

[2]. 

5.4. Equation of heat conduction 

Starting from the first law of thermodynamics and introducing the internal energy 

and changing the variable from entropy to temperature, the equation will have the 

next form: 

 

 
2

0 0 0 0 0 0

1

2
cT S C CT q h

C T C

 
  

  
        
    

, (14) 

where 0

1

2
S C

C




 
  

  

 is the non-recoverable part of the mechanical power, 

which is zero in the case of a pure elastic element [1], [2]. In this case the reological 

model is regarded to be a pure elastic element. So the free energy of the body is 

characterized by the deformation and temperature: 

  ,C T   or 0

1
0

2
S C

C




 
   

  

, így 0S
C








 (15) 

Furthermore, we are assuming that there are not heat sources in the rubber and the 

temperature field shows homogeneous distribution. 
0 00, 0h q    

Thus, the equation of the heat conduction is the following: 

 
2

cT T C
T C


 

 
 (16) 

6. Example 

Let us consider the mechanical model of a silent block, thus the A, B, C 

axisymmetric bodies (see Fig.2). The A and C bodies are rigid bodies, and B is a 

deformable one. Regarding the structure of the silent block it consists of two metal 

elements whose are connected by the rubber which is vulcanized between them. The 
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inside rubber part provides a non-linear elastic connection between the two metal 

elements in the following way: it transfers loads however filters out the harmful 

vibrations, i.e. it has damping effect. All three bodies are axysymmetric and their 

symmetry axes are the same.  

 
Figure 2. Mechanical modell of a silent block 

The external body (A) is fixed and the internal one is imposed by a given rotation. 

Further assumptions: 

Planes perpendicular to the symmetric axis will be planes after the deformation. 

The magnitude of the displacement is linear function of the measured distance 

from the axes of symmetry.  

Furthermore, we are assuming that there aren’t heat sources in the rubber and the 

temperature field shows homogeneous distribution, 0 00, 0h q  . 

We used the next material properties:
5

2
4,225 10  , c=1580 .

N Nm

kgKm


  
    

   

Rotating the body C by angle , we have assigned the displacement of a point in 

body B on an optional radius, Fig. 3 and we have determined the relationship 

h

1 1,G g

2 2,G g

3 3,G g

1R

2R

A

B

C


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between the reference and current configuration. Function  ,R t  describing strain 

and characterizing the connection between the reference and current configuration 

has the following form on an optional radius: 

 

   

       
cos sin ,

sin cos , ,

x X Y

y X Y r t R t

z Z

 

  

  


   


 

, (17) 

where 2

2 1

R R

R R
 





, 

2 2R x y  . 

 
Figure 3. Plan view of the mechanical model of the silent block 

The deformation gradient is obtained by the derivation of the function  ,R t . 

Using this formula the problem of continuummechanics is regarded to be solved. 

Using of the deformation gradient we can derive the other quantities. We are 

assuming that the volume is constant so the deformation gradient can be expressed 

by the following way:  

   0F R  , (18) 

1 1,G g

2 2,G g

1R



xe

ye





2R

R
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Applying the Eq. (20) the Cauchy stress tensor is: 

 
5

3
1

3
IJ b b I pI 

  
   

 
, (19) 

where   is the shear modulus, 
T

b F F  is the left Cauchy-Green strain tensor, 
Ib

is the first scalar invariant of the left Cauchy-Green strain tensor,  det 1J F  , 

I  is the identity tensor, p  is the pressure, which is the consequence of the constant 

volume, it can be determined by the boundary conditions, in this case by the 

condition 
z   . 

After the substitution of the pressure p  the Cauchy-stress tensor is obtained in the 

next formulation:  

 

R R

R



 

 

  

 
 

 
 
    

, (20) 

The calculation of the stress values is determined by program wxMaxima, and using 

of Eq. (20). 

The stress
R is presented as the function of radius Fig. 4 and is compared with the 

simulation of the Ansys Finite Element Program. Results of both methods are in 

agreement with regard to their magnitude. One curve illustrates the changing of the 

values of stresses on the different radius of intermediate body B. 

 

Figure 4. Representation of stress 
R as the function of radius  
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The results of Fig. 4 illustrates very well the non-linear characterization of rubber’s 

behaviour. Namely, decreasing or increasing of stress derives from the non-linear 

characterization. 

Fig. 5 shows the result of the calculation by Ansys Finite Element Program. 

 
Figure 5. Representation of stress

R  as the function of radius  

 

 
Figure 6. Representation of stress R as the function of radius  

The same values were calculated by in the cases of the stresses  and R , like the 

same manner by using wxMaxima program and Scilab. The stress  is presented as 

the function of radius Fig. 7. One curve illustrates the changing of the values of 

stresses on the different radius of intermediate body B. 
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Figure 7. Representation of stress  as the function of radius  

The Fig.7 shows the results of calculation by Scilab. Hence, this figure illustrates 

the changing of the stress   from radius 
1R  to radius 

2R by the effect of the 

torsion of the internal body C from angle 0 to angle 10.  

Fig.8 presents the temperature change by the effect of vibration frequency 1 Hertz.  

 
Figure 8. Temperature change as the function of time 
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The calculation of temperature changes which is caused by the effect of vibration 

frequency 1 Hertz is obtained by the using of Eq.(16), i.e. 
2

cT T C
T C


 

 
. 

Substitution of the next relation to the Eq.(16),   2

2 1

sin
R R

t
R R

  





 the 

temperature changes can be calculated. Generation of calculations and the 

representation of the temperature changes as the function of time were determined 

by the SCILAB program. 

Summary 

We represented an algorythm which allows to calculate strain changes and 

temperature changes of the rubber part of the silent block under certain conditions. 

In the future we would like to develop a solving computer program in order to apply 

it as a thermodinamically consistent description. 

References 

[1] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element 

Analysis, Cambridge University Press, 1997. 

[2] G. A. Holzapfel, Nonlinear Solid Mechanics, John Wiley&Sons, Chichester, 

2000. 

[3] R. W. Ogden, Large deformation isotropic elasticity: on the correlation of 

theory and experiment for incompressible rubberlike solids, Proceedings of 

the Royal Society A 326 (1567) (1972) pp. 565-584. 

doi: 10.1098/rspa.1972.0026 

[4] R. W. Ogden, Large deformation isotropic elasticity: on the correlation of 

theory and experiment for incompressible rubberlike solids, Proceedings of 

the Royal Society A 328 (1575) (1972) pp. 567-583. 

doi: 10.1098/rspa.1972.0096 

[5] S. Reese, P. Wriggers, A material model for rubber-like polymers exhibiting 

plastic deformation: computational aspects and a comparison with 

experimental results, Computer Methods in Applied Mechanics and 

Engineering 148 (3-4) (1997), pp. 279-298. 

doi: 10.1016/S0045-7825(97)00034-0 



V. Szüle and B. Pere – Acta Technica Jaurinensis, Vol. 11, No. 1, pp. 1-16, 2018 

16 

[6] M. Böl, S. Reese, Finite element modelling of rubber-like polymers based on 

chain statistics, International Journal of Solids and Structures 43 (1) (2006) 

pp. 2-26. 

doi: 10.1016/j.ijsolstr.2005.06.086 

[7] B. Pere, Solution of Coupled Thermomechanical Problems Using p-FEM, 8th 

European Solid Mechanics Conference (ESMC2012), Graz, Austria, 9-13 

July 2012 (CD-ROM, 2 pages) 

[8] G. A. Holzapfel, J. C. Simo: Entropy elasticity of isotropic rubber-like solids 

at finite strains, Computer Methods in Applied Mechanics and Engineering 

132 (1-2) (1996), pp. 17-44. 

doi: 10.1016/0045-7825(96)01001-8 

[9] P. J. Flory, Statistical Mechanics of Chain Molecules, reprinted edition, 

Oxford University Press, New York, 1989. 

[10] L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd Edition, Oxford 

University Press, New York, 1975. 

[11] S.C.H. Lu, K. S. Pister, Decomposition of deformation and representation of 

the free energy function for isotropic thermoelastic solids, International 

Journal of Solids and Structures 11 (7-8) (1975) pp. 927-934. 

doi: 10.1016/0020-7683(75)90015-3 

[12] C. Miehe, Entropic thermoelasticity at finite strains. Aspects of formulation 

and numerical implementation, Computer Methods in Applied Mechanics and 

Engineering 120 (3-4) (1995) pp. 243-269. 

doi: 10.1016/0045-7825(94)00057-T 

https://doi.org/10.1016/j.ijsolstr.2005.06.086

